
DACIDR: Deterministic Annealed Clustering with
Interpolative Dimension Reduction using Large Collection

of 16S rRNA Sequences
Yang Ruan1,3, Saliya Ekanayake1,3, Mina Rho2,3, Haixu Tang2,3, Seung-Hee Bae1,3,

Judy Qiu1,3, Geoffrey Fox1,3
Community Grids Laboratory1

Center for Genomics and Bioinformatics2
School of Informatics and Computing3

Indiana University Bloomington
{yangruan, sekanaya, mrho, hatang, sebae, xqiu, gcf}@indiana.edu

ABSTRACT

The development of next-generation sequencing technology has
made it possible to generate millions of sequences from
environmental samples. However, the difficulty associated with
taxonomy-independent analysis increases as the sequence size
expands. Most of the existing algorithms, which aim to generate
operational taxonomic units (OTUs), require quadratic space and
time complexity that makes them only suitable to small datasets.
An alternative is to use heuristic methods; although it enables fast
sequence analyzing, the hard-cutoff similarity threshold set for it
and the random starting seed can result in reduced accuracy and
overestimation. In this paper, we propose DACIDR: a parallel
sequence clustering and visualization pipeline, which can address
the overestimation problem along with space and time complexity
issues as well as giving robust result. The pipeline starts with a
parallel pairwise sequence alignment analysis followed by a
deterministic annealing method of clustering and dimension
reduction. No explicit similarity threshold is needed with the
process of clustering. Experiments with our system also proved
the quadratic time and space complexity issue could be solved
with a novel heuristic method called Sample Sequence Partition
Tree (SSP-Tree), which allowed us to interpolate millions of
sequences with sub-quadratic time and linear space requirement.
Furthermore, SSP-Tree can enhance the speed of fine-tuning on
the existing result, which made it possible to recursive clustering
to achieve accurate local results. Our experiments showed that
DACIDR produced a more reliable result than two popular greedy
heuristic clustering methods: UCLUST and CD-HIT.

Categories and Subject Descriptors
I.5.3 [PATTERN RECOGNITION]: Clustering – Algorithms;
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems – Distributed Applications;

General Terms
Algorithms, Performance

Keywords
Pairwise data clustering, multidimensional scaling, deterministic
annealing, interpolation, exploratory data analysis

1. INTRODUCTION
Advances in modern bio-sequencing techniques have led to a
proliferation of raw genomic data that need to be analyzed with
various technologies such as pyrosequencing [1]. These methods
can easily analyze small or medium sample sequences in order to
allow scientists to draw meaningful conclusions. However, many
existing methods lack efficiency on massive sequence collections
analysis where the existing computational power on single
machine can be overwhelmed. Consequently, new techniques and
parallel computation must be brought to this area.

The first step of sequence analysis is typically generating
sequences that can describe microbial populations. One popular
method is to use 16S rRNA sequences to study the phylogenetic
relationship between different microbial families. Existing
techniques to analyze such data are divided into two categories:
taxonomy-based and taxonomy-independent [2]. Taxonomy-based
methods provide classification information about the organisms in
a sample. For example, BLAST [3] relies on reference database
that contains information about previous classified sequences, and
compares new sequences against them, so that the new sequences
can be assigned to the same organism with the best-matched
reference sequence in the database. However, since most of the
16S rRNA sequences are not formally classified yet, these
methods have limitation on correctly identifying organisms for
these data. In contrast, taxonomy-independent methods use
different sequence alignment techniques to generate pairwise
distances between sequences, and then clustered them into OTUs
by giving different threshold, such as 5% dissimilarity to
determine if two sequences belong to a same genus or 3%
dissimilarity to determine if they belong to same species. These
methods doesn’t require a pre-described reference database, thus
they can enumerate novel pathogenesis as well as organisms in the
preexisting taxonomic framework.

Many taxonomy-independent methods were developed over past
year [4-7]. The key step among these methods is clustering, which
is to group input sequences into different OTUs. However, most
of these clustering methods require a quadratic space and time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

over the input sequence size. For example, hierarchical clustering
is one of the most popular choices that have been widely used in
many sequence analysis tools. It is a classic method, which is
based pairwise distance between input sequence samples.
However, the main drawback of it is the quadratic space
requirement for input distance matrix and a time complexity of
O(N2). To overcome this shortage, several heuristic and
hierarchical methods are developed [8-13]. However, they can
only perform on low dimensional data or lack accuracy.

Our techniques proposed in [14][15]for sequence analysis can be
collectively classified as taxonomy-independent, wherein different
sequence alignment tools are applied in order to glean specific
pieces of information about the related genome. We used
deterministic annealing method for dimension reduction and
pairwise clustering to group the sequences into different clusters
and visualize them in a lower dimension. An interpolation
algorithm has been used to reduce time and space cost for massive
data. All of these techniques are parallelized to process large data
on multiple compute nodes, using MapReduce [16], iterative
MapReduce [17] and/or MPI [18] frameworks. We improved the
parallel efficiency of DACIDR by developing a hybrid workflow
model on high performance computers (HPC) [19]. Additionally,
we proposed SSP-Tree, which uses a heuristic method to achieve
sub-quadratic time complexity with an interpolation process.
Furthermore, we developed a new algorithm that can enable fast
refinement of the clustering result by using SSP-Tree.

We describe the organization of the paper in the following:
Section 2 discusses the background and related work. In Section 3
we describe the data clustering and visualization pipeline and
various algorithms used in it. We present the SSP-Tree in Section
4. In Section 5 we show that choice over alignment methods is
important, efficiency of SSP-Tree enabled interpolation and
compared our results with two popular heuristic clustering
methods. The conclusion and future work is presented in Section
6.

