
Serverless Comparison

Hyungro Lee, Kumar Satyam and Geoffrey C. Fox
School of Informatics,

Computing and Engineering
Indiana University

Bloomington, Indiana 47408

Abstract—Serverless computing also called Function-as-a-
Service (FaaS) provides a small runtime container to execute
lines of codes without management of infrastructure which is
more like simpler version of PaaS. Amazon, Google, Microsoft
and IBM offer serverless computing with various features but
some limitations exist. We intend to generate a comparison with
benchmarking results therefore our report becomes a guideline
of further research on serverless computing. We also investigate
existing platforms to see if it can be used to perform large
distributed computation and apply to big data analytics. This
report provides comparisons towards 1) elasticity, 2) scalability,
3) flexibility, 4) cost efficiency, 5) concurrency and 6) functionality.

Keywords—FaaS, Serverless, AWS, GCE, Azure, IBM Open-
Whisk

I. INTRODUCTION

Serverless computing is a first commercial cloud service
that uses 100 milliseconds as a charging metric compared
to traditional cloud services using an hourly charge metric.
Serverless is a miss-leading terminology because it runs on
a physical server but it succeeded in emphasizing no infras-
tructure configuration requirement to manage compute work-
load. Geoffrey et al [1] defines serverless computing among
other existing solutions i.e. Function-as-a-Service (FaaS) and
Event-Driven Computing. We also understand that serverless
evolved recently because container technology allows to create
a namespace for the workload within a minute and certain
restrictions e.g. 300 seconds timeout increase overall resource
utilization from the provider perspective. In the following
sections, we simply investigate current serverless platforms in
terms of its elasticity, scalability, flexibility, cost efficiency,
concurrency and functionality and describe existing issues and
restrictions including suggestions. Use cases are followed to
demonstrate its capacity to run large and distributed tasks
including scientific computing applications.

II. RESULTS

In the form of the first report, we show progress with the
current results regarding to computation, elasticity, price and
frontend request handler, the trigger. We may add more results
and adjust current results in the final paper with taking into
all considerations and feedback.

A. CPU Flops

Serverless platform allocates compute resources based on
the amount of requests which shows up to a peak double-
precision floating point performance of 70 TFLOPs when

Fig. 1: Serverless Functions with 3000 parallel execution

3,000 concurrent function invocation requested on Amazon
Lambda. Figure 1 is the first result of invoking 3000 functions
on Serverless Functions which indicates proportional between
the number of functions and the aggregated GFLOPs. AWS
Lambda outpaces the other competitors which generates almost
7x faster compute speed. Azure Functions, IBM OpenWhisk,
and Google Functions are in either a beta service level or
an early stage of development therefore we expect that the
allocated compute resource will be more comparable when
the service is fully mature.

B. Elasticity

Figure 2 shows AWS Lambda elastic provisioning for
dynamic workload changes over time. The blue dot indicates
a function execution time which normally takes less than two
seconds but there are additional fifteen seconds for initializing
environments and installing packages when the function is
newly created. You find that there is a blue dot group at
the beginning with about 15 function execution time because
compute resource is being increased for the first request. The
second group of the blue dots is shown in between 100 and
200 elapsed time where increased workload given to a function
and the additional compute resources are provisioned to deal
with more workload than the current function can handle. The
maximum workload is given in between 400 and 500 elapsed
time but we do find no additional compute resources is created.
It explains that the increased amount of compute resources
are kept for a certain amount of time to provide enough
capacity about the future resource demands. We observe that
Azure functions and AWS lambda terminate a process after 30
minutes idle timeout.

Fig. 2: AWS Lambda Provisioning for Workload

Fig. 3: Price Comparison

C. Value

Commercial serverless providers introduced a millisecond
charge metric for a serverless function and we ran a same
program to measure actual costs among different providers
with memory size options. Note that the program we used is
a matrix multiplication which generates 2-dimensions of two
1024 matrices and the charge is calculated with the amount
of allocated memory. Figure 3 shows that IBM OpenWhisk
with 128 memory option is the most inexpensive choice and
choosing a small size of memory does not save bills regarding
to AWS Lambda. Note that some bars are missing because
there is no option in some of providers. Google Function also
failed to run the program between 128 M and 512 M memory
options.

