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Abstract
We present a scalable parallel deterministic annealing formalism for clustering with cutoffs and position dependent variances. We apply it to “peak matching" problem of identifying the common LC-MS peaks across multiple samples in proteomic biomarker discovery.
Introduction

This paper extends the deterministic annealing approach of [1] to a scalable integrated parallel formulation. It extends earlier work [2-4] to add cutoff clusters and parallelism. It also addresses special features of the LC-MS problem including the very different scales in the m/z and RT dimensions. The large number of clusters (around 30,000 for a quarter of a million peaks) also requires new approaches to the parallel approach discussed in [5-9] top get efficient scalable performance. Also note most of the previous parallel work was not focused on vector space problems but rather on non-metric spaces[10] extending methods introduced by Hofmann and Buhmann [11] and at most around 100 clusters.
Parallel Deterministic Annealing Clustering with Cutoff

 Deterministic annealing [4] is motivated by the same key concept as the more familiar simulated annealing method for optimization problems. At high temperatures systems equilibrate easily as there is no roughness in the energy (objective) function. If one lowers the temperature on an equilibrated system, then it is a short well-determined path between minima at current temperature and that at previous temperature. Thus systems which are equilibrated iteratively at gradually lowered temperature, tend to avoid local minima. The Monte Carlo approach of simulated annealing is often too slow, and so in deterministic annealing integrals are performed analytically. In many examples as in example here T is essentially a distance resolution; at large temperatures all clusters are merged together and they emerge as one looks at the system with sharper resolution as temperature decreases.
Consider a Hamiltonian H(, ) which is to be minimized with respect to variables  and . Then deterministic annealing is based on averaging with the Gibbs distribution at Temperature T. 

          			P(, )  = exp( - H(, ) / T) /  d exp( - H(, )  / T)		(2.1)	

and one minimizes the Free Energy F combining Objective Function H and Entropy,

      			F = < H - T S(P) > =  d [P()H + T P() lnP()]		(2.2)

One obtains an EM (Expectation Maximization) method with the variable set  subject to annealing and determined by
 = <> |0 =  d  P() 						(2.3)

And this is followed by the M step which determines the remaining parameters  optimized by traditional methods. Note one iterates over temperature decreasing it gradually, but also iterates at fixed temperature until the EM step converges. 
Consider a clustering problem with N points (peaks in LC-MS application) labeled by x with position X(x) and K clusters labeled by k. Let clusters have standard deviation (k) and center Y(k). The annealed variables  are Mx(k), which are the probabilities that the point x belongs to cluster k with constraint for each point x.
k=1K Mx(k) = 1							(2.4)

Let (z, ) = 0.5 i=1d (zi/i)2 					(2.5)
with vector dimension d for X(x) and Y(k) with d = 2 in example given later.

Define the clustering Hamiltonian

[bookmark: _GoBack]H = k=0K x=1N Mx(k) f(x,k)					(2.6)

	With for k >= 1		f(x,k) = ( X(x) - Y(k), i (k)) 				(2.7a)
	and for k=0		f(x,0) = 0.5 c2 independent of  x. 			(2.7b)

Then as | X(x) - Y(k)| increases, f(x,k) becomes larger than f(x,0) which we term the sponge as it absorbs all points outside all clusters (X(x) - Y(k) / (k)2 > c2 for all k > 0. Note there is only one sponge but multiple conventional clusters. An important innovation introduced by Rose [4] is the use of an intrinsic probability p(k) for each cluster k satisfying
			k=0K p(k) = 1 							(2.8)
One can understand this as corresponding to a large number  (much larger than current number of centers K) of clusters with a fraction p(k) of them at each center. This allows one to split centers cleanly as one takes the number p(k)  at a center position and divide in two when cluster with this center splits. Without this approach, splitting is inelegant as the formalism naturally gives half a cluster at each center. The p(k) are given below and are viewed as one of variables  determined at the M step of EM method. In this case, the Free Energy F is given by

			F = - T x=1N ln k=0K p(k) exp( - f(x, k) /T )			(2.9)