2. Related Work
There are already some taxonomy-independent heuristic or
hierarchical methods exists in this area. MUCSLE+DOTUR is a
popular pipeline for sequence analysis. MUCSLE [4] is used for
multiple sequence alignment where it uses k-mer distance and a
hierarchical method is applied to achieve fast speed. However,
distance calculated from multiple sequence alignment might result
in overestimation of the number of OTUs. So in our pipeline, we
used pairwise sequence alignment instead of multi-sequence
alignment. DOTUR [5] is one of the earliest hierarchical
clustering methods for pyrosequencing and data analysis. DOTUR
assigns sequences systematically to OTUs by using all possible
distances. Therefore, a pairwise distance matrix must be generated
as input for DOTUR. This causes its O(N2) time, disk space and
memory complexity. So although it can generate reasonable result
on small dataset, it can’t be applied on massive data. HCLUST [6]
is another similar method developed in mothur pipeline. Mothur is
a well-known open-source, expandable software in the microbial
ecology community. It is similar to a taxonomy-based clustering
pipeline that a temporary pairwise distance matrix will be
generated first by aligning input sequences against a pre-aligned
reference database. Since generating a reference database is done
before clustering, the computational complexity of the sequence-
alignment step is O(N) instead of O(N2). However, this algorithm
will lead to inaccurate analysis to sequences from unknown
microorganisms since there is no reference database for them.
ESPRIT [7] is a method that tried to uses parallel computing to

address the space and time issue in sequence analysis. It uses
global pairwise alignment on each pair of sequences and the
clustering method of it grouped sequences into OTUs on-the-fly,
while keeping track of linkage information to overcome memory
limitations. Although ESPRIT can experiment on hundreds of
thousands of sequences, it has a time complexity of O(N2) thus
has limitation on millions of sequences. ESPRIT-Tree [8] has
been proposed later to address this issue. It uses probability
sequences and a tree-like structure in hyperspace to reduce the
time and memory usage for sequence analysis. Theoretically, it
can reach quasilinear time complexity by inserting sequences
through the root of the tree by only comparing the sequence and
the center sequence in each tree node. Its tree construction relies
on a subset of result from ESPRIT. Both of ESPRIT and ESPRIT-
Tree uses k-mer distance for fast alignment between sequences,
which has a high correlation with genetic distance. However, this
method may cause less accuracy when generating the OTUs.
Although by using ESPRIT-Tree, sequence clustering has a time
complexity of O(NlogN), but the tree construction itself take
O(N2) time, which can only be applied on small dataset.
Additionally, all of the methods above only support complete
linkage instead of average linkage clustering.
Along with hierarchical clustering methods, to solve this problem,
some clustering methods based on probability models have been
proposed. [9] described a method where an underlying
multinomial distribution can be formed by every column of a
multiple alignment as a sample, so a likelihood function can be
given by the production of probability mass function of them.
However, this method is only suitable for short sequences since
the computational cost is high per column. Markov Clustering
[10] used a matrix to represent sequence connection as a
connection graph. This matrix passes through matrix
multiplication and inflation until little change can be done to it
between iterations, and finally, it can be interpreted as Protein
Family. The main drawback of this method is it uses only an
inflation parameter to tune the result where the similarity level is
hard to establish. To solve this problem, Bayes Clustering has
been proposed [11]. This method uses a Gaussian Mixture Model
to draw a set of sample sequences independently from the input
sequence dataset, and the cluster it found are from a cluster birth
and death process. It can cluster 16S rRNA data at different
phylogenetic levels, however, it can only be applied on sequences
with a similarity larger than 90%.
Another direction to solve the taxomony-independent clustering is
greedy heuristic methods where several algorithms has been
developed trying to solve this problem, such as CD-HIT [12] and
UCLUST [13]. CD-HIT sorts the sequences first, and then the
longest sequence becomes the representative of the first cluster.
Each remaining sequence is compared with the representatives of
existing clusters and assigned to an existing cluster or create a
new cluster as the representative sequence based on the similarity.
In each pair of sequences comparison, a short word filtering
algorithm is used, which can determine if the similarity between
two sequences is below a certain value without performing an
actual sequence alignment. Therefore, by reducing the comparison
times the actual computation time cost is saved as well. UCLUST
uses a similar way of clustering compare to CD-HIT, but it can set
a threshold of similarity below 80% while CD-HIT doesn’t have
this flexibility. Both of these two methods are capable of
processing millions of sequences, however, the precision of their
results suffer from the overestimation problem because a hard-
cutoff similarity threshold is set and it’s hard to tune this
parameter for a reasonable clustering. Additionally, UCLUST and

CD-HIT start the clustering by randomly giving the first sequence
in a FASTA file to a new cluster as the reference sequence. In our
pipeline, we proposed a deterministic annealing method of
pairwise clustering, which can generate clusters automatically
without having a threshold of similarity set or an initial seed.
Clusters emerge as phase transitions as temperature is lowered
[20]. This robust clustering method has been proved to be
efficient over hundreds of thousands of sequences and indeed in
many problem areas [21]. By using SSP-Tree method, we can
process millions of sequences efficiently with a much better
clustering result better than UCLUST and CD-HIT.

