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ABSTRACT 

The development of next-generation sequencing technology has 
made it possible to generate millions of sequences from 
environmental samples. However, the difficulty associated with 
taxonomy-independent analysis increases as the sequence size 
expands. Most of the existing algorithms, which aim to generate 
operational taxonomic units (OTUs), require quadratic space and 
time complexity that makes them only suitable to small datasets. 
An alternative is to use heuristic methods; although it enables fast 
sequence analyzing, the hard-cutoff similarity threshold set for it 
and the random starting seed can result in reduced accuracy and 
overestimation. In this paper, we propose DACIDR: a parallel 
sequence clustering and visualization pipeline, which can address 
the overestimation problem along with space and time complexity 
issues as well as giving robust result. The pipeline starts with a 
parallel pairwise sequence alignment analysis followed by a 
deterministic annealing method of clustering and dimension 
reduction. No explicit similarity threshold is needed with the 
process of clustering. Experiments with our system also proved 
the quadratic time and space complexity issue could be solved 
with a novel heuristic method called Sample Sequence Partition 
Tree (SSP-Tree), which allowed us to interpolate millions of 
sequences with sub-quadratic time and linear space requirement. 
Furthermore, SSP-Tree can enhance the speed of fine-tuning on 
the existing result, which made it possible to recursive clustering 
to achieve accurate local results. Our experiments showed that 
DACIDR produced a more reliable result than two popular greedy 
heuristic clustering methods: UCLUST and CD-HIT. 

Categories and Subject Descriptors 
I.5.3 [PATTERN RECOGNITION]: Clustering – Algorithms; 
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: 
Distributed Systems – Distributed Applications; 

 

General Terms 
Algorithms, Performance 

Keywords 
Pairwise data clustering, multidimensional scaling, deterministic 
annealing, interpolation, exploratory data analysis 

1. INTRODUCTION 
Advances in modern bio-sequencing techniques have led to a 
proliferation of raw genomic data that need to be analyzed with 
various technologies such as pyrosequencing [1]. These methods 
can easily analyze small or medium sample sequences in order to 
allow scientists to draw meaningful conclusions. However, many 
existing methods lack efficiency on massive sequence collections 
analysis where the existing computational power on single 
machine can be overwhelmed. Consequently, new techniques and 
parallel computation must be brought to this area.  

The first step of sequence analysis is typically generating 
sequences that can describe microbial populations. One popular 
method is to use 16S rRNA sequences to study the phylogenetic 
relationship between different microbial families. Existing 
techniques to analyze such data are divided into two categories: 
taxonomy-based and taxonomy-independent [2]. Taxonomy-based 
methods provide classification information about the organisms in 
a sample. For example, BLAST [3] relies on reference database 
that contains information about previous classified sequences, and 
compares new sequences against them, so that the new sequences 
can be assigned to the same organism with the best-matched 
reference sequence in the database. However, since most of the 
16S rRNA sequences are not formally classified yet, these 
methods have limitation on correctly identifying organisms for 
these data. In contrast, taxonomy-independent methods use 
different sequence alignment techniques to generate pairwise 
distances between sequences, and then clustered them into OTUs 
by giving different threshold, such as 5% dissimilarity to 
determine if two sequences belong to a same genus or 3% 
dissimilarity to determine if they belong to same species. These 
methods doesn’t require a pre-described reference database, thus 
they can enumerate novel pathogenesis as well as organisms in the 
preexisting taxonomic framework.  

Many taxonomy-independent methods were developed over past 
year [4-7]. The key step among these methods is clustering, which 
is to group input sequences into different OTUs. However, most 
of these clustering methods require a quadratic space and time 
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over the input sequence size. For example, hierarchical clustering 
is one of the most popular choices that have been widely used in 
many sequence analysis tools. It is a classic method, which is 
based pairwise distance between input sequence samples. 
However, the main drawback of it is the quadratic space 
requirement for input distance matrix and a time complexity of 
O(N2). To overcome this shortage, several heuristic and 
hierarchical methods are developed [8-13]. However, they can 
only perform on low dimensional data or lack accuracy. 

Our techniques proposed in [14][15]for sequence analysis can be 
collectively classified as taxonomy-independent, wherein different 
sequence alignment tools are applied in order to glean specific 
pieces of information about the related genome. We used 
deterministic annealing method for dimension reduction and 
pairwise clustering to group the sequences into different clusters 
and visualize them in a lower dimension. An interpolation 
algorithm has been used to reduce time and space cost for massive 
data. All of these techniques are parallelized to process large data 
on multiple compute nodes, using MapReduce [16], iterative 
MapReduce [17] and/or MPI [18] frameworks. We improved the 
parallel efficiency of DACIDR by developing a hybrid workflow 
model on high performance computers (HPC) [19]. Additionally, 
we proposed SSP-Tree, which uses a heuristic method to achieve 
sub-quadratic time complexity with an interpolation process. 
Furthermore, we developed a new algorithm that can enable fast 
refinement of the clustering result by using SSP-Tree.  