Now we use equation (2.3) to determine the annealed variables < Mx(k)> and in this case, the integrals can be done exactly as Hamiltonian is a quadratic. We describe how to tackle the case with more complicated forms for H and intractable integrals elsewhere [7, 10]. This is followed by an M step with a simple minimization to find the  variables Y(k) and p(k) subject to equation (2.8). We introduce auxiliary variables Zx given by

Zx = k=1K p(k) exp( - (X(x) - Y(k))2/(2 (k)2 T)  ) + p(0)exp( - c2/(2 T))  	(2.10)

		< Mx(0)> = p(0) exp( - c2/(2 T) ) / Zx 					(2.11a)
		< Mx(k)> = p(k) exp( - (X(x) - Y(k))2 / (2 (k)2 T)  ) / Zx 	for k > 0	(2.11b)
 
Y(k) = x=1N < Mx(k)> X(x) / x=1N < Mx(k)>	k 0			(2.12)

		p(k) = x=1N <Mx(k)> / N						(2.13)

Note in the conventional formalism p(k) = 1, small clusters contribute similarly to a big cluster in Zx which appears in denominators like equation (2.11b). In equation (2.13), the cluster probability p(k) is the fraction of points in the k’th cluster and this implies that in (2.10), clusters are weighted according to their size which is intuitively attractive. The sponge k=0 is rather different from the other clusters as it will not be split and will dominate equation (2.8) in the case of very many individually small clusters k if we use (2.13) for it. So we modified (2.13) with a fixed p(0) that we did not vary at M step.

As explained in detail in earlier papers [4, 10], the minimized free energy (2.9) will exhibit instabilities corresponding mathematically to second derivatives that have negative eigenvalues. These are phase transitions in a physics terminology [3]. One can calculate the second derivatives of F

2F/Yi() Yj()   =   ij   x=1N < Mx()> / i ()2				(2.14a)

-  x=1N (Yi()) - Xi(x)) (Yj()) – Xj(x)) < Mx()>/ (Ti ()2j ()2)		(2.14b)

+ x=1N (Yi()) - Xi(x)) (Yj()) – Xj(x)) < Mx()>< Mx()>/ (Ti ()2j ()2)	(2.14c)

Interestingly the formula is independent of p(k) and sponge term as long as we express in terms of fractional probabilities < Mx(k)>. Equation (2.14) has a reasonable structure with (2.14b) increasing in importance as T decreases. One examines (2.14) for instabilities separately for each cluster  =   running from 1 .. K. It is easy to see that elongated clusters will have large values of the term (2.14b) and these will naturally split first as T decreases. Note as T decreases the exponential in terms like (2.10) and (2.11) can lead to arithmetic errors. This was avoided by both testing on exponent and checking for overflow.

The equations above are solved by starting with one cluster at large T∞ which is determined from (2.14) to be so large that it is above the phase transition temperatures. The precise value is not important as the computation runs so fast with one cluster that this stage of the computation takes negligible time. Then the temperature is reduced by a factor fannealing with the EM steps above converged at each temperature. Splitting is checked at each new temperature for each cluster. If (2.14) is singular for cluster  then this cluster is split and given a perturbed position determined by direction of the unstable eigenvector of 2F/Yi() Yj() and a magnitude determined so that cluster count x=1N <Mx(k)> will change by a modest amount (~5%) for each of two child clusters. This process is continued until reasonable termination criteria met. In this problem clusters were not split if their average width was small and if they were small (these cuts were set differently depending on value of cutoff c). Also clusters were removed if they were too small or if their centers were too close. As seen in figure 6, this close cluster check was only used at low temperatures i.e. at a distance scale when clusters were resolved. Clusters are considered final when the freezing factor FF given in (2.15) is small. Note at convergence <Mx(k)> are either 1 or zero whereas at any “non-zero” temperature the <Mx(k)> sum to 1 for each k and are interpreted as probabilities that are resolved at low temperature.  All clusterings are finished with a set of annealing iterations where there is no splitting but one just waits that all clusters have FF < 0.002 (most are much smaller than this). The final temperature for this is around T ~ 0.01.

