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ABSTRACT

Privacy issues have been raised up since the machine learning
services are now popular to deploy on public clouds. Bil-
lions of private emails, personal text messages, users’ online
reviews are being scanned and sent to machine learning ser-
vices for modeling inference. In this paper, we present our
CRYPTOGRU, which is a hybrid homomorphic encryption
and garbled circuits enabled framework for secure GRU net-
work inference. Our project not only demonstrates secure
working examples using GRU based neural network but also
outlines techniques that map network layers to SIMD (single
instruction multiple data) addition, SIMD multiplication, and
two detailed techniques to improve the latency. We evaluate
our project with a few well-defined GRU networks trained on
4 public datasets, and show CRYPTOGRU can generate the
state-of-art accuracy but run up to 138 times faster on CPU
with respect to the latency for secure inference.

Index Terms— Neural networks, GRU, Security and pri-
vacy

1. INTRODUCTION

Machine learning services are widely used in practice to per-
form predictive user behaviors. However, privacy issues have
been raised up since the machine learning services are now pop-
ular to deploy on public clouds and collecting massive amount
of user data. Billions of private emails, personal text messages,
users’ online reviews are being scanned and sent to machine
learning services for modeling inference. Even though tech-
nology companies, such as Google, Facebook, AT&T, and
Verizon all promised to keep users privacy, we know some
well-known services are still using plain text prediction. For
example, the smart reply generation service from Gmail still
needs to scan users’ plain email messages anonymously [1, 2].

Data encryption is a prominent method that can secure and
protect users’ privacy. Homomorphic encryption (HE) was
proposed as an encrypted data calculation technique that can
be integrated into neural networks to perform model inference
without requiring to decrypt the input data. Secure model
inference with HE has been developed and applied on image
classification. CryptoNets [3] is a neural network applying
encrypted image data on model inference. However, Cryp-
toNets requires to change the neural network structures and

replace activation functions with LHE based non-linear func-
tions such as the square function. However, homomorphic
encryption requires significant amount computation due to the
increased noise with the context. This leads to the non-linear
computation on ciphertext is nearly impossible [4].

Secure two party computation, on the other hand, can miti-
gate this issue by performing a joint function without sharing
values. Gazelle [5], as another example, developed convolu-
tional neural networks for various image classification tasks
with both homomorphic encryption and garbled circuits. How-
ever, machine learning secure text analysis is still challenging.
Firstly, non-linear activation functions such as the sigmoid
and tanh function cannot be implemented with fully homo-
morphic encryption schemes. Secondly, if these functions are
replaced with linear functions such as the square function, the
result accuracy would be negatively impacted. Thirdly, if these
functions are simulated by high degree polynomial functions,
the varnishing gradient is another problem and its inference
latency is high due to enormous cryptographic operations.

CRYPTOGRU is built based on Gazelle [5], which is low
latency framework for secure network. Gazelle is the state-
of-art cryptographic system tools for using linear algebra and
linear layers for building neural networks. In this paper, we
present the design of CRYPTOGRU, a secure gated recurrent
unit which consists of homomorphic encryption algorithms for
linear operations and garbled circuits for non-linear operations.
Our contributions are summarized as follows:

• We firstly propose a hybrid solution of building a secure
GRU cell by using both homomorphic encryption and
garble circuits.

• We then improve the neural networks by replacing the
tanh activation function with a cheaper ReLU function
without sacrificing their accuracy.

• We further improve the inference latency of neural net-
works by quantizing both the sigmoid and ReLU func-
tions.

2. BACKGROUND AND RELATED WORK

2.1. Text Analysis using GRU

Recurrent neural network (RNN) plays an important role in
deep learning based text analysis [6]. As shown in Figure 1,
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Fig. 1. An end-to-end overview of how CRYPTOGRU cell
works in a secure inference system.

in a secure inference system, the input from text messages
and emails are private and encrypted content will be sent to
the server side. On the server side, the encrypted results are
returned. Gated recurrent unit (GRU) and long short-term
memory are neural network building blocks as recurrent neural
networks for capturing long term dependencies [7]. They can
be used for many types of architectures and various machine
learning tasks, such as text classification and text generation.
There are a total of 4× (n2 + nm+ n) number of parameters
in a single LSTM cell and 3 × (n2 + nm + n) number of
parameters in a single GRU cell, where m means the dimen-
sion of the input and n for the dimension of the hidden state.
In CRYPTOGRU, less parameters mean cheaper computation
for ciphertext. Various studies, e.g [7], have shown GRU
has comparable performance with LSTM or even outperform
LSTM in many cases. Bowman et al. [8] built RNN-based
variational autoencoders to generate diverse sentences, in the
model of which both encoder and decoder involved RNN.