III. TRIGGER COMPARISON

The serverless platforms that we have seen is a subset of
event-driven computing and the front-end event handler is the

Fig. 4: HTTP Trigger Comparison

most important use case for serverless technology which is
also called a trigger. Serverless computing providers support
different type of events including HTTP, object storage e.g.
AWS S3, and a database e.g. IBM Cloudant. We find that a
trigger has an important role in serverless computing because
functions are invoked by triggers. We also find that each
trigger has different capacity to deal with large number of
concurrent requests and we did latency comparison of HTTP
and database triggers between different cloud platforms such
as AWS Lambda, IBM OpenWhisk, Google Cloud Functions
and Microsoft Azure Functions.We executed the same function
across different cloud function. We first started with AWS
Lambda. We tested AWS Lambda with triggers from HTTP
API gateway, DynamoDB and S3 as well. For IBM Open-
Whisk, we tested a HTTP trigger and the IBM Cloudant
trigger. For Google Cloud Function, we had triggers from
HTTP, Google Cloud Storage.They do not offer database
trigger, although a pub/sub messaging trigger is offered.For
Azure Functions, we had triggers from HTTP. The numbers
are given in the link.

A. HTTP Trigger

We have highlighted the HTTP trigger which is available
in all the cloud platforms. As per Figure 4 we see that the
time taken to invoke IBM OpenWhisk function and Google
functions from HTTP endpoint trigger is the highest where
as the Azure Function takes the least. Also, all cloud vendors
show a linear pattern of function invocation when the parallel
HTTP requests increases. We don’t see any degradation of per-
formance in handling massive requests up to 3000 concurrent
invocations. We can conclude that the increase in invocation
does not affect the performance.

B. Database Trigger

In the Figure 5, we did a comparison of the database type
of trigger. AWS DynamoDB and IBM Cloudant are tested as
a direct trigger to their respective vendors’ functions. As of
now we cannot compare Azure and Google Cloud as they do
not have a direct trigger available to their respective functions.
As per the bar chart, the throughput of the AWS DynamoDB

https://github.com/satyamsah/Serverless-Technologies/blob/master/latency-comparison.xlsx

Fig. 5: Database Trigger Comparison

Fig. 6: Throughput of Triggers

trigger and the IBM Cloudant trigger are shown with the
increased number of parallel writes to those databases. As per
the graph, we see that performance of the AWS DynamoDB
trigger surpasses the IBM Cloudant trigger in each number
of records. We observe that AWS DynamoDB to Lambda
indicates a decrease in performance between 2600 and 3000
records whereas the IBM Cloudant trigger to Openwhisk
maintains linearity in spite of increasing the number of writes
to Cloudant.

Figure 6 shows throughput of each trigger per provider.
We compared HTTP trigger and object storage trigger to show
which trigger performs better among the providers. The Azure
HTTP trigger shows the best performance whereas the Google
HTTP is the least capable of processing requests among the
four providers. For object storage, AWS S3 trigger performs
better than the Google Cloud storage trigger but we still find
that HTTP trigger is a more reliable choice in processing
multiple requests. Note that we were able to perform the object
storage trigger for AWS and Google cloud storage only as the
other providers do not offer a direct database trigger as of now.
This will help the reader of the paper to decide which trigger
work faster among all the four providers.

IV. FEATURE COMPARISON AMONG DIFFERENT CLOUD
FUNCTION

The feature comparison would be helpful to the new users
of serverless computing and will help the readers of this
paper understand the underlying system level information of
the serverless platform. As per the Table I, AWS Lambda

Fig. 7: Cold Start Delay in seconds invoking Azure Functions
over 3000 parallel execution

offers a wide range of trigger endpoints compared to the
other cloud providers.We also see that the cost of usage of
serverless function is based on two metrics. First, the number
of invocation of serverless functions. Second, the time taken
by a serverless function to execute and complete paired with
an amount of memory in size of gigabytes allocated. Invo-
cation to the serverless functions is really cost effective in all
serverless providers if an application is executable with certain
restrictions that serverless computing has. All providers have
similar pricing tables but IBM openWhisk does not charge the
number of invocations whereas the other providers do charge.
Google upscales in terms of memory as it provides maximum
of 2 GB of memory to run a serverless function. Google also
outperforms in terms of providing maximum execution timeout
of 9 minutes which would be helpful for long running jobs.
IBM OpenWhisk has the container which can provided the
best clock speed of 2100 *4 MHz.

V. WIP

The following sections are currently under development.
We will add more thoughts and perform experiments to enrich
final results of this work.

A. Latency for Cold Start vs Warm Start

We measured delay for invoking functions over 3000
function calls on Azure in Figure 7. Other platforms will be
compared.