We describe the organization of the paper in the following: 
Section 2 discusses the background and related work. In Section 3 
we describe the data clustering and visualization pipeline and 
various algorithms used in it. We present the SSP-Tree in Section 
4. In Section 5 we show that choice over alignment methods is 
important, efficiency of SSP-Tree enabled interpolation and 
compared our results with two popular heuristic clustering 
methods. The conclusion and future work is presented in Section 
6. 

2. Related Work 
There are already some taxonomy-independent heuristic or 
hierarchical methods exists in this area. MUCSLE+DOTUR is a 
popular pipeline for sequence analysis. MUCSLE [4] is used for 
multiple sequence alignment where it uses k-mer distance and a 
hierarchical method is applied to achieve fast speed. However, 
distance calculated from multiple sequence alignment might result 
in overestimation of the number of OTUs. So in our pipeline, we 
used pairwise sequence alignment instead of multi-sequence 
alignment. DOTUR [5] is one of the earliest hierarchical 
clustering methods for pyrosequencing and data analysis. DOTUR 
assigns sequences systematically to OTUs by using all possible 
distances. Therefore, a pairwise distance matrix must be generated 
as input for DOTUR. This causes its O(N2) time, disk space and 
memory complexity. So although it can generate reasonable result 
on small dataset, it can’t be applied on massive data. HCLUST [6] 
is another similar method developed in mothur pipeline. Mothur is 
a well-known open-source, expandable software in the microbial 
ecology community. It is similar to a taxonomy-based clustering 
pipeline that a temporary pairwise distance matrix will be 
generated first by aligning input sequences against a pre-aligned 
reference database. Since generating a reference database is done 
before clustering, the computational complexity of the sequence-
alignment step is O(N) instead of O(N2). However, this algorithm 
will lead to inaccurate analysis to sequences from unknown 
microorganisms since there is no reference database for them. 
ESPRIT [7] is a method that tried to uses parallel computing to 

address the space and time issue in sequence analysis. It uses 
global pairwise alignment on each pair of sequences and the 
clustering method of it grouped sequences into OTUs on-the-fly, 
while keeping track of linkage information to overcome memory 
limitations. Although ESPRIT can experiment on hundreds of 
thousands of sequences, it has a time complexity of O(N2) thus 
has limitation on millions of sequences. ESPRIT-Tree [8] has 
been proposed later to address this issue. It uses probability 
sequences and a tree-like structure in hyperspace to reduce the 
time and memory usage for sequence analysis. Theoretically, it 
can reach quasilinear time complexity by inserting sequences 
through the root of the tree by only comparing the sequence and 
the center sequence in each tree node. Its tree construction relies 
on a subset of result from ESPRIT. Both of ESPRIT and ESPRIT-
Tree uses k-mer distance for fast alignment between sequences, 
which has a high correlation with genetic distance. However, this 
method may cause less accuracy when generating the OTUs. 
Although by using ESPRIT-Tree, sequence clustering has a time 
complexity of O(NlogN), but the tree construction itself take 
O(N2) time, which can only be applied on small dataset. 
Additionally, all of the methods above only support complete 
linkage instead of average linkage clustering.  
Along with hierarchical clustering methods, to solve this problem, 
some clustering methods based on probability models have been 
proposed. [9] described a method where an underlying 
multinomial distribution can be formed by every column of a 
multiple alignment as a sample, so a likelihood function can be 
given by the production of probability mass function of them. 
However, this method is only suitable for short sequences since 
the computational cost is high per column. Markov Clustering 
[10] used a matrix to represent sequence connection as a 
connection graph. This matrix passes through matrix 
multiplication and inflation until little change can be done to it 
between iterations, and finally, it can be interpreted as Protein 
Family. The main drawback of this method is it uses only an 
inflation parameter to tune the result where the similarity level is 
hard to establish. To solve this problem, Bayes Clustering has 
been proposed [11]. This method uses a Gaussian Mixture Model 
to draw a set of sample sequences independently from the input 
sequence dataset, and the cluster it found are from a cluster birth 
and death process. It can cluster 16S rRNA data at different 
phylogenetic levels, however, it can only be applied on sequences 
with a similarity larger than 90%. 
Another direction to solve the taxomony-independent clustering is 
greedy heuristic methods where several algorithms has been 
developed trying to solve this problem, such as CD-HIT [12] and 
UCLUST [13]. CD-HIT sorts the sequences first, and then the 
longest sequence becomes the representative of the first cluster. 
Each remaining sequence is compared with the representatives of 
existing clusters and assigned to an existing cluster or create a 
new cluster as the representative sequence based on the similarity. 
In each pair of sequences comparison, a short word filtering 
algorithm is used, which can determine if the similarity between 
two sequences is below a certain value without performing an 
actual sequence alignment. Therefore, by reducing the comparison 
times the actual computation time cost is saved as well. UCLUST 
uses a similar way of clustering compare to CD-HIT, but it can set 
a threshold of similarity below 80% while CD-HIT doesn’t have 
this flexibility. Both of these two methods are capable of 
processing millions of sequences, however, the precision of their 
results suffer from the overestimation problem because a hard-
cutoff similarity threshold is set and it’s hard to tune this 
parameter for a reasonable clustering. Additionally, UCLUST and 