2.2. Secure Inference

Fully homomorphic encryption (FHE) is a technique that en-
ables to perform calculation on encrypted data without de-
crypting first. Many companies integrated the neural network
prediction services into service clouds. Although the data
trans-mission might be encrypted, user data still remain as
plain texts which are public to the models of these neural
network models.

Secure inference has been used in many image classifi-
cation tasks. Chou et al. present their work about an image
classification pipeline that uses homomorphic encryption [9].
In their work, the image features are extracted as plain content
and representation features are encrypted.

2.3. Comparison with prior works

CRYPTOGRU is the first gated recurrent unit with hybrid HE
and GC techniques, as far as we know. We still compare the
technique details with some prior works, which can achieve
same effect in secure inference.

Table 1 shows the technique differences between CRYP-
TOGRU with prior works. While our CRYPTOGRU is built
on top of Gazelle, however Gazelle does not support RNN
directly. More details of constructing a GRU with Gazelle is

Table 1. The comparison of secure text analysis techniques.

RNN-based
text analysis

Accurate
Activation

Efficient
Activation

No
Plaintext

Gazelle [5] 7 7 7 3
SHE [10] 3 7 7 3
CryptoRNN [4]&HE-RNN [11] 3 3 7 7
PrivFT [12] 7 7 7 3
CRYPTOGRU 3 3 3 3

further illustrated in Section 3.1. SHE [10] is a secure infer-
ence system that is built with LHE-only protocols, of which
the latecny is high for doing RNN-based text analysis. Bakshi
et al. proposed CryptoRNN [4], which achieved RNN-based
text analysis with high activation functions. However, these
activations are replaced with approximation function of de-
gree 2, which results in inefficient inference in term of the
latency. Badawi et al. proposed PrivFT [12] for text classifi-
cation task with homomorphic encryption methods. However,
PrivFT does not support RNN architecture and requires full
HE computation for secure inference.

3. CRYPTOGRU DESIGN

3.1. Construct the baseline of CRYPTOGRU

Fully homomorphic encryption allows calculating an arbitrary
function f for a plain input x on an encrypted input [x] without
decrypting [x] from x. With only f and [x], one can obtain
the encrypted output [y] = f([x]) and on the client side, the
plain text y can be decrpted from [y]. Conventional neural net-
work inference uses depth-bounded arithmetic circuits (LHE).
However, the computation cost is large for the LHE scheme.
CRYPTOGRU adopts a simpler FHE scheme, namely packed
additive homomorphic encryption (PAHE) scheme and garbled
circuits (GC) by integrating the Gazelle library.

Algorithm 1: HE and GC in CRYPTOGRU cell
Input: an input ciphertext [xt]
Output: a ciphertext hidden state [ht]
[Gatex] = MultPC([x],Ωi, bi)
[Gateh] = MultPC([ht−1],Ωh, bh)
[ir], [ii], [in] = chunk − split([Gatex], 3)
[hr], [hi], [hn] = chunk − split([Gateh], 3)
[Gatereset] = sigmoid(AddCC([ir], [hr]))
[Gateinput] = sigmoid(AddCC([ii], [hi]))
[Gatenew] =
tanh(AddCC([in],MulCC([Gatereset], [hn])))

[ht] = AddCC([Gatenew],
MulCC([Gateinput],MinusCC([ht−1], [Gatenew])))

return [ht]

We start with a straightforward approach to build the CRYP-
TOGRU. We construct our base version of CRYPTOGRU on
top of Gazelle linear algebra kernel functions and garble cir-
cuits layers. Figure 2 illustrates the details of an internal view
of a full GRU cell, which consists of both linear and non-linear
operations. The linear operations are in blue, as shown in
Figure 2. In a GRU cell, linear operations include matrix vec-



MAT
MUL

Hidden
state:	Ht-1

MATMUL

Input:	Xt

1-
Hidden
state:	Ht

Linear

Non-linear

HE	+	SS	Time:	4.14%

GC	Time:	95.86%

Client
Server

ADD
MUL

MUL

MUL

ADD

ADD

tanhSigmoid
Output

Linear

Non-linear

HE	+	SS	Time:	32.97%

GC	Time:	67.03%

1 2

1 Replaced	by
ReLU

2m-bit	to
n-bit

Fig. 2. CRYPTOGRU cell with labeled linear and non-linear cryptographic operations. Annotations are referred in Section 3.1,
3.2, and 3.3.

tor multiplications (MATMUL), element-wise add, minus, and
multiplications (ADD,1-,MUL). In CRYPTOGRU, we apply
the algorithms provided by Gazelle by mapping the neural
network layers to homomorphic encrypted matrix-vector mul-
tiplication for these linear operations. Non-linear operations
are in red, as shown in Figure 2. In a GRU cell, the activation
function sigmoid and tanh are non-linear, which are . For
non-linear operations, we apply garble circuits to build non-
linear operations. The process of updating hidden states inside
a GRU cell is shown in Algorithm 1.