VI. GUIDELINES OF SERVERLESS

This section describes current restrictions and certain fac-
tors of serverless computing for better understanding how to
use and how to migrate any current applications if it satisfies
requirements. Runtime languages, memory restrictions, and
timeout limitations are addressed. The current implementation
of serverless platform allows you to choose programming
languages such as node.js and Python but more languages
would be added soon with extra libraries.

Item AWS Lambda Azure Functions Google Functions IBM OpenWhisk
Runtime languague node.js, Python, Java, C# C#, F#, node.js, Java, PHP node.js node.js, Python, Java, C#,

Swift, PHP, Docker
Trigger 18 triggers (i.e. S3, Dy-

namoDB)
6 triggers (i.e. Blob, Cosmos
DB)

3 triggers (i.e. HTTP,
Pub/Sub)

3 triggers(i.e.
HTTP,Cloudant)

Price per Memory $0.0000166/GB-s $0.000016/GB-s $0.00000165/GB-s $0.000017/GB-s
Price per Execution $0.2 per 1M $0.2 per 1M $0.4 per 1M n/a
Free Tier First 1 M Exec First 1 M Exec First 2 M Exec Free Exec /

40,000GB-s
Maximum Memory 1536MB 1536MB 2048MB 512MB
OS Linux ip-10-13-100-130

4.9.43-17.39.amzn1.x86 64
Windows NT Debian GNU/Linux 8 (jessie) Alpine Linux;14.04.1-Ubuntu

Max CPU 2900.05 MHz,1 core 1.4GHZ 2200 MHz, 2 Processor 4 cpu cores,2100.070 MHz
Temp Directory 512 MB (/tmp) 500 MB (%Local%)
Execution Timeout 5 mins 5 mins 9 mins 5 mins
Logging limit 10 MB
Code size limit 48 MB
API references cli tool .NET, pyhton,node,java,ruby,

rest
gcloud CLI tool, rest api, rpc
api

cli tool

TABLE I: Feature Comparison

A. Restriction

It is worth to mention the existing restrictions and discuss
why it is necessary and how to change for building better
platforms and achieving cost efficiency. The following items
are discussed:

• runtime languages

• timeout

• memory size

• number of invocation

• number of functions

B. Suggestion

We also find that this section might be useful to discuss
what type of workloads and applications are beneficial in
running on Serverless platforms. The following items are
broadly discussed so far:

• increasing timeout

• no limitation on runtime choice

• options choosing server types for particular workloads
e.g. gpu enabled

• common library packages e.g. numpy, scipy, mat-
plotlib, tensorflow, caffe

VII. USE CASES OF SERVERLESS

This section demonstrates a few examples in utilizing
serverless platforms to perform a large computation in a sense
of parallel job execution. Big Data examples, hadoop word
count, sort and machine learning training can be included.

VIII. DISCUSSION

There are overlaps and similarities between serverless and
the other existing services, for example, Azure Batch is a
job scheduling service with an automated deployment for a
computing environment. AWS Beanstalk [2] is deploying a
web service with automated resource provisioning.

IX. RELATED WORK

PyWren [3] is introduced in achieving about 40 TFLOPs
using 2800 AWS lambda invocations. It is necessary to show
a similar computing power among other serverless providers.
McGrath et al [4] showed latency comparisons among the
commercial serverless providers but other aspects are not fully
investigated such as trigger/binding performance and failure
rate. OpenLambda [5] is the first paper addressing serverless
platforms for web application since then there are changes
that need to be mentioned. Kubeless [6] is a new serverless
framework using Kubernetes, a container framework.

REFERENCES

[1] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of
serverless computing and function-as-a-service (faas) in industry and
research,” arXiv preprint arXiv:1708.08028, 2017.

[2] A. Amazon, “Elastic beanstalk,” 2013.
[3] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud:

Distributed computing for the 99%,” arXiv preprint arXiv:1702.04024,
2017.

[4] G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in Distributed Computing Systems Work-
shops (ICDCSW), 2017 IEEE 37th International Conference on. IEEE,
2017, pp. 405–410.

[5] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” Elastic, vol. 60, p. 80, 2016.

[6] Kubeless, “A kubernetes native serverless framework,” 2017.

	Introduction
	Results
	CPU Flops
	Elasticity
	Value

	 Trigger Comparison
	HTTP Trigger
	Database Trigger

	feature comparison among different cloud function
	WIP
	Latency for Cold Start vs Warm Start

	Guidelines of Serverless
	Restriction
	Suggestion

	Use Cases of Serverless
	Discussion
	Related Work
	References