3. Data Clustering and Visualization Pipeline
As shown in Figure 1, DACIDR pipeline includes all-pair
sequence alignment (ASA), pairwise clustering (PWC),
multidimensional scaling (MDS), interpolation and visualization.
The ASA reads a FASTA file and generate a dissimilarity matrix;
The PWC can read the dissimilarity matrix and generate OTUs;
MDS reads dissimilarity matrix and generate a 3D mapping;
Region Refinement is done on the PWC result along with the #d
mapping from MDS; Interpolation read the OTUs and plots to
generate mapping for further sequences. In DACIDR, the 16S
rRNA input dataset D is divided into a sample set N and an out-
of-sample set M. The sample set N is processed at order N2 by
ASA, PWC and MDS, while out-of-sample set M is processed at
order M by Interpolation. In this section, we will explain how the
ASA, PWC, MDS and Interpolation work. Since the Region
Refinement and Heuristic method of interpolation involves with
SSP-Tree, they will be explained in next section.

3.1 All-pair Sequence Alignment
Biological similarity between two sequences is the property
driving the DACIDR pipeline. Thus, to form a measurable value
of similarity we first align the two sequences and compute a
distance value for the alignment, which represents the inverse of
similarity and is used by algorithms down the line. A distance
should be computed for each pair of sequences, hence the name
all-pair sequence alignment.

In ASA, we chose Smith-Waterman (SW) [22] alignment method
out of two well-known sequence alignment algorithms: Smith-
Waterman and Needleman-Wunsch (NW) [23]. SW performs
local sequence alignment and is more accurate than BLAST in
this approach; that is, for determining similar regions between two
nucleotide or protein sequences. Instead of looking at the total
sequence, it compares segments of all possible lengths and
optimizes the similarity measure. In contrast, NW performs a
global alignment on two sequences which was not suitable for the
particular dataset due to reasons mentioned under Section 5.1.

We used percentage identity to represent similarity among
sequences, the distance δ between sequence i and sequence j is
considered as the dissimilarity between them, which can be
calculated in equation 1:

𝛿𝑖𝑗 = 1 −
𝑛𝑖𝑗
′

𝑛𝑖𝑗
 Eq.1

where nij′ is the number of identical pairs between sequence i and
sequence j and nij is the aligned sequence length.

SW algorithm is time consuming, and for all-pair problem, the
time and space complexity is O(N2). Thus, it is not practical to
run millions of sequence alignments using SW on a single
machine. However, ASA is an embarrassingly parallel problem
and thus we have mapped it into MapReduce paradigm by
adopting coarse granularity task decomposition. The parallelized
ASA made it possible to generate large dissimilarity matrices
resulting from aligning millions of sequences and has been proved
to be highly efficient in our previous work [19].

3.2 Pairwise Clustering
As we use raw sequence data and not multiply aligned sequences,
clustering is based on pairwise distances and must use appropriate
algorithms. The deterministic annealing approach introduced ~20
years ago for the vector spaces was modified ~10 years for
pairwise case and extended by us to fully operational parallel
software DA-PWC [14][24]. As noted above this approach is
robust (inheriting the well-known advantages of annealing) and
intrinsically multi-resolution. Temperature corresponds to
pairwise distance scale and one starts at high temperature with all
sequences in same cluster. As temperature is lowered one looks at
finer distance scale and additional clusters are automatically
detected from the appearance of negative eigenvalues for a second
order derivative matrix first introduced by Rose [21] for vector
clustering and extended by us to pairwise domain. We only need
one parameter – namely the lowest temperature where one looks
to split clusters; this corresponds to smallest size cluster desired.
Other clustering methods like UCLUST and CD-HIT need more
heuristic input.
To use DA-PWC in DACIDR, one inputs the dissimilarity matrix
from ASA and outputs a group file, which contains the
information about which cluster each sequence is assigned to.

3.3 Multidimensional Scaling
Multidimensional scaling (MDS) is a set of related statistical
techniques often used in information visualization for exploring
similarities or dissimilarities in data. MDS algorithm use the
pairwise distance matrix Δ and generate a mapping for each
sequence to a point in an L-dimensional Euclidean space
approximately preserving inter-point distances. Scaling by
Majorizing a Complicated Function (SMACOF) algorithm is one
of the MDS algorithms that have been proved to be fast and
efficient [25][26]. It uses an Expectation Maximum (EM) method
to minimize the objective function value, called Stress given in
equation 2.

𝜎(𝑋) = ∑ 𝑤𝑖𝑗𝑖<𝑗≤𝑁 (𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗)2 Eq.2

Figure 1 The structure of DACIDR pipeline

where w denotes a possible weight, 𝑑𝑖𝑗 is the Euclidean distance
from point i to j in the mapping and 𝛿𝑖𝑗 is the distance from
sequence i to j in Δ. However, it is well known that EM method
suffers from local minima problem and we have developed a
Deterministic Annealing (DA) enhancement to SMACOF with
computational temperature [27].
In DACIDR, we parallelized DA-SMACOF applications to make
it usable for large sequences visualization by applying on iterative
MapReduce paradigm. We set target dimension to 3 and
visualized the mapping in a tool called PlotViz3 [28] that we
developed. We call the 3D-coordinates result from MDS a plot,
which can be integrated with the clustering result from PWC so
that different clusters can be visualized in different
colors/size/shape. In Figure 2(a), we have shown the raw result
from PWC and MDS, where 15 clusters are generated with the
100k sample sequences selected from 16S rRNA dataset. Each
sequence is mapped to a point in the 3D plot.