CD-HIT start the clustering by randomly giving the first sequence 
in a FASTA file to a new cluster as the reference sequence. In our 
pipeline, we proposed a deterministic annealing method of 
pairwise clustering, which can generate clusters automatically 
without having a threshold of similarity set or an initial seed. 
Clusters emerge as phase transitions as temperature is lowered 
[20]. This robust clustering method has been proved to be 
efficient over hundreds of thousands of sequences and indeed in 
many problem areas [21]. By using SSP-Tree method, we can 
process millions of sequences efficiently with a much better 
clustering result better than UCLUST and CD-HIT. 

3. Data Clustering and Visualization Pipeline 
As shown in Figure 1, DACIDR pipeline includes all-pair 
sequence alignment (ASA), pairwise clustering (PWC), 
multidimensional scaling (MDS), interpolation and visualization. 
The ASA reads a FASTA file and generate a dissimilarity matrix; 
The PWC can read the dissimilarity matrix and generate OTUs; 
MDS reads dissimilarity matrix and generate a 3D mapping; 
Region Refinement is done on the PWC result along with the #d 
mapping from MDS; Interpolation read the OTUs and plots to 
generate mapping for further sequences. In DACIDR, the 16S 
rRNA input dataset D is divided into a sample set N and an out-
of-sample set M. The sample set N is processed at order N2 by 
ASA, PWC and MDS, while out-of-sample set M is processed at 
order M by Interpolation. In this section, we will explain how the 
ASA, PWC, MDS and Interpolation work. Since the Region 
Refinement and Heuristic method of interpolation involves with 
SSP-Tree, they will be explained in next section. 

3.1 All-pair Sequence Alignment 
Biological similarity between two sequences is the property 
driving the DACIDR pipeline. Thus, to form a measurable value 
of similarity we first align the two sequences and compute a 
distance value for the alignment, which represents the inverse of 
similarity and is used by algorithms down the line. A distance 
should be computed for each pair of sequences, hence the name 
all-pair sequence alignment.   

In ASA, we chose Smith-Waterman (SW) [22] alignment method 
out of two well-known sequence alignment algorithms: Smith-
Waterman and Needleman-Wunsch (NW) [23]. SW performs 
local sequence alignment and is more accurate than BLAST in 
this approach; that is, for determining similar regions between two 
nucleotide or protein sequences. Instead of looking at the total 
sequence, it compares segments of all possible lengths and 
optimizes the similarity measure. In contrast, NW performs a 
global alignment on two sequences which was not suitable for the 
particular dataset due to reasons mentioned under Section 5.1. 

We used percentage identity to represent similarity among 
sequences, the distance δ between sequence i and sequence j is 
considered as the dissimilarity between them, which can be 
calculated in equation 1: 

𝛿𝑖𝑗 = 1 −
𝑛𝑖𝑗
′

𝑛𝑖𝑗
 Eq.1 

where nij′  is the number of identical pairs between sequence i and 
sequence j and nij is the aligned sequence length. 

SW algorithm is time consuming, and for all-pair problem, the 
time and space complexity is O(N2). Thus, it is not practical to 
run millions of sequence alignments using SW on a single 
machine. However, ASA is an embarrassingly parallel problem 
and thus we have mapped it into MapReduce paradigm by 
adopting coarse granularity task decomposition. The parallelized 
ASA made it possible to generate large dissimilarity matrices 
resulting from aligning millions of sequences and has been proved 
to be highly efficient in our previous work [19]. 