3.2. 1 Replace the tanh activation with ReLU

In GRU RNN, the activation nonlinearity function is typically
tanh but can also be implemented with the rectified linear unit
ReLU [13, 7]. However, tanh is a more expensive non-linear
computation than ReLU in term of the implementation using
garbled circuits.

We use some tests against two public datasets to demon-
strate this motivation. One dataset is the IMDB, which consists
of 50,000 movie reviews. The other dataset is the Yelp review.
Both of the datasets are used in binary classification tasks. To
quantify their performance in a simple RNN neural network,
we test the accuracy of using tanh with ReLU on the two
datasets. The results are summarized in Table 2. From this
table, the GRU model with ReLU can gain almost the same
accuracy as that uses tanh but trade off its training time for
significant shorter latency during the inference stage. We label
this version as “CRYPTOGRU- 1 ” in all the following text.

Table 2. The tanh activation vs. ReLU activation.

Accuracy Latency
Datasets tanh ReLU tanh ReLU
IMDB 84.8% 84.6% 14860ms 3779ms
Yelp Reviews 77.3% 78.1% 5383ms 1852ms

3.3. 2 Quantize both sigmoid and ReLU activations

During the computation of a full GRU cell, we identify the
latency bottleneck is at non-linear functions (a.k.a activation

functions in this case). In Figure 2, we show the computation
time for non-linear operations hold about 95.86%. This is
mainly due to the computational complexity for ciphertext is
significantly proportional to the underlying bit-length [x]. As
shown in Table 2, the computational complexity for tanh is
around 2N and 5N for ReLU , where N is the bit-length of
numbers [x].

In the baseline version of CRYPTOGRU, the default num-
ber of bits is 20, and here we quantize the activation functions
to 8-bit. The benefits of using the quantization are from two
folds. First, the design of garbled circuits is proportional
simpler after the quantization since the garbled circuits are sen-
sitive to the bit length. Second, because these activation func-
tions do not have any weight parameters, the overall accuracy
of the neural networks with quantized activation functions can
still hold. We summarize the results of testing CRYPTOGRU
in Table 3. This is further discussed in Section 4. We label this
version as “CRYPTOGRU- 2 ” in all the following text.

4. EXPERIMENTS AND RESULTS

In this section, we describe the basic cryptographic primitives,
performance comparison of a single GRU cell using micro-
benchmarks, and inference test results comparing with some
prior related works.
Cryptographic primitives and evaluation setup. CRYP-
TOGRU is integrated with the Gazelle encryption library,
which is implemented in C++. Two main sets of cryptographic
primitives are used for the CRYPTOGRU inference. One
set is for homomorphic encryption and the other set is for
a garbled-circuits scheme. For the homomorphic encryp-
tion, we use Brakerski-Fan-Vercauteren (BFV) scheme [14].
Yao’s garbled circuits scheme is used for a two-party secure
computation [15]. We use the default settings for the BFV
scheme which consists of 20-bit plaintext and 60-bit ciphertext
modulus from the Gazelle library [5] as it is explained in Sec-
tion 3.1. All benchmarks and inference tests are conducted on
a workstation which includes a 12-thread Intel Core i7-7800X
CPU 3.50GHz CPU and 32GiB total system memory with a



Table 3. The benchmark results of CRYPTOGRU. Baseline represents a version of CRYPTOGRU built with the Gazelle library.

Schemes Input Size Hidden Size Offline+Setup Latency Online Latency Total Latency
Baseline 10 128 1651.2+107.5 ms 13917.15 ms 15675.85 ms
CRYPTOGRU- 1 10 128 258+107.5 ms 3225.15 ms 3590.65 ms
CRYPTOGRU- 2 10 128 258+107.5 ms 1290.06 ms 1655.56 ms
Baseline 100 64 1305.6+84 ms 3993.31 ms 5382.91 ms
CRYPTOGRU- 1 100 64 204+84 ms 1563.32 ms 1851.32 ms
CRYPTOGRU- 2 100 64 204+84 ms 625.32 ms 913.32 ms

Table 4. Results comparison between CRYPTOGRU with
related work.