3.4 Interpolation
Both DA-SMACOF and DA-PWC have time(compute) and
space(memory) complexity of O(N2) which limits their
applicability to large problems. To overcome this difficulty, we
adopted a technique called Majorizing Interpolation MDS (MI-
MDS) [29], which is a simple interpolation approach based on
pre-mapped MDS result of a sample set selected from the given
data.
This algorithm’s basic idea is to map out-of-sample data into
target dimension space by nearest neighbor (k-NN) interpolation
without running full MDS on all of them. We added the function
which can assign the out-of-sample data into designated cluster
without running full PWC. Compare to existing MDS and PWC
methods, this interpolation algorithm only need O(N) memory and
time to execute. Furthermore, it’s a pleasingly parallel application
that it is highly efficient on multiple compute nodes. As described
in following section we then divide full sample into regions and
refine the clustering in small regions with computational modest
cost.

4. SSP-Tree
In Section 3 we describe the basic functionalities in the DACIDR
pipeline. Although by using Interpolation method, we make it
possible to visualize and cluster millions of data, but the time
complexity of MI-MDS algorithm remains high. As described in
Section 3, the input dataset D is divided into sample set N and out-
of-sample set M, so the computational complexity of MI-MDS

remains O(N*M), which means each sequence in the sample set
will need to aligned with each sequence in the out-of-sample set.
In our test, an ASA with 100k 16s rRNA will need several hours
to finish on 800 cores, the total alignment in that computation is
100k * 100k / 2. If this 100k is considered as sample set and the
rest 1M sequences as out-of-sample set, the total alignment will
increase to 1M * 100k, which takes 18 times longer than the ASA
computation.
To address the time complexity of MI-MDS, we used the concept
from astrophysics simulations (solving O(N2) particle dynamics)
to split the sample data in L=3-dimension space into an octree
with Barnes-Hut Tree (BH-Tree) [30] techniques turning
complexity to a O(NlogN). In our case, our tree, called Sample
Sequence Partition Tree (SSP-Tree) is similar to BH-Tree, and the
sample dataset is divided up into cubic cells via an octree (in a
L=3-dimension space), where the tree node set K is divided into
two sets: each leaf node E will contain one sequence, and each
internal node I will contain all the sequences belongs to its
decedents. Figure 3 is an example shown how the SSP-Tree works
in 2D with 8 sequences. If a node contains only one sequence,
then it became a leaf node; otherwise it is an internal node. In
Figure 3, the node E0 to E7 contains the sequences from A to H
accordingly. I1 contains sequences A, B, C and D. I2 contains
sequences G and H. I0 contains all the sequence as it is the biggest
box.

Figure 3 An example for SSP-Tree in 2D with 8 points

As shown in Figure 3, each node I has a children set nodes, where
the children number equals or less than 2L, where the children set
of node I is . A tree node construction only needs two points in
dimension L, which are Xkmax = (x0max, x1max, x2max, … , xLmax) and
Xkmin = (x0min, x1min, x2min, … , xLmin) where k ∈ K and ximax , ximin
means the maximum and minimum value of all the points’s
coordinates value in L dimensions. Constructing a SSP-Tree in L-
dimension follows the procedure from Algorithm 1 where
constructing the SSP-Tree just need to calculate the center of each
node k ∈ K. Inserting the sample points into the tree doesn’t need

(a) Raw result from DA-PWC and DA-

SMACOF on 100k sample sequences,
15 regions in total

(b) After region refinement on 100k

sample sequences, 12 regions in total

(c) After interpolated 580k out-of-sample

sequences by heuristic interpolation,
12 regions in total

Figure 2 Visualization result in 3D, each cluster is in different color (this is before final refinement)

any extra computation where only comparison and assignment is
needed, which makes SSP-Tree generation extremely fast. In our
experiment, insert 100k sample points from 16S rRNA data into a
SSP-Tree only takes about a few seconds on a desktop.

Algorithm 1: SSP-Tree Generation
Take every sample points in dimension L space, take the 𝑿𝑩𝒎𝒂𝒙
and 𝑿𝑩𝒎𝒊𝒏 to construct the root node B.
For each sample n in sample set N, insert it to node 𝒌 ∈ 𝑲
 If k doesn’t has a sequence assigned, simply assign n to k,
and k is added to E
 If k belongs to I, determine n should be inserted to c in {C,
2L} of k by comparing Xn to (𝑿𝒌𝒎𝒂𝒙 + 𝑿𝒌𝒎𝒊𝒏)/𝟐. Insert n to c.
 If k belongs to E, remove the sequence s assigned to k,
insert s to {C, 2L} of k; insert n to {C, 2L} of k; k added to I

In this way, every tree node k has a set of points Pk where PB is
the sample point set N. Each tree node k is represented by a center
point pck, which is the one nearest to the mass center inside each
node. The mass center of node k is given by equation 3

𝑝𝑐𝑘 = {𝑥𝑙𝑘 | 𝑥𝑙𝑘 = ∑ 𝑥𝑙
𝑖

𝑛𝑘
𝑛𝑘
𝑖=0 , 0 ≤ 𝑙 < 𝐿} Eq.3

where 𝑛𝑘 is the number of sequences in node k.
We describe a simple hierarchical majoring interpolation method
(HI-MI) as follows. One compares an out-of-sample point �̂� ∈ 𝑃�
to 𝑝𝑐𝐵first, and then recursively assign �̂� to a nearest child node
until the node contains nearest k neighbors is reached. This HI-MI
method can reduce the time cost of interpolation from O(N*M) to
O(M*logN). However, its accuracy is poor due to the correctness
of center point representation. It is obvious that the nodes in leaf
set E are represents directly by the points they contained, so the
representation is 100% accurate. But their parents in set I may
contain several points, where could be in a same cluster or
different clusters. The lower node level is, the more likely the
points in that node belong to a same cluster. At upper level, the
representation precision become worse because the points might
be in different clusters. Since HI-MI method searches the tree
from top to bottom, where starts with worst pc, there is some
probability that �̂� could be assign to a different node other than
the node the k nearest neighbors are in. To overcome this issue
while keeping the lower time cost, we proposed a heuristic
majoring interpolation method (HE-MI) described in next section.