3.2 Pairwise Clustering 
As we use raw sequence data and not multiply aligned sequences, 
clustering is based on pairwise distances and must use appropriate 
algorithms. The deterministic annealing approach introduced ~20 
years ago for the vector spaces was modified ~10 years for 
pairwise case and extended by us to fully operational parallel 
software DA-PWC [14][24]. As noted above this approach is 
robust (inheriting the well-known advantages of annealing) and 
intrinsically multi-resolution. Temperature corresponds to 
pairwise distance scale and one starts at high temperature with all 
sequences in same cluster. As temperature is lowered one looks at 
finer distance scale and additional clusters are automatically 
detected from the appearance of negative eigenvalues for a second 
order derivative matrix first introduced by Rose [21] for vector 
clustering and extended by us to pairwise domain. We only need 
one parameter – namely the lowest temperature where one looks 
to split clusters; this corresponds to smallest size cluster desired. 
Other clustering methods like UCLUST and CD-HIT need more 
heuristic input. 
To use DA-PWC in DACIDR, one inputs the dissimilarity matrix 
from ASA and outputs a group file, which contains the 
information about which cluster each sequence is assigned to. 

3.3 Multidimensional Scaling 
Multidimensional scaling (MDS) is a set of related statistical 
techniques often used in information visualization for exploring 
similarities or dissimilarities in data. MDS algorithm use the 
pairwise distance matrix Δ and generate a mapping for each 
sequence to a point in an L-dimensional Euclidean space 
approximately preserving inter-point distances. Scaling by 
Majorizing a Complicated Function (SMACOF) algorithm is one 
of the MDS algorithms that have been proved to be fast and 
efficient [25][26]. It uses an Expectation Maximum (EM) method 
to minimize the objective function value, called Stress given in 
equation 2.  

𝜎(𝑋) = ∑ 𝑤𝑖𝑗𝑖<𝑗≤𝑁 (𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗)2 Eq.2 

 
Figure 1 The structure of DACIDR pipeline 



where w denotes a possible weight, 𝑑𝑖𝑗 is the Euclidean distance 
from point i to j in the mapping and 𝛿𝑖𝑗  is the distance from 
sequence i to j in Δ. However, it is well known that EM method 
suffers from local minima problem and we have developed a 
Deterministic Annealing (DA) enhancement to SMACOF with 
computational temperature [27]. 
In DACIDR, we parallelized DA-SMACOF applications to make 
it usable for large sequences visualization by applying on iterative 
MapReduce paradigm. We set target dimension to 3 and 
visualized the mapping in a tool called PlotViz3 [28] that we 
developed. We call the 3D-coordinates result from MDS a plot, 
which can be integrated with the clustering result from PWC so 
that different clusters can be visualized in different 
colors/size/shape. In Figure 2(a), we have shown the raw result 
from PWC and MDS, where 15 clusters are generated with the 
100k sample sequences selected from 16S rRNA dataset. Each 
sequence is mapped to a point in the 3D plot. 

3.4 Interpolation 
Both DA-SMACOF and DA-PWC have time(compute) and 
space(memory) complexity of O(N2) which limits their 
applicability to large problems. To overcome this difficulty, we 
adopted a technique called Majorizing Interpolation MDS (MI-
MDS) [29], which is a simple interpolation approach based on 
pre-mapped MDS result of a sample set selected from the given 
data. 
This algorithm’s basic idea is to map out-of-sample data into 
target dimension space by nearest neighbor (k-NN) interpolation 
without running full MDS on all of them. We added the function 
which can assign the out-of-sample data into designated cluster 
without running full PWC. Compare to existing MDS and PWC 
methods, this interpolation algorithm only need O(N) memory and 
time to execute. Furthermore, it’s a pleasingly parallel application 
that it is highly efficient on multiple compute nodes. As described 
in following section we then divide full sample into regions and 
refine the clustering in small regions with computational modest 
cost. 

4. SSP-Tree 
In Section 3 we describe the basic functionalities in the DACIDR 
pipeline. Although by using Interpolation method, we make it 
possible to visualize and cluster millions of data, but the time 
complexity of MI-MDS algorithm remains high. As described in 
Section 3, the input dataset D is divided into sample set N and out-
of-sample set M, so the computational complexity of MI-MDS 

remains O(N*M), which means each sequence in the sample set 
will need to aligned with each sequence in the out-of-sample set. 
In our test, an ASA with 100k 16s rRNA will need several hours 
to finish on 800 cores, the total alignment in that computation is 
100k * 100k / 2. If this 100k is considered as sample set and the 
rest 1M sequences as out-of-sample set, the total alignment will 
increase to 1M * 100k, which takes 18 times longer than the ASA 
computation. 
To address the time complexity of MI-MDS, we used the concept 
from astrophysics simulations (solving O(N2) particle dynamics) 
to split the sample data in L=3-dimension space into an octree 
with Barnes-Hut Tree (BH-Tree) [30] techniques turning 
complexity to a O(NlogN). In our case, our tree, called Sample 
Sequence Partition Tree (SSP-Tree) is similar to BH-Tree, and the 
sample dataset is divided up into cubic cells via an octree (in a 
L=3-dimension space), where the tree node set K is divided into 
two sets: each leaf node E will contain one sequence, and each 
internal node I will contain all the sequences belongs to its 
decedents. Figure 3 is an example shown how the SSP-Tree works 
in 2D with 8 sequences. If a node contains only one sequence, 
then it became a leaf node; otherwise it is an internal node.  In 
Figure 3, the node E0 to E7 contains the sequences from A to H 
accordingly. I1 contains sequences A, B, C and D. I2 contains 
sequences G and H. I0 contains all the sequence as it is the biggest 
box. 

