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Abstract— We present a scalable parallel deterministic 
annealing formalism for clustering with cutoffs and position-
dependent variances. We apply it to the “peak matching" 
problem of the precise identification of the common LC-MS 
peaks across a cohort of multiple biological samples in 
proteomic biomarker discovery. We reliably and automatically 
find tens of thousands of clusters starting with a single one that 
is split recursively as distance resolution is sharpened. We 
parallelize the algorithm and compare unconstrained and 
trimmed clusters using data from a human tuberculosis cohort. 
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I.  INTRODUCTION  

Big data emerging from different aspects of health and 
“omics” profiling of biological samples in the quest to 
understand disease require scalable and robust analysis. 
Strategies for early recognition of the outbreak of an 
infectious disease and rapid initiation of infection controls are 
of key importance in maintaining public health and security. 
International grids connecting healthcare providers, 
surveillance networks, and research labs can therefore be rich 
sources of enormous quantities of specialized data in the 
future course of biomedicine. An international grid, for 
example, was formed in response to the global epidemic of 
Severe Acute Respiratory Syndrome (SARS) that occurred 
during March to June of 2003. Other such efforts were made 
to tackle diseases ranging from anthrax to small pox. Recently 
the US Centers for Disease Control and Prevention announced 
the advance of highly drug-resistant bacteria which could be 
cause for global concern. As biomarker discovery and 
deployment of tests are not easy, preparedness for diseases 
that can spread quickly and relatively easily, particularly 
among connected populations, require concerted algorithmic 
approaches that combine efficient diagnostics, scalable 
analytics, and suitable medical responses.    

 
Not surprisingly, few algorithmic frameworks are 

available to analyze large amounts of data that possibly span 

many samples and cohorts, to aid scalable and distributed 
mechanisms in performing key tasks such as biomarker 
discovery, or diagnostic testing of specific proteins [1-7]. 
During the SARS outbreak, the “gold standard” of the time for 
lab diagnosis of the coronavirus infection was antibody 
detection by ELISA, a process that included the 17–20 day 
median time to seroconversion in SARS patients following the 
onset of symptoms, making rapid diagnosis almost 
impossible. Proteomic fingerprinting of biomarkers, such as 
by SELDI methods were, however, reported to provide 
sensitive and specific diagnostics for SARS in just 3 hours of 
testing without the need for high-level biosafety facilities [8]. 

Proteomics is clearly among the most commonly used 
technologies in labs worldwide both for biomarker 
discovery—often by looking at many thousands of markers in 
readily accessible biofluids—as well as diagnostic testing 
based on targeted detection of specific proteins. The 
workhorse of proteomics is the high-mass-accuracy, high 
resolution, and high-throughput platform of Mass 
Spectrometry (MS), often preceded by separation techniques 
such as Liquid Chromatography (LC). A typical LC-MS 
analysis of a digested sample, containing a mixture of 
peptides, results in a data set containing tens to hundreds of 
thousands of “peaks” which represent the peptides. Hence 
each LC-MS sample for a cohort consists of 2-dimensional 
data arising from a list of peaks specified by points (m/Z, RT), 
where m/Z is the mass-to-charge ratio and RT is the retention 
time for the peak represented by a peptide. 

Abundance of peaks in “label-free” LC-MS enables large-
scale comparison of peptides among groups of samples. In 
fact when a group of samples in a cohort is analyzed together, 
not only is it possible to “align” robustly or cluster the 
corresponding peaks across samples, but it is also possible to 
search for patterns or fingerprints of disease states which may 
not be detectable in individual samples. This property of the 
data lends itself naturally to big data analytics for biomarker 
discovery and is especially useful for population-level studies 
with large cohorts, as in the case of infectious diseases and 
epidemics. With increasingly large-scale studies, the need for 
fast yet precise cohort-wide clustering of large numbers of 
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peaks assumes technical importance. In particular, a scalable 
parallel implementation of a cohort-wide peak clustering 
algorithm for LC-MS-based proteomic data can prove to be a 
critically important tool in clinical pipelines for responding to 
global epidemics of infectious diseases like tuberculosis, 
influenza, etc.  