FF(k) = x=1N <Mx(k)> ( 1 - <Mx(k)> ) / N				(2.15)

The scale represented by sponge cutoff c is much smaller than initial temperature T∞ and so we started the clustering with no sponge factor and then introduce it a lower temperature and in fact anneal it to reach its final value at low temperature. In example given later in figure 6, the desired sponge cutoff of 2 was reached at T = 2 after being introduced as a cutoff of 45 at T = 30. 

In the LC-MS problem, the variance in m/z is much smaller than that of RT and if used directly would lead to anomalies as formalism designed for circular clusters. So we adjusted above formalism to make the variance in m/z anneal from a large value at T∞ to the desired value at T = 12. Note that for LC-MS the variances are the “real values” and so temperature has a natural scale with T=1 as natural “tipping point”.

The most straightforward parallelism is that of points and is implemented [10] by uniformly dividing the points between compute units (processes or threads) when the equations above consist of parallel arithmetic and global reductions that can be implemented by either MPI or iterative MapReduce [6, 12-14]. This approach works well for initial values of temperature up to around 512 clusters. However as temperatures decrease the <Mx(k)> change character and each point becomes associated with a few clusters (an average of 8 out of ~25000 in example below). Thus calculating terms like x=1N <Mx(k)> as a sum over all clusters becomes inefficient and an unnecessary memory use. Rather one uses a data structure that only keeps the <Mx(k)> for clusters whose centers are near each point. Further one can exploit parallelism over clusters and both calculate and split clusters separately for the above equations in different regions. This leads to a familiar “local geometric” structure with points divided so nearby points are in the same process and local communications are used for point/clusters which are near the boundary between geometric domains. In LC-MS case, this geometric structure was implemented in one dimension with m/z splits. One finds a difficulty as a given decomposition may not be best for both point and cluster parallelism; this is well known for example in particle in the cell computations in scientific simulations. In our current results we implement the cluster parallelism for the MPI processes but not the thread parallelism. We kept the decomposition with equal number of points in each process; this led to about a factor of two load imbalance in number of clusters. We can improve this but current approach gives satisfactory performance for current LC-MS problems.

In the LC-MS problem, we repeated the steps above 2 or 3 times to get presented results. After first step, we took the peaks assigned to “sponge cluster” (k =0) and identified clusters in it that had been incorrectly split in first step. The new clusters were merged with those from first step by annealing the combined sample starting not at  T∞  but rather a low temperature T ~ 0.2. This was done at most 2 times in results presented here.




Results
Clustering Methods
DAVS(c) The parallel multi-cluster deterministic annealing introduced in this paper with cutoff c so that all clusters are trimmed with all peaks satisfying 2D(x) ≤ c. We present results for c = 1, 2 and 3 although latter case does not appear in all analyses as we consider c=3 as so large that many “incorrect” peaks are assigned to clusters.
DA2D is the identical parallel multi-cluster deterministic annealing algorithm run without any trimming. It is a modern implementation of the algorithm introduced in [2-4].
Medea is the trimmed deterministic annealing algorithm described in [1] where each trimmed cluster is determined separately and then linked together into a full solution.
Mclust is a model-based clustering algorithm [15] whose use for this problem is described in [1].
Landmark is sometimes used. It is a collection of reference peaks used to calibrate and evaluate methods
Computers Used
We used two Indiana University Clusters Madrid and Tempest specified below. These are running Windows HPC Server with parallelism from MPI (using MPI.Net [16] on top of Microsoft MPI) and TPL [17] for thread parallelism. All codes were written in C#. The results should be similar on Linux with Java or C++ coding.
Tempest: 32 nodes, each 4 Intel Xeon E7450 CPUs at 2.40GHz with 6 cores, totaling 24 cores per node; 48 GB node memory and 20Gbps Infiniband network connection
Madrid: 8 nodes, each 4 AMD Opteron 8356 at 2.30GHz with 4 cores, totaling 16 cores per node; 16GB node memory and 1Gbps Ethernet network connection
Structure of Data [image: C:\Users\Geoffrey Fox\Desktop\PynePaper\cluster-M60-C60Scaled_CROP.png]
Figure 1. The DA2D clustering at high temperature with 60 clusters determined from a run from 241605 peak charge 2 data where c(m/z) was fixed at 0.005 and c(RT) was correctly 2.35. Each of those 60 clusters will eventually be broken into 500 smaller clusters and spread out along x axis as c(m/z) is annealed to its final much smaller value. The sponge was not used in this run as it is only introduced at lower temperatures
[image: C:\Users\Geoffrey Fox\Desktop\PynePaper\clusterFinal-M200000-C30424Scaled_.png].
Figure 2. A tiny fragment of clustered space for a full DAVS(1) run. The orange triangles are sponge peaks outside any cluster. The colored hexagons are peaks inside clusters with the white hexagons being determined cluster centers. Each cluster is colored differently. This comes from 241605 peak charge 2 clustering.