Datasets Neural Networks Accuracy Latency

Enron Emails PrivFT [12] - 0.63s∗
CryptoGRU 84.2 2.03s

Penn Treebank SHE [10] 89.8 ∼576s
CryptoGRU 79.4 4.14s

IMDB
HE-RNN [11] 86.47∗ 70.6s∗
PrivFT [12] 91.49∗ 0.65s∗
CryptoGRU 84.6 2.07s

Yelp Review PrivFT [12] 96.06∗ 0.65s∗
CryptoGRU 91.3 0.91s

customized Ubuntu 18.04 server LTS operating system.
Effectiveness of improvements using 1 and 2 . To quan-
tify the performance of the baseline CRYPTOGRU version
and the effectiveness of two proposed techniques, we build
benchmarks to compare the internal latency of all linear and
non-linear operations in a CRYPTOGRU layer. We test our
three versions of CRYPTOGRU for the performance respect to
the latency. The results are shown in Table 3. In a single GRU
cell, there are 12 operations, 9 of which are linear and 3 are
non-linear as discussed in Section 3.1. For each operation, we
calibrate its setup latency, offline latency, online latency. In
addition, the complexity of these operations are proportional
to the size of input and configured hidden size. Here we set
two sets of input and hidden sizes. Given the input size is
10 and hidden size is 128, for the baseline case, the offline
latency is 1651.2ms, the setup latency is 107.5ms, and the
total latency is 1567.85ms. Compared to this case, CRYP-
TOGRU- 1 can finish with a 258ms offline latency, 107.5ms
setup latency, and 3225.15ms online latency, resulting a total
of 3590.65ms latency. The offline latency and online latency
are improved due to the simpler computational complexity of
using ReLU . From the benchmark results, ReLU function
can use 6.4 times less circuit gates for ciphertexts. This ver-
sion is about 77% faster than the baseline version. In contrast,
the CRYPTOGRU- 2 has the same setup and offline latency
as the CRYPTOGRU- 1 , but the online latency is only about
1290.06ms, resulting the total latency is 1655.56ms, which
is about 54% faster than the version 1 . The two techniques
show the same effect when the input and hidden sizes are
100, and 64 respectively. The baseline version use a total of
5392.91ms, the CRYPTOGRU- 1 use a total of 1851.32ms,

and the CRYPTOGRU- 2 use a total of 913.32ms. In this set-
ting, the CRYPTOGRU- 1 shows an improvement of about
66% respect to the latency of the baseline and CRYPTOGRU-
2 shows a further improvement of about 51% compared to
the CRYPTOGRU- 1 .
Comparison to prior works. To compare the CRYPTOGRU
against the state-of-art prior related works, we test the latency
and accuracy against public datasets. We use two more public
datasets that are common to machine learning tasks for text to
evaluate the performance of the CRYPTOGRU- 2 (referred as
CRYPTOGRU in this section) as well as the IMDB and Yelp
datasets from Section 3.2. Enron Emails is a dataset collection
consisting of 500,000 emails with subjects and body messages.
We summarize the comparison results of the inference latency
using CRYPTOGRU with some prior works in Table 4. Be-
cause we do not have code from the PrivFT, the latency results
are estimated only from their shared online document and these
results are tested from benchmarks performing on GPU [12].
For the Penn Treebank dataset, our CRYPTOGRU can infer
a sample in 4.14s, which is about 138 times faster than the
SHE [10]. For the IMDB datset, our CRYPTOGRU can finish
one sample inference within 2.07s on CPU, which is about 33
times faster than the HE-RNN [11]. The CRYPTOGRU can
infer a sample from Enron Emails and Yelp reviews in 2.03s
and 0.91s respectively.
Summary. We clearly present the improvements of applying
two techniques 1 and 2 over a baseline approach. Compared
with related work, CRYPTOGRU can achieve low latency
in a secure inference system and maintain the same level of
accuracy.

5. CONCLUSION AND FUTURE WORK

Machine learning as a service attracts interest from many as-
pects in industry. Public cloud companies already launched
prediction services. However, sending plaintext to model
servers for inference raise attentions to user privacy issues.
Hence, we propose CRYPTOGRU, a secure inference building
block for gated recurrent unit that emphasises on text-like or
time series models. CRYPTOGRU adopts homomorphic en-
cryption, share secrets, and garbled circuits heterogeneously
to achieve low latency as well as high accuracy.
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