Here we present a new scalable parallel deterministic-
annealing-based peak clustering algorithm DAVS(c) for 
identifying and characterizing very large numbers of peptides 
across a significant dynamic range over a big cohort of 
samples. This extends the work in [9] to a scalable integrated 
parallel formulation. Other current best practice approaches to 
LC-MS [6, 7] also do not exploit parallelism. By clustering 
with cutoffs [10-12] (denoted by c) that constrain each 
cluster’s variance dependent on its position, our algorithm can 
automatically identify peaks with desired precision across big 
cohorts of samples, enabling disease-versus-normal 
comparisons, or monitoring progression of disease. The 
resulting discriminatory peaks could subsequently be used for 
their diagnostic value. We applied DAVS(c) to real-world 
cohorts of clinical plasma samples from tuberculosis patients 
and observed that its performance was favorable in 
comparison to other common approaches. Not only did 
DAVS(c) manage to trim clusters with precision and rigor, but 
we also verified the accuracy of the output using landmark 
peaks obtained by peptide sequencing by tandem mass 
spectrometry (MS/MS).  It extends earlier work [13-15] on 
basic clustering to add cutoff clusters and parallelism. It also 
addresses special features of the LC-MS problem including 
the very different scales in the m/Z and RT dimensions. The 
large number of clusters (around 30,000 with two or more 
peaks derived from a sample with a quarter of a million peaks) 
also requires new approaches to the parallel algorithm 
discussed in [16-19] to achieve efficient scalable 
performance. Further, most of this previous parallel work was 
not focused on vector space problems but rather on non-metric 
spaces [20], extending methods introduced in [21] with at 
most around 100 clusters. 

The next section describes the formalism. Section III 
evaluates the technical performance (parallel speedup). 
Section IV examines the proteomics functionality while 
analyzing a large sample of data. Conclusions summarizes the 
paper with related clustering work described in Section II. 

II. PARALLEL DETERMINISTIC ANNEALING CLUSTERING 

WITH CUTOFF 

Deterministic annealing has been successful in many 
applications [9, 10, 12, 15, 17-31] and is motivated by the 
same key concept as the more familiar simulated annealing 
method for optimization problems. At high temperatures 
systems equilibrate easily as there is no roughness in the 
energy (objective) function. If one lowers the temperature on 
an equilibrated system, then it is a short well-determined path 
between minima at current temperature and those at previous 
temperature. Thus, systems that are equilibrated iteratively at 
gradually lowered temperature tend to avoid local minima. 
The Monte Carlo approach of simulated annealing is often too 
slow, and so in deterministic annealing integrals are 
performed analytically. In many examples, as in the 

following, T is essentially a distance resolution; at large 
temperatures all clusters are merged together, and they emerge 
as one looks at the system with sharper resolution as 
temperature decreases. 

Consider a Hamiltonian H(, ) which is to be minimized 
with respect to variables  and . Deterministic annealing is 
then based on averaging with the Gibbs distribution at 
Temperature T:  

P(, )  = exp( - H(, ) / T) /  d exp( - H(, ) /T). (1) 
 
One minimizes the Free Energy F combining Objective 
Function H and Entropy: 

 
 F = < H - T S(P) > =  d [P()H + T P() lnP()]. (2) 
 
One obtains an EM (Expectation Maximization) method 

with the variable set  subject to annealing and determined by 
  = <> |0 =  d  P().  (3) 

And this is followed by the M (maximization) step, which 
determines the remaining parameters  optimized by 
traditional methods. Note that one iterates over temperature, 
decreasing it gradually, but also iterates at fixed temperature, 
until the EM step converges.  

Consider a clustering problem with N points (peaks in the 
LC-MS application) labeled by x with position X(x) and K 
clusters labeled by k. Let clusters have standard deviation (k) 
and center Y(k). The annealed variables  are Mx(k), which 
are the probabilities that the point x belongs to cluster k with 
constraint for each point x: 

 k=1
K Mx(k) = 1 (4)  

 let (z, ) = 0.5 i=1
d (zi/i)2  (5) 

with vector dimension d for X(x) and Y(k) with d = 2 in the 
example given in this paper. 