 
Figure 3 An example for SSP-Tree in 2D with 8 points 

As shown in Figure 3, each node I has a children set nodes, where 
the children number equals or less than 2L, where the children set 
of node I is . A tree node construction only needs two points in 
dimension L, which are Xkmax = (x0max, x1max, x2max, … , xLmax) and 
Xkmin = (x0min, x1min, x2min, … , xLmin) where k ∈ K and ximax ,  ximin 
means the maximum and minimum value of all the points’s 
coordinates value in L dimensions. Constructing a SSP-Tree in L-
dimension follows the procedure from Algorithm 1 where 
constructing the SSP-Tree just need to calculate the center of each 
node k ∈ K. Inserting the sample points into the tree doesn’t need 

 
(a) Raw result from DA-PWC and DA-

SMACOF on 100k sample sequences, 
15 regions in total 

 
(b) After region refinement on 100k 

sample sequences, 12 regions in total 

 
(c) After interpolated 580k out-of-sample 

sequences by heuristic interpolation, 
12 regions in total 

Figure 2 Visualization result in 3D, each cluster is in different color (this is before final refinement) 



any extra computation where only comparison and assignment is 
needed, which makes SSP-Tree generation extremely fast. In our 
experiment, insert 100k sample points from 16S rRNA data into a 
SSP-Tree only takes about a few seconds on a desktop.  

Algorithm 1: SSP-Tree Generation 
Take every sample points in dimension L space, take the 𝑿𝑩𝒎𝒂𝒙 
and 𝑿𝑩𝒎𝒊𝒏 to construct the root node B. 
For each sample n in sample set N, insert it to node 𝒌 ∈ 𝑲 
    If k doesn’t has a sequence assigned, simply assign n to k, 
and k is added to E 
    If k belongs to I, determine n should be inserted to c in {C, 
2L} of k by comparing Xn to (𝑿𝒌𝒎𝒂𝒙 + 𝑿𝒌𝒎𝒊𝒏)/𝟐. Insert n to c. 
    If k belongs to E, remove the sequence s assigned to k, 
insert s to {C, 2L} of k; insert n to {C, 2L} of k; k added to I 

In this way, every tree node k has a set of points Pk where PB is 
the sample point set N. Each tree node k is represented by a center 
point pck, which is the one nearest to the mass center inside each 
node. The mass center of node k is given by equation 3 

𝑝𝑐𝑘 =  {𝑥𝑙𝑘 | 𝑥𝑙𝑘 =  ∑ 𝑥𝑙
𝑖

𝑛𝑘
𝑛𝑘
𝑖=0 , 0 ≤ 𝑙 < 𝐿} Eq.3 

where 𝑛𝑘 is the number of sequences in node k. 
We describe a simple hierarchical majoring interpolation method 
(HI-MI) as follows. One compares an out-of-sample point �̂� ∈ 𝑃� 
to 𝑝𝑐𝐵first, and then recursively assign �̂� to a nearest child node 
until the node contains nearest k neighbors is reached. This HI-MI 
method can reduce the time cost of interpolation from O(N*M) to 
O(M*logN). However, its accuracy is poor due to the correctness 
of center point representation. It is obvious that the nodes in leaf 
set E are represents directly by the points they contained, so the 
representation is 100% accurate. But their parents in set I may 
contain several points, where could be in a same cluster or 
different clusters. The lower node level is, the more likely the 
points in that node belong to a same cluster. At upper level, the 
representation precision become worse because the points might 
be in different clusters. Since HI-MI method searches the tree 
from top to bottom, where starts with worst pc, there is some 
probability that �̂� could be assign to a different node other than 
the node the k nearest neighbors are in. To overcome this issue 
while keeping the lower time cost, we proposed a heuristic 
majoring interpolation method (HE-MI) described in next section.  