Algorithm 2: Heuristic Majorizing Interpolation
Given a sample point set N, get a set of terminal nodes T
where point number in 𝒕 ∈ 𝑻 is larger than a threshold 𝛍
where the number of regions 𝑵𝑻 ≪ 𝑵.
For each 𝒑� ∈ 𝑷� , compare the original distance δ between
𝒑� and 𝒑𝒄𝒕 in 𝑻, assign it to the nearest node 𝒕′
All the sample points 𝒑𝟎,𝒑𝟏,𝒑𝟐, … ,𝒑𝒌′ ∈ 𝑷𝒕′′ in that node
will be consider as the 𝒌′ nearest points to 𝒑�.
Find k nearest points to 𝒑�. Compute every δij between 𝒑�𝒊 and
𝒑𝒋 ∈ 𝑷𝒊′;
Use the k-NN: 𝒑𝟎,𝒑𝟏,𝒑𝟐, … ,𝒑𝒌 ∈ 𝑷𝒕′ to 𝒑� . (𝒌 ≤ 𝒌′) to
determine the position for 𝒑� in dimension L. The group of 𝒑� is
assigned to the same group where the nearest 𝒑𝒊 is.

4.1 Heuristic Interpolation
First, we introduce the concept of terminal nodes T where
{𝑷𝒕| 𝒕 ∈ 𝑻} is PB. We can use optimization parameters, such as
node level, maximum number of points inside, to control the

number and quality of T. So instead of searching through top to
bottom, we can directly use the high quality 𝒑𝒄𝒕(𝒕 ∈ 𝑻) where t
contains only one or few cluster inside to find nearest k neighbors
for an out-of-sample point. Additionally, the number of T is much
smaller than sample points number N. So the time cost of HE-MI
is much lower than MI-MDS which needs to compare all the
sample sequences.
HE-MI is described in Algorithm 2. By applying HE-MI, the time
complexity is O(MNT). The time complexity is higher than HI-MI,
but the accuracy of interpolation is much higher in practice.

4.2 Region Refinement
Not only is SSP-Tree applied to dimension reduction and
clustering so that it enables a fast and efficient way of
interpolation, but also it can be used on fast refinement of existing
DA-PWC result.
As we have clustering result from DA-PWC and mapping result
DA-SMACOF, the clustering result can be refined using both of
the factors. Here we call the raw clusters from DA-PWC mega-
regions. After defining the mega-regions g in {1…G}, we classify
the terminal nodes T into three categories: (1) Node cluster g’ in
G’, where a node cluster is assigned as the same cluster to the
most points in that node. So the node in the node cluster actually
represents the cluster of 𝑃𝑚𝑜𝑠𝑡

𝑔′ . (2) Unclear mixture U, where the
unclear mixture is defined as a node contains significant number
of points belonging to different clusters. As a terminal node may
contain several different groups of points, this terminal node is
undefined as to which g should it belongs to. (3) In the
“intergalactic void” V, where normally the points inside these
nodes are in between visually obvious clusters. Those points
belong to V needs to be classified to clusters as well.
Each terminal node t is represented by a center point 𝑝𝑐𝑡 given in
equation 2. The goal of region refinement is to use the location
information from MDS and the cluster information from PWC to
classify node in {1…G} clearer and make region identification for
nodes in U. Algorithm 3 describes region refinement process. To
process with this algorithm, we set f as a cluster-define fraction
threshold where cluster-define fraction is defined in equation 3:

𝑓𝑡
𝑔′ = 𝑛𝑡

𝑔

𝑛𝑡
 Eq.3

where 𝑛𝑡
𝑔is the number of points in node t with assigned to g, and

𝑛𝑡 is the total number of points in node t. We set a threshold θ as
a number between range 0.5 to 1. We also set a lowest level c to T
as to distinguish the V from U and G’.

Algorithm 3: Fast Region Refinement
Iterate Following
 Create SSP-Tree and get T
 Loop over 𝑡 ∈ 𝑇
 If t.level > c, t is added to set V
 If t.level == c,
 If 𝑓𝑡

𝑔′ > θ, assign t to g and t is added to set G.
 If no 𝑓𝑡

𝑔′ > θ (𝑔 ∈ 𝐺), t is added to set U.
 Loop over 𝑡 ∈ 𝑇
 Update center point 𝑝𝑐𝑡
 Loop over p in 𝑡 ∈ 𝑈 ∪ 𝐺
 Assign p to g where distance(p, 𝑝𝑐�̂�)is minimum and �̂� ∈ 𝐺
 If all 𝑝𝑐�̂� in �̂� ∈ 𝑈 are the same in last iteration, break
 Else, continue
Finally assign all 𝑝 ∈ 𝑃 to �̂� ∈ 𝐺 where distance(p ,𝑝𝑐�̂�) is
minimum

After the region refinement, the cluster with high density near
each other can be merged automatically, and the cluster with
lower density can be reassigned with more points. By observing
from the plot with the region refinement result and raw DA-PWC
result, our mega-regions are much clearer as shown in Figure 2(b).
Region 9(dark grey), 12(purple) and 15(light green) on the upper
right of Figure 2(a) have been refined and merged into one
region(grey). Region 8(light blue) on the top left is split and
becomes part of cluster 2(green) and 4(yellow). Furthermore, this
method is extremely fast since it the number of terminal nodes is
much smaller than N. The computational cost of algorithm 3 is
very small that it takes about 10 seconds to process a 100k dataset
on a desktop.