Define the clustering Hamiltonian [10]: 

 H = k=0
K x=1

N Mx(k) f(x, k) (6) 
for k >= 1    f(x, k) = ( X(x) - Y(k), i (k)) (7a) 
and for k=0,      f(x, 0) = 0.5 c2 independent of  x. (7b) 

Then as |X(x) - Y(k)| increases, f(x,k) becomes larger than 
f(x,0), which we term the “sponge” as it absorbs all points 
outside all clusters (X(x) - Y(k) / (k)2 > c2 for all k > 0. Note 
that there is only one sponge but multiple conventional 
clusters. An important innovation introduced by Rose [15] is 
the use of an intrinsic probability p(k) for each cluster k 
satisfying 

 k=0
K p(k) = 1. (8) 

One can understand this as corresponding to a large 
number  (much larger than current number of centers K) of 
clusters with a number p(k)  of them at each center. This 
allows one to split centers cleanly as one takes the number p(k) 
 at a center position and divides in two when a cluster with 



this center splits. Without this approach splitting is inelegant, 
as otherwise the formalism naturally gives half a cluster at 
each center. The p(k) are given below and are viewed as one 
of the variables  determined at the M step of EM method. In 
this case the Free Energy F is given by 

 F = - T x=1
N ln k=0

K p(k) exp( - f(x, k) /T ). (9) 

Now we use (3) to determine the annealed variables 
<Mx(k)>, and in this case the integrals can be done exactly 
since Hamiltonian is a quadratic. We describe how to tackle 
the case with more complicated forms for H and intractable 
integrals elsewhere [18, 20]. This is followed by an M step 
with a simple minimization to find the  variables which are 
Y(k) and p(k) in this case, subject to equation (8). We 
introduce auxiliary variables Zx,given by 

Zx = k=1
K p(k) exp( - (X(x) - Y(k))2 / (2 (k)2 T)  )  

                 + p(0) exp( - c2/(2 T)). (10) 

Then the annealing gives 

for k = 0  < Mx(0)> = p(0) exp( - c2/(2 T) ) / Zx (11a) 
and for k > 0  
< Mx(k)> = p(k) exp( - (X(x) - Y(k))2 /(2 (k)2 T) ) / Zx. (11b) 

The center positions and probabilities are given by 

Y(k) = x=1
N<Mx(k)>X(x)/x=1

N<Mx(k)>fork 0 (12) 
 p(k) = x=1

N <Mx(k)> / N. (13) 

 Note that in the conventional formalism p(k) = 1, small 
clusters contribute similarly in magnitude to a big cluster in Zx 
which appears in denominators like (11b). In (13) the cluster 
probability p(k) is the fraction of points in the k’th cluster, and 
this implies that in (10) clusters are weighted according to 
their size which is intuitively attractive. The sponge k=0 is 
rather different from the other clusters as it will not be split 
and will dominate equation (8) in the case of very many 
individually small clusters k if we use (13) for it. So we 
modified (13) with a fixed p(0) that we did not vary at the M 
step. 

As explained in detail in earlier papers [15, 20], the 
minimized free energy (9) will exhibit instabilities 
corresponding mathematically to second derivatives that have 
negative eigenvalues. These are phase transitions in  physics 
terminology [14]. One can calculate the second derivatives of 
F straightforwardly: 

2F/Yi() Yj()  =   ij   x=1
N < Mx()> / i ()2 (14a) 

-  x=1
N (Yi()) - Xi(x)) (Yj()) – Xj(x)) < Mx()> 

            / (Ti ()2j ()2)  (14b) 
+ x=1

N (Yi()) - Xi(x)) (Yj()) – Xj(x))  
                   < Mx()>< Mx()> / (Ti ()2j ()2). (14c) 

Interestingly, the formula is independent of p(k) and the 
sponge term as long as we express it in terms of fractional 
probabilities <Mx(k)>. Equation (14) has a reasonable 

structure with (14b) negative and increasing in importance as 
T decreases. One examines (14) for instabilities separately for 
each cluster  =  running from 1 to K. It is easy to see that 
elongated clusters will have large values of the term (14b) and 
that these will naturally split first as T decreases. Note that as 
T decreases the exponential in terms like (10) and (11) can 
lead to arithmetic errors. This was avoided by both testing on 
exponent and checking for overflow. 