The first two plots illustrate the nature of the data to be clustered. As the error in m/z is proportional to the inverse of this quantity, we define new 2D positions (x, y) rather than (m/z, RT)
x =  ln(m/z) / c(m/z)
y = RT / c(RT)
where previous analysis of the measurement of known peaks gave c(m/z) = 5.98 10-6 and c(RT) = 2.35 where (m/z) = c(m/z) . (m/z) and (RT) = c(RT) are three times standard deviation of measurement determined by study of landmark peaks. By using x and y as defined above, we get reduced variables which should give circular clusters with same size in each dimension. Note this change of variables is only used for display purposes. As described we directly use m/z and RT as coordinates in the clustering and account for position dependent error by calculating the value of (m/z) (and the fixed (RT)) dynamically for each cluster center position. The much smaller value of c(m/z) compared to c(RT), makes the reduced space very much larger in x than y direction. This would distort the clustering algorithm at large temperatures. Thus as described, we anneal the value of c(m/z) starting at “infinite” temperature with a large value. 

Parallelism


Figure 3: Parallelism within a Single Node of Madrid Cluster. A set of runs on 241605 peak data with a single node with 16 cores with either threads or MPI giving parallelism. Parallelism is either number threads or number of MPI processes.
Figure 4: Speedups for several runs on Madrid from sequential through 128 way parallelism defined as product of number of threads per process and number of MPI processes. We look at different choices for MPI processes which are either inside nodes or on separate nodes. For example 16-way parallelism shows 3 choices with thread count 1:16 processes on one node (the fastest), 2 processes on 8 nodes and 8 processes on 2 nodes. 
Figure 5: Speedups for several runs on Tempest from 8-way through 384 way MPI  parallelism with one thread per process. We look at different choices for MPI processes which are either inside nodes or on separate nodes.

Figure 3 illustrates two aspects of parallel performance. Firstly that MPI parallelism outperforms that coming from threads (compare green and blue). Secondly that we get higher performance (compare red and green) when we use the cluster parallelism described in section 2. Figure 3 only looks at parallelism within a single 16 core node whereas figures 4 and 5 extends this to up to 32 nodes where the network overheads impact performance on the runs with larger parallelism. This is especially true on the Madrid cluster which only has Ethernet network links whereas Tempest has Infiniband. Again we find MPI outperforms threading but as described earlier, we only implemented the cluster parallelism (used in all runs in this figure) with MPI. Several of these runs use a mix of thread and MPI parallelism; threads implement peak parallelism and MPI peak and cluster parallelism. All runs in figure 3 to 5 used the efficient model where each peak x only stores the occupation probability Mx(k) for relevant (i.e. nearby) clusters k. Throughout the run (from 1 to around 25200 clusters in figures), the mean number of clusters stored for each peak averaged at most 8 which is < 0.1% of average number of clusters. Figure 3 to 5 corresponds to DAVS(3) runs. 