Algorithm 2: Heuristic Majorizing Interpolation 
Given a sample point set N, get a set of terminal nodes T 
where point number in 𝒕 ∈ 𝑻  is larger than a threshold 𝛍 
where the number of regions 𝑵𝑻 ≪ 𝑵. 
For each 𝒑� ∈ 𝑷� , compare the original distance δ between 
𝒑� and 𝒑𝒄𝒕  in 𝑻, assign it to the nearest node 𝒕′ 
All the sample points 𝒑𝟎,𝒑𝟏,𝒑𝟐, … ,𝒑𝒌′ ∈ 𝑷𝒕′′  in that node 
will be consider as the 𝒌′ nearest points to 𝒑�.  
Find k nearest points to 𝒑�. Compute every δij between 𝒑�𝒊 and 
𝒑𝒋 ∈ 𝑷𝒊′;  
Use the k-NN: 𝒑𝟎,𝒑𝟏,𝒑𝟐, … ,𝒑𝒌 ∈ 𝑷𝒕′  to 𝒑� . ( 𝒌 ≤ 𝒌′ ) to 
determine the position for 𝒑� in dimension L. The group of 𝒑� is 
assigned to the same group where the nearest 𝒑𝒊 is. 

4.1 Heuristic Interpolation 
First, we introduce the concept of terminal nodes T where 
{𝑷𝒕| 𝒕 ∈ 𝑻} is PB. We can use optimization parameters, such as 
node level, maximum number of points inside, to control the 

number and quality of T. So instead of searching through top to 
bottom, we can directly use the high quality 𝒑𝒄𝒕(𝒕 ∈ 𝑻) where t 
contains only one or few cluster inside to find nearest k neighbors 
for an out-of-sample point. Additionally, the number of T is much 
smaller than sample points number N. So the time cost of HE-MI 
is much lower than MI-MDS which needs to compare all the 
sample sequences.  
HE-MI is described in Algorithm 2. By applying HE-MI, the time 
complexity is O(MNT). The time complexity is higher than HI-MI, 
but the accuracy of interpolation is much higher in practice. 

4.2 Region Refinement 
Not only is SSP-Tree applied to dimension reduction and 
clustering so that it enables a fast and efficient way of 
interpolation, but also it can be used on fast refinement of existing 
DA-PWC result. 
As we have clustering result from DA-PWC and mapping result 
DA-SMACOF, the clustering result can be refined using both of 
the factors. Here we call the raw clusters from DA-PWC mega-
regions. After defining the mega-regions g in {1…G}, we classify 
the terminal nodes T into three categories: (1) Node cluster g’ in 
G’, where a node cluster is assigned as the same cluster to the 
most points in that node. So the node in the node cluster actually 
represents the cluster of 𝑃𝑚𝑜𝑠𝑡

𝑔′ . (2) Unclear mixture U, where the 
unclear mixture is defined as a node contains significant number 
of points belonging to different clusters. As a terminal node may 
contain several different groups of points, this terminal node is 
undefined as to which g should it belongs to. (3) In the 
“intergalactic void” V, where normally the points inside these 
nodes are in between visually obvious clusters. Those points 
belong to V needs to be classified to clusters as well. 
Each terminal node t is represented by a center point 𝑝𝑐𝑡 given in 
equation 2. The goal of region refinement is to use the location 
information from MDS and the cluster information from PWC to 
classify node in {1…G} clearer and make region identification for 
nodes in U. Algorithm 3 describes region refinement process. To 
process with this algorithm, we set f as a cluster-define fraction 
threshold where cluster-define fraction is defined in equation 3: 

𝑓𝑡
𝑔′ = 𝑛𝑡

𝑔

𝑛𝑡
  Eq.3 

where 𝑛𝑡
𝑔is the number of points in node t with assigned to g, and 

𝑛𝑡  is the total number of points in node t. We set a threshold θ as 
a number between range 0.5 to 1. We also set a lowest level c to T 
as to distinguish the V from U and G’. 

Algorithm 3: Fast Region Refinement 
Iterate Following 
    Create SSP-Tree and get T 
    Loop over 𝑡 ∈ 𝑇 
        If t.level > c, t is added to set V 
        If t.level == c,  
            If 𝑓𝑡

𝑔′ > θ, assign t to g and t is added to set G. 
            If no 𝑓𝑡

𝑔′ > θ (𝑔 ∈ 𝐺), t is added to set U. 
    Loop over 𝑡 ∈ 𝑇 
        Update center point 𝑝𝑐𝑡 
    Loop over p in 𝑡 ∈ 𝑈 ∪ 𝐺 
        Assign p to g where distance(p, 𝑝𝑐�̂�)is minimum and �̂� ∈ 𝐺 
    If all 𝑝𝑐�̂� in �̂� ∈ 𝑈 are the same in last iteration, break 
    Else, continue 
Finally assign all 𝑝 ∈ 𝑃  to �̂� ∈ 𝐺  where distance(p ,𝑝𝑐�̂� ) is 
minimum 