4.3 Recursive Clustering
By applying HE-MI to the result from region refinement on 100k
sample data, all the sequences from hmp16S rRNA data have
been successfully clustered and visualized as shown in Figure
2(c). However, because each of these clusters contains several
hundreds of thousands sequences, they still have internal
structures which seems to be several sub-clusters. These sub
clusters on a plot with the whole dataset couldn’t be shown clearly
because the distance between regions are relatively larger than the
distance between sub-clusters in each region. So the points in each
region are tend to be closer to each other, thus the differences are
diminished. Therefore, to amplify the dissimilarity between sub-
clusters, we introduce the recursive clustering, which is to apply
DACIDR on each separate region.
The recursive clustering result of region 6(dark green) in shown in
Figure 4. 16 clusters were found in this region which shows clear
separation between each cluster.

5. Experiments
The experiments were carried out on PolarGrid (PG) cluster using
100 compute nodes and Tempest using 32 compute nodes. PG
cluster is composed of IBM HS21 Bladeservers and IBM
iDataPlex dx340 rack-mounted servers with Red Hat Linux. The
compute nodes in our experiments are iDataPlex dx340 rack-
mount servers with 8-core nodes. Tempest is an HP distributed
shared memory cluster with 768 processor cores. The data was
selected within 16S rRNA data from the NCBI database. The total
input sequence number is 1160946. First, we examined the dataset
and found all duplicate sequences, which have exactly the same
length and composition. Then we screened the data by keeping
only one sequence in each duplicate group, so that every sequence
in the filtered set is different from each other. Finally, we could
have a unique data set of 684769 sequences. Since the rest of the

sequences all have a corresponding unique sequence in the unique
set, they can be assigned to clustering result directly.

5.1 SW versus NW
We evaluated both SW and NW on the sample N=100k dataset
before proceeding with the rest of the pipeline and found SW to
produce more reliable results than NW. Sequence lengths were
not uniform in the 16S rRNA dataset and NW, being a global
alignment algorithm, had done its best by producing alignments
with many gaps. In cases where a shorter sequence is aligned with
a longer one, the gaps were dearly added by NW simply to make
the alignment from end to end. Unfortunately, the distance
measure we computed over the alignments was susceptible to
gaps and produced artificially large distances for sequence pairs.
The plots we generated with NW based distances had long thin
cylindrical point formations as shown in Figure 6, which later we
identified as a direct consequence of the number of gaps present
in the alignment. Pictorially, this effect is shown in Figure 7.
From the DACIDR result, the multiple points selected on the
same cylinder belongs to a same cluster, but by using NW, instead
of clustered, these points are aligned in line. The selected points
are based on their ID number in the given sample dataset, where
their lengths are 473 to 284.
The analysis of the line structure is shown in Figure 8, which
concludes that points along the line are linearly related in lengths
and NW has introduced gaps linearly to form global alignments.
The variation of the original length of sequences with respect to a
sequence at one end of the line is shown in the Original Length
line in Figure 7. It shows that original lengths decrease linearly
from one end to the other. The mismatches introduced by gaps for
the alignments of these sequences have thus increased linearly
according to the Mismatches by Gaps line. Also, clear is the fact
that gaps have a dominant effect on the number of mismatches as
the Total Mismatches line overlaps with the Mismatches by Gaps
line. Thus, aligning short sequences with long sequences using
NW has caused the introduction of biologically unimportant
number of gaps purely for the sake of forming a global alignment.
SW in contrast performed a local alignment producing alignment
segments with fewer gaps. This reduction in superfluous gaps
immediately improved the quality of clustering and plots where
more globular structure was evident rather long thin cylinders.

5.2 Comparison with UCLUST and CD-HIT
We have used two popular choices of clustering methods:
UCLUST and CD-HIT to compare the result with DACIDR. As
mentioned in previous section, UCLUST and CD-HIT are two

Figure 4 Recursive Clustering result for
region 6 in 16S rRNA initial DACIDR

result

Figure 5 UCLUST result for region 6 in

16S rRNA initial visualization result

Figure 6 Visualization Result for 100k

Sample using NW distance

popular greedy heuristic methods which are capable of processing
millions of sequences on a desktop. Thus we apply these two
methods on our dataset.

From Figure 9 it is shows that by directly applying CD-HIT or
UCLUST on the whole 16S rRNA dataset we have, the clustering
result is overestimate. By using DACIDR on the whole dataset
and one more time on each region, a total number of 188 clusters
are found, and they contain a reasonable number of sequences in
each cluster. However, by using CD-HIT and UCLUST with a
dissimilarity of 0.97 set, we found 8418 and 6000 clusters.
Among the clusters found, most of them only contain 1 or 2
sequences. As shown in the histogram, CD-HIT found 5475
clusters only have less than 10 sequences in them, and UCLUST
found 3829 such clusters. And if we lower the dissimilarity
threshold to 0.90 for both of the methods, some cluster contains
over 100000 will be found along with many clusters still have one
or two sequences inside. Figure 5 is the visualization result we
used to show how UCLUST works as different color for each
cluster. The UCLUST results are messier and single clusters are
broken into several components. The inaccuracy of both these two
methods happens because of two reasons: One is the hard-cutoff
dissimilarity threshold where the optimized value is difficult to
determine for a large input dataset; the other one is both of these
methods use global alignment, which can result in unreliable
answer for a dataset where sequences have very different lengths,
which in our case, is the 16S rRNA dataset. This experiment
demonstrates that DACIDR can have a robust clustering result
which is better than CD-HIT and UCLUST. DACIDR is
computationally more complicated but we have shown how using
interpolation and SSP-Tree, we get quite practical computation
and memory requirements.