The equations above are solved by starting with one 
cluster at large T∞, which is determined from (14) to be so 
large that it is above the phase transition temperatures. The 
precise value is not important as the computation runs so fast 
with one cluster that this stage of the computation takes 
negligible time. Then the temperature is reduced by a factor 
fannealing with the EM steps above converged at each 
temperature. Splitting is checked at each new temperature for 
each cluster. If (14) is singular for cluster , then this cluster 
is split and given a perturbed position determined by the 
direction of the unstable eigenvector of 2F/Yi() Yj() and 
a magnitude determined so that cluster count x=1

N <Mx(k)> 
will change by a modest amount (~5%) for each of two child 
clusters. This process is continued until reasonable 
termination criteria are met. In this problem clusters were not 
split if their average width was small and if they were small 
(these cuts were set differently depending on the value of 
cutoff c). Also, clusters were removed if they were too small 
or if their centers were too close. As seen in Fig. 6, this close 
cluster check was only used at low temperatures, i.e. at a 
distance scale when clusters were resolved. Clusters are 
considered final when the freezing factor FF given below in 
(15) is small. Note at convergence <Mx(k)> are either 1 or zero 
whereas at any “non-zero” temperature the <Mx(k)> sum to 1 
for each k and are interpreted as probabilities that are resolved 
at low temperature.  All clusterings are finished with a set of 
annealing iterations where there is no splitting but one just 
waits until all clusters have “freezing fraction” FF < 0.002 
(most are much smaller than this). The final temperature for 
this is around T ~ 0.01. 

 FF(k) = x=1
N <Mx(k)> ( 1 - <Mx(k)> ) / N (15) 

The scale represented by sponge cutoff c is much smaller 
than initial temperature T∞, and so we started the clustering 
with no sponge factor and then introduced it to a lower 
temperature and in fact annealed it to reach its final value at 
low temperature. In the example given later in Fig. 6, the 
desired sponge cutoff of 2 was reached at T = 2 after being 
introduced as a cutoff of 45 at T = 30.  

In the LC-MS problem, the variance in m/Z is much 
smaller than that of RT and if used directly would lead to 
anomalies, as formalism is designed for circular clusters. So 
we adjusted above formalism to make the variance in m/Z 
anneal from a large value at T∞ to the desired value at T = 12. 
Note that for LC-MS the variances are the “real values” and 
so temperature has a natural scale with T=1 as the natural 
“tipping point”. 

The most straightforward parallelism is that of peaks and 
is implemented [20, 25, 26] by uniformly dividing the peaks 



between compute units (processes or threads) when the 
equations above consist of parallel arithmetic and global 
reductions that can be implemented by either MPI or iterative 
MapReduce [17, 32, 33]. This approach works well for initial 
values of temperature up to around 512 clusters. However, as 
temperatures decrease the <Mx(k)> change character and each 
point becomes associated with only a few clusters (an average 
of 8 out of ~25000 in example below). Thus, calculating terms 
like x=1

N <Mx(k)> as a sum over all clusters becomes 
inefficient and an unnecessary use of memory. Rather, one 
uses a data structure that only keeps the <Mx(k)> for clusters 
whose centers are near each point. Further, one can exploit 
parallelism over clusters and both calculate and split clusters 
separately for the above equations in different regions. This 
leads to a familiar “local geometric” structure with points 
divided so nearby points are in the same process and local 
communications are used for point/clusters that are near the 
boundary between geometric domains. In LC-MS case this 
geometric structure was implemented in one dimension with 
m/Z splits. One encounters a difficulty here, as a given 
decomposition may not be best for both point and cluster 
parallelism; this is for example well known in particle in the 
cell scientific simulations. In our current results we implement 
the cluster parallelism for the MPI processes but not the thread 
parallelism. We kept the decomposition with equal number of 
points in each process; this led to about a factor-of-two load 
imbalance in the number of clusters. We can improve this, but 
the current approach gives satisfactory performance for 
current LC-MS problems. 

In the LC-MS problem we repeated the steps above two or 
three times to get the presented results. After the first step, we 
took the peaks assigned to “sponge cluster” (k =0) and 
identified clusters in it that had been incorrectly split in the 
first step. The new clusters were merged with those from the 
first step by annealing the combined sample starting not at T∞  

but at a low temperature T ~ 0.2. This was done at most twice 
in the results presented here. 