Note that the parallel clustering is
a) Inefficient in that it is not load balanced. We currently decompose problem so there are equal number of peaks in each process. This leads to a factor of 2-4 variation in number of clusters per node. For example the case with 32 MPI processes in figure 4 finishes with an average of 789 clusters per node while the minimum number is 511and the maximum 1391.
b) Efficient as it naturally spreads splitting over the full region of peaks and this implies that cases with just one MPI process (and any number of threads) need slower annealing to get same number of clusters as runs with more than 4 MPI processes.
The parallel performance is currently limited by the load imbalance effect (a) and MPI communication overheads such that 64 way parallelism is good choice for this 241605 peak dataset on Madrid and 120 way (30 Tempest nodes with 4 MPI processes in each node) gives best speedup on Tempest. There is also the usual effects that memory bandwidth limits the useful parallelism on each node. We intend tests on larger datasets where higher levels of parallelism will be optimal. The “production” execution time used in runs reported here vary from 2 to 10 hours (dependent on annealing schedule) on the 8 node Madrid cluster which has rather old (2008) AMD processors. Tempest is a factor 1.8 faster.
Characteristics of Clustering Solutions
We present in table 1, some summary statistics over the clusterings considered here. The methods considered here are:

	Table 1:  Basic Statistics

	Charge
	Method
	Number Clusters
	Number of Clusters with occupation count 
	Count > 1
Scaled Error
	Count > 30
Scaled Error

	
	
	
	1
	2
	>2
	>30
	m/z
	RT
	m/z
	RT

	2
	DAVS(1)
	73238
	42815
	10677
	19746
	1111
	0.081
	0.084
	0.036
	0.056

	2
	DAVS(2)
	54055
	19449
	10824
	23781
	1257
	0.191
	0.205
	0.079
	0.100

	2
	DAVS(3)
	41929
	13708
	7163
	21058
	1597
	0.404
	0.355
	0.247
	0.290

	2
	DA2D
	48605
	13030
	9563
	22545
	1254
	6.02
	3.68
		0.100
	0.120

	2
	Medea
	61860
	29731
	11515
	20614
	1212
	0.134
	0.143
	0.066
	0.090

	2
	Mclust
	84219
	50689
	14293
	19237
	917
	0.048
	0.060
	0.021
	0.041


Note that we list errors which are just the mean squared scaled differences between peaks and cluster centers.
Error(m/z) = ((m/z|cluster center – m/z|x )/ (m/z))2 averaged over peaks x in cluster
Error(RT) = ((RT|cluster center – RT|x )/ (RT))2 averaged over peaks x in cluster
We will also use
2D(x) = ((m/z|cluster center – m/z|x )/ (m/z))2 + ((RT|cluster center – RT|x )/ (RT))2

The calculation in this fashion is not very reliable if clusters are not trimmed. One can calculate a much more reliable mean (as used later in comparison with Landmark clusters) by a cut like 2D(x) ≤ 1.2 to remove outliers. 
[image: ]Note both DAVS(c) and DA2D start with one cluster and then split automatically as temperature is reduced. This is illustrated earlier in figure 1 showing a high temperature with 60 clusters. Figure 6 shows how the number of clusters changes with temperature
Figure 6: Variation of cluster count in DAVS(2) and DA2D as a function of the annealing temperature as it is reduced from left to right. Changes in strategy give glitches with discontinuity in cluster count. Particularly blatant is a crude switching on of a check on closeness of cluster centers. The addition of the Sponge (trimming) factor has less impact as that effect is itself annealed as described in formalism.
[image: ][image: ]Figure 7. Histograms of 2D(x) for 6 different clusters methods plus expectation for a Gaussian distribution with standard deviations given as 1/3 in the two directions. The “Landmark” distribution correspond to previously identified peaks used as a control set. Note DAVS(1) and DAVS(2) have sharp cut offs at 2D(x) = 1 and 4 respectively. Only clusters with more than 5 peaks are plotted.
Figure 8. Histograms of 2D(x) for 6 different clusters methods plus expectation for a Gaussian distribution with standard deviations given as (m/z)/3 and (RT)/3 in two directions. The “Landmark” distribution correspond to previously identified peaks used as a control set. Note DAVS(1) and DAVS(2) have sharp cut offs at 2D(x) = 1 and 4 respectively. Only clusters with more than 50 members are plotted.