After the region refinement, the cluster with high density near 
each other can be merged automatically, and the cluster with 
lower density can be reassigned with more points. By observing 
from the plot with the region refinement result and raw DA-PWC 
result, our mega-regions are much clearer as shown in Figure 2(b). 
Region 9(dark grey), 12(purple) and 15(light green) on the upper 
right of Figure 2(a) have been refined and merged into one 
region(grey). Region 8(light blue) on the top left is split and 
becomes part of cluster 2(green) and 4(yellow). Furthermore, this 
method is extremely fast since it the number of terminal nodes is 
much smaller than N. The computational cost of algorithm 3 is 
very small that it takes about 10 seconds to process a 100k dataset 
on a desktop. 

4.3 Recursive Clustering 
By applying HE-MI to the result from region refinement on 100k 
sample data, all the sequences from hmp16S rRNA data have 
been successfully clustered and visualized as shown in Figure 
2(c). However, because each of these clusters contains several 
hundreds of thousands sequences, they still have internal 
structures which seems to be several sub-clusters. These sub 
clusters on a plot with the whole dataset couldn’t be shown clearly 
because the distance between regions are relatively larger than the 
distance between sub-clusters in each region. So the points in each 
region are tend to be closer to each other, thus the differences are 
diminished. Therefore, to amplify the dissimilarity between sub-
clusters, we introduce the recursive clustering, which is to apply 
DACIDR on each separate region.  
The recursive clustering result of region 6(dark green) in shown in 
Figure 4. 16 clusters were found in this region which shows clear 
separation between each cluster. 

5. Experiments 
The experiments were carried out on PolarGrid (PG) cluster using 
100 compute nodes and Tempest using 32 compute nodes. PG 
cluster is composed of IBM HS21 Bladeservers and IBM 
iDataPlex dx340 rack-mounted servers with Red Hat Linux. The 
compute nodes in our experiments are iDataPlex dx340 rack-
mount servers with 8-core nodes. Tempest is an HP distributed 
shared memory cluster with 768 processor cores. The data was 
selected within 16S rRNA data from the NCBI database. The total 
input sequence number is 1160946. First, we examined the dataset 
and found all duplicate sequences, which have exactly the same 
length and composition. Then we screened the data by keeping 
only one sequence in each duplicate group, so that every sequence 
in the filtered set is different from each other. Finally, we could 
have a unique data set of 684769 sequences. Since the rest of the 

sequences all have a corresponding unique sequence in the unique 
set, they can be assigned to clustering result directly. 

5.1  SW versus NW 
We evaluated both SW and NW on the sample N=100k dataset 
before proceeding with the rest of the pipeline and found SW to 
produce more reliable results than NW. Sequence lengths were 
not uniform in the 16S rRNA dataset and NW, being a global 
alignment algorithm, had done its best by producing alignments 
with many gaps. In cases where a shorter sequence is aligned with 
a longer one, the gaps were dearly added by NW simply to make 
the alignment from end to end. Unfortunately, the distance 
measure we computed over the alignments was susceptible to 
gaps and produced artificially large distances for sequence pairs. 
The plots we generated with NW based distances had long thin 
cylindrical point formations as shown in Figure 6, which later we 
identified as a direct consequence of the number of gaps present 
in the alignment. Pictorially, this effect is shown in Figure 7. 
From the DACIDR result, the multiple points selected on the 
same cylinder belongs to a same cluster, but by using NW, instead 
of clustered, these points are aligned in line. The selected points 
are based on their ID number in the given sample dataset, where 
their lengths are 473 to 284. 
The analysis of the line structure is shown in Figure 8, which 
concludes that points along the line are linearly related in lengths 
and NW has introduced gaps linearly to form global alignments. 
The variation of the original length of sequences with respect to a 
sequence at one end of the line is shown in the Original Length 
line in Figure 7. It shows that original lengths decrease linearly 
from one end to the other. The mismatches introduced by gaps for 
the alignments of these sequences have thus increased linearly 
according to the Mismatches by Gaps line. Also, clear is the fact 
that gaps have a dominant effect on the number of mismatches as 
the Total Mismatches line overlaps with the Mismatches by Gaps 
line. Thus, aligning short sequences with long sequences using 
NW has caused the introduction of biologically unimportant 
number of gaps purely for the sake of forming a global alignment. 
SW in contrast performed a local alignment producing alignment 
segments with fewer gaps. This reduction in superfluous gaps 
immediately improved the quality of clustering and plots where 
more globular structure was evident rather long thin cylinders.  