III. TECHNICAL EVALUATION OF DAVS ALGORITHM 

A. Clustering Methods 
This evaluation section includes several clustering methods. 
DAVS(c) is the parallel multi-cluster deterministic annealing 
introduced in this paper with cutoff c so that all clusters are 
trimmed with all peaks satisfying 2D(x) ≤ c where 

2D(x) = ((m/Z|cluster center – m/Z|x )/ (m/Z))2 

 + ((RT|cluster center – RT|x )/ (RT))2 (16) 

Here previous analysis of the measurement of known peaks 
(landmarks) gave c(m/Z) = 5.98 10-6 and c(RT) = 2.35 where 
(m/Z) = c(m/Z) . (m/Z) and (RT) = c(RT) are three times 
standard deviation of measurement determined by study of 
landmark peaks. We present results for c = 1, 2, and 3, 
although the latter case does not appear in all analyses, as we 
consider c=3 to be so large that many “incorrect” peaks are 
assigned to clusters. This extends Medea, which is the 
trimmed deterministic annealing algorithm described in [9] 

where deterministic annealing is applied separately to each 
trimmed cluster.  
DA2D is the identical parallel multi-cluster deterministic 
annealing algorithm run without any trimming. It is a modern 
implementation of the algorithm introduced in [13-15]. 
Mclust is a model-based clustering algorithm [34] whose use 
for this problem is described in [9]. 
Landmarks are a collection of reference peaks (obtained by 
identifying a subset of peaks using MS/MS peptide 
sequencing) used to calibrate and evaluate methods. 

B. Computer Systems Used 
We used two Indiana University Clusters, Madrid and 

Tempest, specified below. These are running the Windows 
HPC Server with parallelism from MPI (using MPI.Net [35] 
on top of Microsoft MPI) and TPL [36] for thread parallelism. 
All codes were written in C#. The results should be similar on 
Linux with Java or C++ coding. 

Tempest: 32 nodes, each 4 Intel Xeon E7450 CPUs at 
2.40GHz with 6 cores, totaling 24 cores per node; 48 GB node 
memory and 20Gbps Infiniband network connection. 

Madrid: 8 nodes, each 4 AMD Opteron 8356 at 2.30GHz 
with 4 cores, totaling 16 cores per node; 16GB node memory 
and 1Gbps Ethernet network connection. 

C. DarTB Dataset 

Plasma samples from tuberculosis cases and controls were 
collected at Dar es Salaam, Tanzania, as part of the Gates 
Grand Challenges in Global Health GC-13 project on pattern-
based proteomic characterization of the epidemiology 
(prevalence and incidence) of diseases of major importance in 
the developing world. The DarTB dataset consists of 20 TB 
case and 20 healthy control plasma samples collected at Dar 
es Salaam, Tanzania. The samples were shipped to The Broad 
Institute where they were run through a sample-processing 
pipeline starting with immunoaffinity depletion of the top 14 
abundant human proteins using an Agilent MARS-14 
depletion column. The depleted plasma is passed through a 
low molecular weight filter and subjected to reduction, 
alkylation, and trypsin digestion. The digested sample is then 
fractionated into 10 fractions using a basic pH reverse phase 
column. Fractions 5, 6, and 7 are analyzed via LC-MS on a 
Thermo LTQ-FT using a 98 min gradient. The resulting 120 
raw files were analyzed using the algorithms here. The DarTB 
dataset contained a grand total of 653,741 peaks in 6 charge 
states. The full analysis of all data is available [37], but here 
we focus on the largest charge 2 dataset with 241,605 peaks. 

D. Structure of Data 

Figs. 1 and 2 illustrate the nature of the data to be 
clustered. As the error in m/Z is proportional to the inverse of 
this quantity, we define new 2D positions (x, y) rather than 
(m/Z, RT) 

 x =  ln(m/Z) / c(m/Z) 
 y = RT / c(RT) (17) 

 



with c(m/Z) = 5.98 10-6 and c(RT) = 2.35 as discussed below 
(16). By using x and y as defined above, we get reduced 
variables which should give circular clusters with same size in 
each dimension. Note this change of variables is only used for 
display purposes. As described we directly use m/Z and RT as 
coordinates in the clustering and account for position-
dependent error by calculating the value of (m/Z) (and the 
fixed (RT)) dynamically for each cluster center position. The 
much smaller value of c(m/Z) (compared to c(RT)) makes the 
reduced space much larger in the x than the y direction. This 
would distort the clustering algorithm at large temperatures. 
Thus, as described, we anneal the value of c(m/Z) starting at 
“infinite” temperature with a large value.  