The next set of figures describe the characteristics of the different solutions. Figures 7 and 8 plots the squared distance distributions scaled by (m/z) for m/z and (RT) for RT in two dimensions i.e. the ordinate is 2D(x). These include the expectation of a Gaussian distribution in 2D(x) with standard deviation of 1/3 in both m/z and RT. It is normalized at 2D(x) ~ 0.5 to the Medea and DAVS distributions that are similar in value there.

We note that the four deterministic annealing solutions are quite similar at small values of 2D(x) ≤ 1and in each case we see a peak above the Gaussian for 2D(x) ≤ 0.1. Note the parallel DAVS(1) does precisely enforce the cut 2D(x) ≤ 1. Mclust has sharper distributions but as is made clearer with later data, it misses several clusters and many peaks that are properly associated with a given cluster. DAVS – deterministic annealing without any cutoff and Medea are quite similar.

[image: ]Figure 9 shows a histogram of occupation counts for the clustering methods. Mclust tends to lie below the deterministic annealing solutions for the larger clusters.
Figure 9. Histograms of number of peaks in clusters for 6 clustering methods. Note lowest bin is clusters with one member peak, i.e. unclustered singletons. For DAVS these are Sponge peaks.
Quality of Determination of Landmark Peaks

	Table 2: Landmark Peaks  >3 Peaks in Cluster (at least 3 match)

	
	
	
	Total
Clusters
(Not Singleton)
	Singleton
Cluster
(Sponge)
	Number
Landmark
Clusters
	2D(x) ≤ 1.2
	
	

	Charge
	Number
Peaks
	Method
	
	
	
	Scaled
Error m/z
	Scaled
Error RT
	Landmark
Peaks
	Non Landmark
Peaks

	2
	241605
	DAVS(1)
	30424
	42815
	1025
	0.039
	0.059
	24825
	6779

	2
	241605
	DAVS(2)
	34606
	19449
	1033
	0.044
	0.066
	25012
	7641

	2
	241605
	DAVS(3)
	28221
	13708
	1038
	0.085 
	0.112
	24939
	9825

	2
	241605
	DA2D
	35472
	13134
	1033
	0.044
	0.067
	24996
	7606

	2
	241605
	Medea
	30228
	33018
	1033
	0.053
	0.071
	25035
	7667

	2
	241605
	Mclust
	33530
	50948
	1007
	0.035
	0.051
	23432
	4945

	2
	26916
	Landmark
	1263
	228
	1034
	0.000
	0.000
	25151
	0




	Table 3: Landmark Peaks  >40 Peaks in Cluster (at least 36 match)

	
	
	Number
Landmark
Clusters
	2D(x) ≤ 1.2
	
	

	Charge
	Method
	
	Scaled
Error m/z
	Scaled
Error RT
	Landmark
Peaks
	Non Landmark
Peaks

	2
	DAVS(1)
	125
	0.021
	0.028
	6468
	831

	2
	DAVS(2)
	126
	0.025
	0.032
	6563
	956

	2
	DAVS(3)
	129
	0.028
	0.041
	6695
	1093

	2
	DA2D
	126
	0.025
	0.032
	6579
	964

	2
	Medea
	128
	0.027
	0.037
	6623
	1001

	2
	Mclust
	111
	0.021
	0.031
	5597
	584

	2
	Landmark
	129
	0.000
	0.000
	6675
	0



	Table 4: Landmark Peaks  >3 Peaks in Cluster (at least 3 match)

	
	
	
	Number
Landmark
Clusters
	2D(x) ≤ 0.7
	
	

