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Abstract 

 
We take two large scale data intensive problems 

from biology. One is a study of EST (Expressed 

Sequence Tag) Assembly with half a million mRNA 

sequences. The other one is the analysis of gene 

sequence data (35339 Alu sequences). These test cases 

can scale to state of the art problems such as 

clustering of a million sequences. We look at initial 

processing (calculation of Smith Waterman 

dissimilarities and CAP3 assembly), clustering and 

Multi Dimensional Scaling. We present performance 

results on multicore clusters and note that currently 

different technologies are optimized for different steps. 

1. Introduction 

     We abstract many approaches as a mixture of 

pipelined and parallel (good MPI performance) 

systems, linked by a pervasive storage system. We 

believe that much data analysis can be performed in a 

computing style where data is read from one file 

system, analyzed by one or more tools and written 

back to a database or file system. An important feature 

of the MapReduce style approaches is explicit support 

for data parallelism which is needed in our 

applications. . 

2   CAP3 Analysis 

 We have applied three cloud technologies, namely 

Hadoop, DryadLINQ [1], and CGL-MapReduce [2] to 

implement a sequence assembly program CAP3 [3] 

which is dominant part of analysis of mRNA 

sequences into DNA and performs several major 

assembly steps such as computation of overlaps, 

construction of contigs, construction of multiple 

sequence alignments and generation of consensus 

sequences, to a given set of gene sequences. The 

program reads a collection of gene sequences from an 

input file writing out the results. The “pleasingly 

parallel” nature of the application makes it extremely 

easy to implement using the technologies such as 

Hadoop, CGL-MapReduce and Dryad. In the two 

MapReduce implementations, we used a “map-only” 

operation to perform the entire data analysis, where as 

in DryadLINQ we use a single “Select” query on the 

set of input data files.  

Figs 1 and 2 show comparisons of performance and the 



 

Fig. 1: Performance of different implementations of CAP3 

 

Fig. 2: Scalability of different implementations of CAP3 

scalability of the three cloud technologies under CAP3 

program. The performance and the scalability graphs 

shows that all three runtimes work almost equally well 

for the CAP3 program, and we would expect them to 

behave in the same way for similar applications with 

simple parallel topologies. With the support for 

handling large data sets, the concept of moving 

computation to data, and the better quality of services 

provided by the cloud technologies such as Hadoop, 

DryadLINQ, and CGL-MapReduce make them 

favorable choice of technologies to solve such 

problems. 

3. Alu Sequencing Applications 

Alus represent the largest repeat families in human 

genome with about 1 million copies of Alu sequences 

in human genome. Alu clustering can be viewed as a 

test for the capacity of computational infrastructures 

because it is of great biological interests, and of a scale 

for other large applications such as the automated 

protein family classification for a few millions of 

proteins predicted from large metagenomics projects.  

3.1. Smith Waterman Dissimilarities 

  
Fig 3.  Performance of Alu Gene Alignments versus parallel pattern  
 

 

Fig. 4 Comparison of MPI with Dryad on Alu Alignment 

In initial pairwise alignment of Alu sequences, we used 

open source version of the Smith Waterman – Gotoh 

algorithm SW-G modified to ensure low start up 

effects. We compare threading and MPI on a 32 node 

(768 core) Windows HPCS cluster on Fig. 3 which 

shows MPI easily outperforming the equivalent 
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Smith Waterman Gotoh Alignment Timings for 35339 Points

Threads x MPI Processes x Nodes

2.33 hours737 hours

Parallel 
Overhead =

624404791 Alignments

[PT(P) –T(1)] /T(1)
Where T time and P 
number of parallel 
units 
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threaded version.  We note that threaded version has 

about a factor of 100 more context switches than in 

MPI. Fig. 4 shows Dryad getting good performance in 

this case lying between two MPI implementations. 

We must calculate in parallel Distance D(i,j) in a way 

that avoids calculating both D(i,j) and the identical 

D(j,i). The implicit file transfer step needs optimization 

and is termed gather or scatter in MPI. 

3.2 Pairwise Clustering 

 Fig 5: Performance of Pairwise Clustering for 4 clusters on 768 core 
Tempest. 10 Clusters take about 3.5 times longer 
We have implemented a robust parallel clustering 

algorithm using deterministic annealing that finds clear 

clusters in the 35339 Alu sample with performance 

given in fig. 5. This uses an approach that uses no 

vectors but just pairwise dissimilarities [4].   

3.3 Multidimensional Scaling MDS  

Given dissimilarities D(i,j), MDS finds the best set of 

vectors xi in any chosen dimension d minimizing  

 Σi,j weight(i,j) (D(i,j) – |xi – xj|n)2               (1) 

The weight is chosen to reflect importance of point or 

to fit smaller distance more precisely than larger ones. 

We have previously reported results using Expectation 

Maximization but here we use a different technique 

exploiting that (1) is “just” χ2 and one can use very 

reliable nonlinear optimizers to solve it.  We support 

general choices for the weight(i,j) and power n and is 

fully parallel over unknowns xi. All our MDS services 

feed their results directly to powerful Point Visualizer. 

The excellent parallel performance of MDS will be 

reported elsewhere. Note that total time for all 3 steps 

on the full Tempest system is about 6 hours and clearly 

getting to a million sequences is not unrealistic and 

would take around a week on a 1024 node cluster. All 

capabilities discussed in this paper will be made 

available as cloud or TeraGrid services over next year 

[5]. 
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