E. Parallelism 

Fig. 3 illustrates two aspects of parallel performance. 
Firstly, MPI parallelism outperforms that of threads (compare 
green and blue). Secondly, we get higher performance 

(compare red and 
green) when we use 
the cluster 
parallelism described 
in Section II. Figure 3 
only looks at 
parallelism within a 
single 16-core node, 
whereas Figs. 4 and 5 
extend this to up to 32 
nodes, where the 
network overheads 
impact performance 
on the runs with 
greater parallelism. 
This is especially true 
on the Madrid cluster, 
which only has 

Ethernet network links, whereas Tempest has Infiniband. 
Again we find that MPI outperforms threading, but, as 
described earlier, we only implemented the cluster parallelism 
(used in all runs in this figure) with MPI. Several of these runs 
use a mix of thread and MPI parallelism; threads implement 
peak parallelism and MPI peak and cluster parallelism. All 
DAVS(3) runs in Figs. 3 to 5 used the efficient model where 
each peak x only stores the occupation probability Mx(k) for 
relevant (i.e. nearby) clusters k. Throughout the run (from 1 to 
around 25200 clusters in figures), the mean number of clusters 

Figure 2. A tiny fragment of clustered space for a full DAVS(1) run. The 
orange triangles are sponge peaks outside any cluster. The colored 
hexagons are peaks inside clusters with the white hexagons being 
determined cluster centers. Each cluster is colored differently. This 
comes from 241605 peak charge 2 clustering. 

Figure 3. Parallelism within a Single 
Node of Madrid Cluster. A set of runs on 
241605 peak data with a single node with 
16 cores with either threads or MPI 
giving parallelism. Parallelism is either 
number of threads or number of MPI 
processes. 

Figure 1. The DA2D clustering at high temperature with 60 clusters determined from a run from 241605 peak charge 2 data where c(m/z) was 
fixed at 0.005 (a 1000 times its real value) and c(RT) was correctly 2.35. Each of those 60 clusters will eventually be broken into 500 smaller 
clusters and spread out along x axis as c(m/z) is annealed to its final much smaller value when the extra factor of 1000 will make the the m/z 
– RT space incredibly elongated. The sponge was not used in this run as it is only introduced at lower temperatures 



stored for each peak averaged at most 8 which is < 0.1% of 
average number of clusters.  

Note that parallel clustering has: 
a) Inefficiencies in that it is not optimally load balanced. 

We currently decompose problems so there are equal 
numbers of peaks in each process. This leads to a factor 
of 2-4 variation in the number of clusters per node. For 
example, the case with 32 MPI processes in Fig. 4 
finishes with an average of 789 clusters per node, while 
the minimum number is 511and the maximum is 1391; 

b) Efficiencies as it naturally spreads splitting over the full 
region of peaks and this implies that cases with just one 
MPI process (and any number of threads) need slower 
annealing to get same number of clusters as runs with 
more than 4 MPI processes. 

The parallel performance is currently limited by the load 
imbalance effect (a) and MPI communication overheads, so 
that 64-way parallelism is good choice for this 241,605-peak 
dataset on Madrid and 120-way (30 Tempest nodes with 4 
MPI processes in each node) gives best speedup on Tempest. 
There is also the usual effect that memory bandwidth limits 
the useful parallelism on each node. We intend to do tests on 
larger datasets where higher levels of parallelism will be 
optimal. The “production” execution time used in runs 
reported here vary from 2 to 10 hours (dependent on annealing 

schedule) on the 8-node Madrid cluster, which has rather old 
(2008) AMD processors. Tempest is a factor 1.8  faster. 

IV. DAVS PROTEOMICS EVALAUTION 

A. Characteristics of Clustering Solutions 
We present in Table 1 some summary statistics over the 

clusterings considered here. We list errors, which are just the 
mean squared scaled differences between peaks and cluster 
centers averaged over peaks x in cluster. 

 Error(m/Z) = ((m/Z|cluster center – m/Z|x )/ (m/Z))2  (18) 
 Error(RT) = ((RT|cluster center – RT|x )/ (RT))2  (19) 
which added together give 2D(x) defined in (16). 

Table 1:  Basic Statistics 

Method 
Number 

Clusters 

Number of Clusters with given 

occupation count  

Count > 30 

Scaled Error 

1 2 >2 >30 m/Z RT 

DAVS(1) 73238 42815 10677 19746 1111 0.036 0.056 

DAVS(2) 54055 19449 10824 23781 1257 0.079 0.100 

DAVS(3) 41929 13708 7163 21058 1597 0.247 0.290 

DA2D 48605 13030 9563 22545 1254 0.100 0.120 

Mclust 84219 50689 14293 19237 917 0.021 0.041 

One can calculate a much more reliable mean (as used 
later in comparison with Landmark clusters) by an additional 
cut like 2D(x) ≤ 1.2 to remove outliers. 