	Charge
	Number
Peaks
	Method
	
	Scaled
Error m/z
	Scaled
Error RT
	Landmark
Peaks
	Non Landmark
Peaks

	2
	241605
	DAVS(1)
	1017
	0.033
	0.050
	24650
	6330

	2
	241605
	DAVS(2)
	1020
	0.034
	0.052
	24717
	6716

	2
	241605
	DAVS(3)
	1020
	0.075
	0.103
	24239
	8242

	2
	241605
	DA2D
	1020
	0.035
	0.054
	23691
	6709

	2
	241605
	Medea
	1017
	0.043
	0.057
	24653
	6710

	2
	241605
	Mclust
	1005
	0.033
	0.047
	23394
	4856

	2
	26916
	Landmark
	1023
	0.000
	0.000
	24855
	0



	Table 5: Landmark Peaks  >40 Peaks in Cluster (at least 36 match)

	
	
	Number
Landmark
Clusters
	2D(x) ≤ 0.7
	
	

	Charge
	Method
	
	Scaled
Error m/z
	Scaled
Error RT
	Landmark
Peaks
	Non Landmark
Peaks

	2
	DAVS(1)
	125
	0.018
	0.024
	6446
	783

	2
	DAVS(2)
	126
	0.018
	0.026
	6516
	835

	2
	DAVS(3)
	128
	0.022
	0.030
	6595
	905

	2
	DA2D
	126
	0.019
	0.026
	6315
	835

	2
	Medea
	127
	0.022
	0.030
	6543
	881

	2
	Mclust
	111
	0.018
	0.028
	5596
	571

	2
	Landmark
	128
	0.000
	0.000
	6592
	0


We analyzed the reliability of determining the known Landmark peaks in identical fashion for each clustering method. The “Landmark” peaks are labelled and we determined for each “Landmark cluster”, the cluster that best matched it for each of 5 non-Landmark methods. Then we found the center of the cluster which averaged all peaks whose value of 2D(x) was ≤ 1.2; this cut improved accuracy as recorded in tables 2 and 3 as the scaled error in each dimension. Reducing value of cut increases accuracy at cost of reducing number of clusters found as shown in tables 4 and 5 which have cut 2D(x) ≤ 0.7. The tables also record the number of Landmark and Non-Landmark peaks in each cluster after this cut. The Deterministic Annealing methods DAVS, DA2D and Medea are quite similar with Medea and DAVS(3) recognizing more clusters in case where we restrict clusters to those with at least 40 members. However this comes with slightly larger errors. The systematics suggest that the methods can be ordered DAVS(3), Medea, DA2D, DAVS(2), DAVS(1), Mclust in ability to identify Landmark clusters with error decreasing as number of cluster does. Reducing the cut c in DAVS(c) below 1 or similarly adding a low 2D(x) cut to a Medea or DAVS( c≥ 1) clustering gives results that get errors that are similar to Mclust and still find more Landmark clusters than Mclust as seen clearly in table 5.
All Charge configurations

In tables 6-11, we record comparative results for DAVS(2) Medea and Mclust for basic clustering statistics for charge z= 1 to 6. The rightmost column in tables 6, 7, 8A, 9A, 10 and 11gives the average number of peaks per cluster excluding singletons (“clusters” with one member or the sponge for DAVS(2)). Tables 8B and 9B give the Landmark peak analysis for charges 3 and 4 where there are significant data. As in charge 2 case, DAVS(2) and Medea are similar and determine more clusters than Mclust.

	Table 6: Charge 1 Basic Results 162818 Peaks

	Method
	Total
Clusters
(Not Singleton)
	Singleton
Cluster
(Sponge)
	# Clusters 2 members
	# Clusters > 2 members
	Average Peaks per Cluster

	DAVS(2)
	55008
	22323
	11316
	21369
	4.3

	Medea
	63246
	33018
	13032
	17196
	4.29

	Mclust
	84478
	56107
	15017
	13354
	3.76



	Table 7: Charge 2 Basic Results 241605 Peaks

	Method
	Total
Clusters
(Not Singleton)
	Singleton
Cluster
(Sponge)
	# Clusters 2 members
	# Clusters > 2 members
	Average Peaks per Cluster