5.3 Comparison of Interpolation Methods
In this experiment, we conduct three interpolation methods
compare with each other in execution time and normalized stress
value which is given in Equation 4:

𝜎(𝑋) = ∑ 1
∑ 𝛿𝑖𝑗𝑖<𝑗

𝑖<𝑗≤𝑁 (𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗)2 Eq.4

where the annotations are from Equation 2. Generally speaking,
the normalized stress value is the error value from target
dimension mapping to the original dimension. So the mapping
result has a higher accuracy when the normalized stress value is
lower.
This test is done using the 100k dataset from 16S rRNA data on
32 nodes from PG. We selected 10k, 20k, 30k, 40k and 50k from
it as sample sets and the rest 90k, 80k, 70k, 60k and 50k are
considered as out-of-sample sets. The sample sets are assumed to
have the mapping in target dimension.
Figure 10 shows that HE-MI and HI-MI execute interpolation step
much faster than MI-MDS while both of former methods takes
around 1000 seconds to finish and MI-MDS takes about 50 times
longer than that. The computation for MI-MDS is O(MN) where N
is the sample size and M is the out-of-sample size. Note that both
HE-MI and MI-MDS’s execution time increases while out-of-
sample size decreases. This is because computation for both of
these methods correlates with sample size * out-of-sample size
while this value increases from 10k * 90k to 50k * 50k. But for
HI-MDS, since it’s time complexity is O(MlogN), so logN will
remains almost same from N increases from 10k to 50k. And M
decreases from 90k to 50k, so its execution time decreases. Figure
11 shows that MI-MDS has the most accurate result because of
computing every distance between each sample and out-of-sample

Figure 7 Long thin formation of points resulting from NW

alignment (Point ID Number: Sequence ID)

Figure 8 Effect of gaps towards the long thin structure

Figure 9 Histogram of number of

clusters found based on number of
sequences in each cluster

Figure 10 Execution time of three

interpolation method

Figure 11 Normalized Stress value of

100k interpolation mapping result

0

100

200

300

400

500

2 3 4 5 6 7 8 9

Co
un

t

Point ID Number

Total Mismatches
Mismatches by Gaps
Original Length

1

10

100

1000

10000

1 30 60 90 30
0

60
0

90
0

30
00

60
00

90
00

30
00

0

60
00

0

Co
un

t

Sequence Count

DA-PWC
CD-HIT default
UCLUST default

1

10

100

1000

10000

100000

10k 20k 30k 40k 50k

Se
co

nd
s

Sample Size

HE-MI
HI-MI
MI-MDS

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

10k 20k 30k 40k 50k

N
or

m
al

iz
ed

 S
tr

es
s V

al
ue

Sample Size

HE-MI
HI-MI
MI-MDS

point. However, this experiment shows that by using HE-MI, the
interpolation processes much faster than MI-MDS, and the
accuracy of the mapping result is much better than HI-MI, which
makes HE-MI the ideal solution for massive size of data
interpolation.

6. Conclusion and Future Work
In this paper we proposed a parallel data clustering and
visualization method: DACIDR, which can efficiently cluster
millions of sequences with various lengths. DACIDR utilizes the
computing power of HPC by applying on several distribute and
parallel computing frameworks. Compared to traditional sequence
clustering method without visualization, such as UCLUST and
CD-HIT, our visualization result combined with the clustering
result can help biologist observe and analysis structures among
different gene clusters. These correlations enable us to cluster
millions of sequences efficiently with high accuracy. Using the
deterministic annealing method can help us avoid local optima
and overestimation problem. By using SSP-Tree in DACIDR, not
only can the interpolation to clustering and visualization result run
faster, but also we can refine the result from DA-PWC for
hundreds of thousands results in a few seconds.

We are currently integrating phylogenetic trees with our analysis
both by adding it to visualization and using it to improve
specification of mega-regions where there are ambiguous clusters.

7. ACKNOWLEDGMENTS
Our thanks to UITS in Indiana University for Polar Grid support
and Ryan Hartman from CGL in Indiana University for Windows
HPC cluster support. This work is under National Health Institute
Grant 1RC2HG005806-01 support.

8. REFERENCES
[1] Peterson J, Garges S, et al. (2009). "NIH Human Microbiome

Project." Genome Research. 19(12): 2317-2323.
[2] Cole JR, Chai B, et al. (2005). "The Ribosomal Database

Project (RDP-II): sequences and tools for high-throughput
rRNA analysis." Nucleic Acids Res. 33(suppl_1): D294-296.

[3] Altschul, S. F., W. Gish, et al. (1990). "Basic Local
Alignment Search Tool." Journal of Molecular Biology. 215:
403-410.

[4] Edgar, R. C. (2004). "MUSCLE: multiple sequence
alignment with high accuracy and high throughput." Nucleic
Acids Res. 32: 1792-1797.

[5] Schloss, P. D. and J. Handelsman. (2005). "Introducing
DOTUR, a computer program for defining operational
taxonomic units and estimating species richness." Appl.
Environ. Microbiol. 71: 1501-1506.

[6] Schloss, P. D., S. L. Westcott, et al. (2009). "Introducing
mothur: opensource, platform-independent, community-
supported software for describing and comparing microbial
communities." Appl. Environ. Microbiol. 75: 7537–7541.