 
Note both DAVS(c) and DA2D start with one cluster and 

then split automatically as temperature is reduced. This is 
illustrated earlier in Fig. 1, showing a high temperature with 

Figure 4. Speedups for several runs on Madrid from sequential 
through 128 way parallelism defined as product of number of threads 
per process and number of MPI processes. We look at different 
choices for MPI processes which are either inside nodes or on separate 
nodes. For example 16-way parallelism shows 3 choices with thread 
count 1:16 processes on one node (the fastest), 2 processes on 8 nodes 
and 8 processes on 2 nodes.  

Figure 5. Speedups for several runs on Tempest from 8-way through 
384 way MPI  parallelism with one thread per process. We look at 
different choices for MPI processes which are either inside nodes or 
on separate nodes. 

0

10000

20000

30000

40000

50000

60000

1.00E-031.00E-021.00E-011.00E+001.00E+011.00E+021.00E+031.00E+041.00E+051.00E+06

C
lu

st
e

r 
C

o
u

n
t

Temperature

Cluster Count v. Temperature for 2 Runs

DAVS(2) DA2D

Start Sponge DAVS(2)

Add Close Cluster Check

Sponge Reaches final value

Figure 6. Variation of cluster count in DAVS(2) and DA2D as a 
function of the annealing temperature as it is reduced from left to right. 
Changes in strategy give glitches with discontinuity in cluster count. 
Particularly blatant is a crude switching on of a check on closeness of 
cluster centers. The addition of the Sponge (trimming) factor has less 
impact as that effect is itself annealed as described in formalism. Note 
clusters with one member are EXCLUDED from DAVS(2) as in 
Sponge. They are INCLUDED in DA2D 



60 clusters. Fig. 6 shows how the number of clusters changes 
with temperature. The following set of figures describes the 
characteristics of the different solutions. Figures 7 and 8 plot 
the squared distance distributions scaled by (m/Z) for m/Z 
and (RT) for RT in two dimensions, i.e. the ordinate is 
2D(x). These include the expectation of a Gaussian 
distribution in 2D(x) with standard deviation of 1/3 in both 
m/Z and RT. It is normalized at 2D(x) ~ 0.5 to the DAVS 
distributions that are similar in value there.  

We note that the four deterministic annealing solutions are 
quite similar at small values of 2D(x) ≤ 1, and in each case we 
see a peak above the Gaussian for 2D(x) ≤ 0.1. Note that the 
parallel DAVS(1) precisely enforces the cut 2D(x) ≤ 1.  

Mclust has sharper distributions but, as is made clearer 
with later data, it misses several clusters and many peaks that 
are properly associated with a given cluster. Figure 9 shows a 
histogram of occupation counts for the clustering methods. 
Mclust tends to lie below the deterministic annealing solutions 
for the larger clusters as it systemically underestimates the 
peaks in each cluster as shown in rapid fall off in 2D(x) of 
Figures 7 and 8. 

B. Quality of Determination of Landmark Peaks 
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241605 DAVS(1) 30424 42815 1025 0.039 0.059 24825 6779 

241605 DAVS(2) 34606 19449 1033 0.044 0.066 25012 7641 

241605 DAVS(3) 28221 13708 1038 0.085 0.112 24939 9825 

241605 DA2D 35472 13134 1033 0.044 0.067 24996 7606 

241605 Mclust 33530 50948 1007 0.035 0.051 23432 4945 

26916 Land 

mark 

1263 228 1034 0.000 0.000 25151 0 

Table 3: Charge 2 Landmark Peaks   
>40 Peaks in Cluster (at least 36 match) 