	DAVS(2)
	54054
	19449
	10824
	23781
	6.42

	Medea
	61860
	29731
	11515
	20614
	6.59

	Mclust
	84219
	50689
	14293
	19237
	5.69



	Table 8A: Charge 3 Basic Results 174171 Peaks

	Method
	Total
Clusters
(Not Singleton)
	Singleton
Cluster
(Sponge)
	# Clusters 2 members
	# Clusters > 2 members
	Average Peaks per Cluster

	DAVS(2)
	49136
	21057
	9490
	18589
	5.45

	Medea
	55722
	29457
	10492
	15773
	5.51

	Mclust
	74257
	48122
	12082
	14053
	4.82





	Table 8B: Charge 3 2D(x) ≤ 1.0 Landmark Peaks  

	
	>3 Peaks in Cluster (at least 3 match)
	>40 Peaks in Cluster (at least 36 match)

	 Method
	Number
Landmark
Clusters
	Scaled
Error m/z
	Scaled
Error RT
	Landmark
Peaks
	Non Landmark
Peaks
	Number
Landmark
Clusters
	Scaled
Error m/z
	Scaled
Error RT
	Landmark
Peaks
	Non Landmark
Peaks

	DAVS(2)
	422
	0.032
	0.047
	10526
	2024
	57
	0.013
	0.031
	2946
	341

	Medea
	421
	0.038
	0.046
	10482
	2101
	57
	0.030
	0.046
	2938
	415

	Mclust
	417
	0.028
	0.042
	9980
	1346
	53
	0.010
	0.022
	2625
	142

	Landmark
	422
	0.000
	0.000
	10563
	0
	57
	0.000
	0.000
	2954
	0




	Table 9A: Charge 4 Basic Results 57068 Peaks

	Method
	Total
Clusters
(Not Singleton)
	Singleton
Cluster
(Sponge)
	# Clusters 2 members
	# Clusters > 2 members
	Average Peaks per Cluster

	DAVS(2)
	23337
	12732
	4641
	5964
	4.18

	Medea
	26423
	17041
	4580
	4802
	4.27

	Mclust
	32434
	23999
	4582
	3853
	3.92




	Table 9B: Charge 4 2D(x) ≤ 1.0 Landmark Peaks  

	
	>3 Peaks in Cluster (at least 3 match)
	>40 Peaks in Cluster (at least 36 match)

	 Method
	Number
Landmark
Clusters
	Scaled
Error m/z
	Scaled
Error RT
	Landmark
Peaks
	Non Landmark
Peaks
	Number
Landmark
Clusters
	Scaled
Error m/z
	Scaled
Error RT
	Landmark
Peaks
	Non Landmark
Peaks

	DAVS(2)
	74
	0.032
	0.038
	1673
	367
	6
	0.007
	0.002
	308
	32

	Medea
	74
	0.032
	0.034
	1674
	396
	6
	0.006
	0.015
	308
	39

	Mclust
	73
	0.019
	0.031
	1637
	271
	5
	0.004
	0.010
	265
	27

	Landmark
	74
	0.000
	0.000
	1683
	0
	6
	0.000
	0
	308
	0




	Table 10: Charge 5 Basic Results 16747 Peaks

	Method
	Total
Clusters
(Not Singleton)
	Singleton
Cluster
(Sponge)
	# Clusters 2 members
	# Clusters > 2 members
	Average Peaks per Cluster

	DAVS(2)
	8984
	6020
	1481
	1483
	3.62

	Medea
	9823
	7272
	1338
	1213
	3.71

	Mclust
	11353
	9150
	1280
	923
	3.45



	Table 11: Charge 6 Basic Results 1332 Peaks

	Method
	Total
Clusters
(Not Singleton)
	Singleton
Cluster
(Sponge)
	# Clusters 2 members
	# Clusters > 2 members
	Average Peaks per Cluster

	DAVS(2)
	1016
	879
	76
	61
	3.31

	Medea
	1024
	885
	82
	57
	3.22

	Mclust
	1097
	983
	70
	44
	3.06
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