[7] Sun, Y., Y. Cai, et al. (2009). "ESPRIT: estimating species
richness using large collections of 16S rRNA
pyrosequences." Nucleic Acids Res. 37(76).

[8] Cai, Y. and Y. Sun (2011). "ESPRIT-Tree: hierarchical
clustering analysis of millions of 16S rRNA pyrosequences
in quasilinear computational time." Nucleic Acids Res.
39(95).

[9] Brown, D. P. (2008). "Efficient functional clustering of
protein sequences using the Dirichlet process."
Bioinformatics. 24: 1765–1771.

[10] Enright, A. J. and e. al. (2002). "An efficient algorithm for
large-scale detection of protein families." Nucleic Acids Res.
30: 1575–1584.

[11] Hao, X., R. Jiang, et al. (2011). "Clustering 16S rRNA for
OTU prediction: a method of unsupervised Bayesian
clustering." Bioinformatics. 27: 611–618.

[12] Li, W. and A. Godzik (2006). "Cd-hit: a fast program for
clustering and comparing large sets of protein or nucleotide
sequences." Bioinformatics. 22: 1658–1659.

[13] Edgar, R. C. (2010). "Search and clustering orders of
magnitude faster than BLAST." Bioinformatics. 26: 2460–
2461.

[14] Fox, G. C. (2011). "Deterministic Annealing and Robust
Scalable Data Mining for the Data Deluge." PDAC’11,
Seattle, Washington, ACM.

[15] Hughes, A., Y. Ruan, et al. (2012). "Interpolative
multidimensional scaling techniques for the identification of
clusters in very large sequence sets." BMC Bioinformatics
13(Suppl 2): S9.

[16] Dean, J. and S. Ghemawat (2008). "MapReduce: simplified
data processing on large clusters." Commun. ACM 51(1):
107-113.

[17] J.Ekanayake, H.Li, et al. (2010). "Twister: A Runtime for
iterative MapReduce." Proceedings of the First International
Workshop on MapReduce and its Applications of ACM
HPDC 2010 conference June 20-25, 2010. Chicago, Illinois,
ACM.

[18] Snir, M., S. Otto, et al. (1995). "MPI: The Complete
Reference." MA, USA, MIT Press Cambridge.

[19] Ruan, Y., Z. Guo, et al. (2012) "HyMR: a Hybrid
MapReduce Workflow System" Proceedings of the Third
ECMLS Workshop of ACM HPDC 2012 conference June
18-23, 2012. Delft, Netherlands, ACM.

[20] Rose, K., Gurewitz E., Fox, G. C. (1990). "Statistical
mechanics and phase transitions in clustering." Phys. Rev.
Lett. 65: 945--948.

[21] Rose, K. (1998). "Deterministic Annealing for Clustering,
Compression, Classification, Regression, and Related
Optimization Problems." Proceedings of the IEEE 86: 2210--
2239.

[22] O. Gotoh, (1982) "An improved algorithm for matching
biological sequences," Journal of Molecular Biology.
162:705-708.

[23] Needleman, Saul B. and Wunsch, Christian D. (1970). "A
general method applicable to the search for similarities in the
amino acid sequence of two proteins". Journal of Molecular
Biology 48 (3): 443–53.

[24] Rose, K., Gurewwitz, E., and Fox, G. (1990). "A
deterministic annealing approach to clustering." Pattern
Recogn. Lett.11: 589-594.

[25] Bronstein, M. M., A. M. Bronstein, et al. (2006). "Multigrid
multidimensional scaling. Numerical Linear Algebra with
Applications." Wiley.

[26] Borg, I., and Groenen, P. J. (2005) "Modern
Multidimensional Scaling: Theory and Applications."
Springer, 2005.

[27] Bae, S.-H., J. Qiu, et al. (2010). "Multidimensional Scaling
by Deterministic Annealing with Iterative Majorization
algorithm." Proceedings of the 6th IEEE e-Science
Conference, Brisbane, Australia.

[28] PlotViz - A tool for visualizing large and high-dimensional
data. http://salsahpc.indiana.edu/pviz3/

[29] Bae, S.-H., J. Y. C., et al. (2010). "Dimension reduction and
visualization of large high-dimensional data via
interpolation." Proceedings of the 19th ACM HPDC
Conference, Chicago, Illinois, ACM.

[30] J. Barnes and P. Hut (1986). "A hierarchical O(N log N)
force-calculation algorithm". Nature 324 (4): 446–449

http://salsahpc.indiana.edu/pviz3/
http://salsahpc.indiana.edu/pviz3/
http://salsahpc.indiana.edu/pviz3/

	1. INTRODUCTION
	2. Related Work
	3. Data Clustering and Visualization Pipeline
	3.1 All-pair Sequence Alignment
	3.2 Pairwise Clustering
	3.3 Multidimensional Scaling
	Multidimensional scaling (MDS) is a set of related statistical techniques often used in information visualization for exploring similarities or dissimilarities in data. MDS algorithm use the pairwise distance matrix Δ and generate a mapping for each s...
	3.4 Interpolation

	4. SSP-Tree
	4.1 Heuristic Interpolation
	First, we introduce the concept of terminal nodes T where {,𝑷-𝒕.| 𝒕∈𝑻} is PB. We can use optimization parameters, such as node level, maximum number of points inside, to control the number and quality of T. So instead of searching through top to b...
	4.2 Region Refinement
	4.3 Recursive Clustering

	5. Experiments
	5.1 SW versus NW
	5.2 Comparison with UCLUST and CD-HIT
	5.3 Comparison of Interpolation Methods

	6. Conclusion and Future Work
	7. ACKNOWLEDGMENTS
	8. REFERENCES