5.2 Comparison with UCLUST and CD-HIT 
We have used two popular choices of clustering methods: 
UCLUST and CD-HIT to compare the result with DACIDR. As 
mentioned in previous section, UCLUST and CD-HIT are two 
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popular greedy heuristic methods which are capable of processing 
millions of sequences on a desktop. Thus we apply these two 
methods on our dataset. 

From Figure 9 it is shows that by directly applying CD-HIT or 
UCLUST on the whole 16S rRNA dataset we have, the clustering 
result is overestimate. By using DACIDR on the whole dataset 
and one more time on each region, a total number of 188 clusters 
are found, and they contain a reasonable number of sequences in 
each cluster. However, by using CD-HIT and UCLUST with a 
dissimilarity of 0.97 set, we found 8418 and 6000 clusters. 
Among the clusters found, most of them only contain 1 or 2 
sequences. As shown in the histogram, CD-HIT found 5475 
clusters only have less than 10 sequences in them, and UCLUST 
found 3829 such clusters. And if we lower the dissimilarity 
threshold to 0.90 for both of the methods, some cluster contains 
over 100000 will be found along with many clusters still have one 
or two sequences inside. Figure 5 is the visualization result we 
used to show how UCLUST works as different color for each 
cluster. The UCLUST results are messier and single clusters are 
broken into several components. The inaccuracy of both these two 
methods happens because of two reasons: One is the hard-cutoff 
dissimilarity threshold where the optimized value is difficult to 
determine for a large input dataset; the other one is both of these 
methods use global alignment, which can result in unreliable 
answer for a dataset where sequences have very different lengths, 
which in our case, is the 16S rRNA dataset. This experiment 
demonstrates that DACIDR can have a robust clustering result 
which is better than CD-HIT and UCLUST. DACIDR is 
computationally more complicated but we have shown how using 
interpolation and SSP-Tree, we get quite practical computation 
and memory requirements. 

5.3 Comparison of Interpolation Methods 
In this experiment, we conduct three interpolation methods 
compare with each other in execution time and normalized stress 
value which is given in Equation 4: 

𝜎(𝑋) = ∑ 1
∑ 𝛿𝑖𝑗𝑖<𝑗

𝑖<𝑗≤𝑁 (𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗)2  Eq.4 

where the annotations are from Equation 2. Generally speaking, 
the normalized stress value is the error value from target 
dimension mapping to the original dimension. So the mapping 
result has a higher accuracy when the normalized stress value is 
lower. 
This test is done using the 100k dataset from 16S rRNA data on 
32 nodes from PG. We selected 10k, 20k, 30k, 40k and 50k from 
it as sample sets and the rest 90k, 80k, 70k, 60k and 50k are 
considered as out-of-sample sets. The sample sets are assumed to 
have the mapping in target dimension. 
Figure 10 shows that HE-MI and HI-MI execute interpolation step 
much faster than MI-MDS while both of former methods takes 
around 1000 seconds to finish and MI-MDS takes about 50 times 
longer than that. The computation for MI-MDS is O(MN) where N 
is the sample size and M is the out-of-sample size. Note that both 
HE-MI and MI-MDS’s execution time increases while out-of-
sample size decreases. This is because computation for both of 
these methods correlates with sample size * out-of-sample size 
while this value increases from 10k * 90k to 50k * 50k. But for 
HI-MDS, since it’s time complexity is O(MlogN), so logN will 
remains almost same from N increases from 10k to 50k. And M 
decreases from 90k to 50k, so its execution time decreases. Figure 
11 shows that MI-MDS has the most accurate result because of 
computing every distance between each sample and out-of-sample 
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point. However, this experiment shows that by using HE-MI, the 
interpolation processes much faster than MI-MDS, and the 
accuracy of the mapping result is much better than HI-MI, which 
makes HE-MI the ideal solution for massive size of data 
interpolation. 

6. Conclusion and Future Work 
In this paper we proposed a parallel data clustering and 
visualization method: DACIDR, which can efficiently cluster 
millions of sequences with various lengths. DACIDR utilizes the 
computing power of HPC by applying on several distribute and 
parallel computing frameworks. Compared to traditional sequence 
clustering method without visualization, such as UCLUST and 
CD-HIT, our visualization result combined with the clustering 
result can help biologist observe and analysis structures among 
different gene clusters. These correlations enable us to cluster 
millions of sequences efficiently with high accuracy. Using the 
deterministic annealing method can help us avoid local optima 
and overestimation problem. By using SSP-Tree in DACIDR, not 
only can the interpolation to clustering and visualization result run 
faster, but also we can refine the result from DA-PWC for 
hundreds of thousands results in a few seconds.  

We are currently integrating phylogenetic trees with our analysis 
both by adding it to visualization and using it to improve 
specification of mega-regions where there are ambiguous clusters. 
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