
Computational Methods for Large Scale DNA Data Analysis

Xiaohong Qiu1, Jaliya Ekanayake1,2, Geoffrey Fox1,2, Thilina Gunarathne1,2, Scott Beason1
1Pervasive Technology Institute, 2School of Informatics and Computing,

Indiana University
{xqiu, jekanaya, gcf, tgunarat, smbeason}@indiana.edu

Abstract

We take two large scale data intensive problems

from biology. One is a study of EST (Expressed

Sequence Tag) Assembly with half a million mRNA

sequences. The other one is the analysis of gene

sequence data (35339 Alu sequences). These test cases

can scale to state of the art problems such as

clustering of a million sequences. We look at initial

processing (calculation of Smith Waterman

dissimilarities and CAP3 assembly), clustering and

Multi Dimensional Scaling. We present performance

results on multicore clusters and note that currently

different technologies are optimized for different steps.

1. Introduction

 We abstract many approaches as a mixture of

pipelined and parallel (good MPI performance)

systems, linked by a pervasive storage system. We

believe that much data analysis can be performed in a

computing style where data is read from one file

system, analyzed by one or more tools and written

back to a database or file system. An important feature

of the MapReduce style approaches is explicit support

for data parallelism which is needed in our

applications. .

2 CAP3 Analysis

 We have applied three cloud technologies, namely

Hadoop, DryadLINQ [1], and CGL-MapReduce [2] to

implement a sequence assembly program CAP3 [3]

which is dominant part of analysis of mRNA

sequences into DNA and performs several major

assembly steps such as computation of overlaps,

construction of contigs, construction of multiple

sequence alignments and generation of consensus

sequences, to a given set of gene sequences. The

program reads a collection of gene sequences from an

input file writing out the results. The “pleasingly

parallel” nature of the application makes it extremely

easy to implement using the technologies such as

Hadoop, CGL-MapReduce and Dryad. In the two

MapReduce implementations, we used a “map-only”

operation to perform the entire data analysis, where as

in DryadLINQ we use a single “Select” query on the

set of input data files.

Figs 1 and 2 show comparisons of performance and the

Fig. 1: Performance of different implementations of CAP3

Fig. 2: Scalability of different implementations of CAP3

scalability of the three cloud technologies under CAP3

program. The performance and the scalability graphs

shows that all three runtimes work almost equally well

for the CAP3 program, and we would expect them to

behave in the same way for similar applications with

simple parallel topologies. With the support for

handling large data sets, the concept of moving

computation to data, and the better quality of services

provided by the cloud technologies such as Hadoop,

DryadLINQ, and CGL-MapReduce make them

favorable choice of technologies to solve such

problems.

3. Alu Sequencing Applications

Alus represent the largest repeat families in human

genome with about 1 million copies of Alu sequences

in human genome. Alu clustering can be viewed as a

test for the capacity of computational infrastructures

because it is of great biological interests, and of a scale

for other large applications such as the automated

protein family classification for a few millions of

proteins predicted from large metagenomics projects.

3.1. Smith Waterman Dissimilarities

Fig 3. Performance of Alu Gene Alignments versus parallel pattern

Fig. 4 Comparison of MPI with Dryad on Alu Alignment

In initial pairwise alignment of Alu sequences, we used

open source version of the Smith Waterman – Gotoh

algorithm SW-G modified to ensure low start up

effects. We compare threading and MPI on a 32 node

(768 core) Windows HPCS cluster on Fig. 3 which

shows MPI easily outperforming the equivalent

0

2

4

6

8

10

12

1x
1x

1

1x
2x

1

2x
1x

1

1x
4x

1

2x
2x

1

4x
1x

1

1x
8x

1

2x
4x

1

4x
2x

1

8x
1x

1

16
x1

x1

1x
16

x1

2x
8x

1

4x
4x

1

8x
2x

1

1x
24

x1

24
x1

x1

1x
24

x8

24
x1

x8

1x
24

x1
6

24
x1

x1
6

1x
24

x3
2

24
x1

x3
2

Smith Waterman Gotoh Alignment Timings for 35339 Points

Threads x MPI Processes x Nodes

2.33 hours737 hours

Parallel
Overhead =

624404791 Alignments

[PT(P) –T(1)] /T(1)
Where T time and P
number of parallel
units

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000

Ti
m

e
pe

r d
ist

an
ce

 ca
lcu

la
tio

n
 p

er
 co

re
 (

m
ili

se
co

nd
s)

Sequeneces

Performance of Dryad vs. MPI of SW-Gotoh Alignment

Dryad (replicated data)

Block scattered MPI
(replicated data)
Dryad (raw data)

Space filling curve MPI
(raw data)
Space filling curve MPI
(replicated data)

threaded version. We note that threaded version has

about a factor of 100 more context switches than in

MPI. Fig. 4 shows Dryad getting good performance in

this case lying between two MPI implementations.

We must calculate in parallel Distance D(i,j) in a way

that avoids calculating both D(i,j) and the identical

D(j,i). The implicit file transfer step needs optimization

and is termed gather or scatter in MPI.

3.2 Pairwise Clustering

 Fig 5: Performance of Pairwise Clustering for 4 clusters on 768 core
Tempest. 10 Clusters take about 3.5 times longer
We have implemented a robust parallel clustering

algorithm using deterministic annealing that finds clear

clusters in the 35339 Alu sample with performance

given in fig. 5. This uses an approach that uses no

vectors but just pairwise dissimilarities [4].

3.3 Multidimensional Scaling MDS

Given dissimilarities D(i,j), MDS finds the best set of

vectors xi in any chosen dimension d minimizing

 Σi,j weight(i,j) (D(i,j) – |xi – xj|n)2 (1)

The weight is chosen to reflect importance of point or

to fit smaller distance more precisely than larger ones.

We have previously reported results using Expectation

Maximization but here we use a different technique

exploiting that (1) is “just” χ2 and one can use very

reliable nonlinear optimizers to solve it. We support

general choices for the weight(i,j) and power n and is

fully parallel over unknowns xi. All our MDS services

feed their results directly to powerful Point Visualizer.

The excellent parallel performance of MDS will be

reported elsewhere. Note that total time for all 3 steps

on the full Tempest system is about 6 hours and clearly

getting to a million sequences is not unrealistic and

would take around a week on a 1024 node cluster. All

capabilities discussed in this paper will be made

available as cloud or TeraGrid services over next year

[5].

6. References

[1] Y.Yu et al. “DryadLINQ: A System for General-Purpose

Distributed Data-Parallel Computing Using a High-Level

Language,” OSDI Symposium CA, December 8-10, 2008.

[2] J. Ekanayake and S. Pallickara, “MapReduce for Data Intensive

Scientific Analysis,” Fourth IEEE International Conference on

eScience, 2008, pp.277-284.

[3]X. Huang and A. Madan, “CAP3: A DNA Sequence Assembly

Program,” Genome Research, 9,. 868-877, 1999.

[4] T Hofmann, JM Buhmann, “Pairwise data clustering by

deterministic annealing”, IEEE Transactions on Pattern Analysis

and Machine Intelligence 19, pp1-13 1997.

 [5] Geoffrey Fox et al., “Parallel Data Mining from Multicore to

Cloudy Grids”, Proceedings of HPC 2008 Workshop, Cetraro Italy,

July 3 2008.

	1. Introduction
	3. Alu Sequencing Applications
	6. References