Method 

Number 
Landmark 

Clusters 
Found 

Scaled Error 
2D(x) ≤ 1.2 

# 
Landmark 

Peaks 

# Non 
Landmark 

Peaks m/Z RT 

DAVS(1) 125 0.021 0.028 6468 831 

DAVS(2) 126 0.025 0.032 6563 956 

DAVS(3) 129 0.028 0.041 6695 1093 

DA2D 126 0.025 0.032 6579 964 

Mclust 111 0.021 0.031 5597 584 

Landmark 129 0.000 0.000 6675 0 

 
We analyzed the reliability of determining the known 
Landmark peaks in identical fashion for each clustering 
method. The results are presented in Tables 2 to 5, which have 
different selections on cluster size and on later cut in 2D(x) 
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Figure 9. Histograms of number of peaks in clusters for 4 clustering 
methods and the landmark set. Note lowest bin is clusters with one 
member peak, i.e. unclustered singletons. For DAVS these are 
Sponge peaks. 
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4 Clustering Methods: Occupation Count > 5 Peaks 
Squared Distance Peak to Center DAVS(1) 8664
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Mclust 8194
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Figure 8. Histograms of 2D(x) for 4 different clusters methods, and the 
landmark set plus expectation for a Gaussian distribution with standard 
deviations given as 1/3 in the two directions. The “Landmark” 
distribution correspond to previously identified peaks used as a control 
set. Note DAVS(1) and DAVS(2) have sharp cut offs at 2D(x) = 1 and 
4 respectively. Only clusters with more than 5 peaks are plotted. 
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4 Clustering Methods: Occupation Count > 50 Peaks 
Squared Distance Peak to Center

DAVS(1) 177
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DA2D 225

Mclust 120
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by # Clusters

Figure 7. Histograms of 2D(x) for 4 different clusters methods, and the 
landmark set plus expectation for a Gaussian distribution with standard 
deviations given as (m/z)/3 and (RT)/3 in two directions. The 
“Landmark” distribution correspond to previously identified peaks used as 
a control set. Note DAVS(1) and DAVS(2) have sharp cut offs at 2D(x) = 
1 and 4 respectively. Only clusters with more than 50 members are plotted. 



used to determine cluster centers. The Landmark peaks are 
labeled and we determined for each Landmark cluster the 
cluster that best matched it for each of four clustering 
methods. Then we found the center of the cluster, which 
averaged all peaks whose value of 2D(x) was ≤ cut given in 
the table; this cut improved accuracy (for higher cutoffs c= 2 
or 3) as recorded in Tables 2 and 3 in the scaled error in each 
dimension. Reducing value of this cut increases accuracy at 
the cost of reducing the number of clusters found, as shown in 
Tables 4 and 5, which have cut 2D(x) ≤ 0.7. The tables also 
record the number of Landmark and Non-Landmark peaks in 
each cluster after this cut. The Deterministic Annealing 
methods, DAVS, and DA2D are quite similar with DAVS(3), 
but recognize more clusters in cases where we consider only 
those clusters with at least 40 members. However, this comes 
with slightly larger errors. The systematics suggest that the 
methods can be ordered: DAVS(3), DA2D, DAVS(2), 
DAVS(1), Mclust in ability to identify Landmark clusters with 
error decreasing as the number of cluster do. Reducing the cut 
c in DAVS(c) below 1 or similarly adding a low 2D(x) cut to 
a DAVS( c ≥ 1) clustering gives results that have errors that 
are similar to Mclust but still find substantially more 
Landmark clusters than Mclust, as seen clearly in Table 4 and 
especially Table 5. 

 

 
It is interesting that the traditional (deterministic 

annealing) clustering DA2D, which uses a model for cluster 
shape but no cutoff c, can give excellent results shown in 
Tables 3-5 either by applying a cutoff on 2D(x) in cluster 
center determination or by restricting the sample to well-
determined clusters with many peaks such as the cut on 40 
members in Table 3. Note that the selection in Tables 3 and 5 

required that the Landmark cluster had at least 40 peaks, and 
that after cuts the matching DAVS(c), DA2D, or Mclust 
cluster had at least 36 of the Landmark peaks in it. For Tables 
2 and 4, we required at least three peaks in the Landmark 
cluster and that the associated clustering solution also had at 
least three Landmark peaks. 

V. CONCLUSIONS 

We have combined results from robust statistics, model-
dependent clustering [38], and parallel computing to produce 
an accurate automatic approach to analyzing a cohort of 
multiple biological samples in proteomic biomarker 
discovery. This required new ideas such as annealing of the 
model (error requirement) and parallelism over both clusters 
and peaks. It also combined into a single system known ideas 
(in the small deterministic annealing community, as cited in 
Section II) such as intrinsic cluster probabilities p(k) that had 
not to our knowledge been integrated before in a large-scale 
parallel “production quality” system. The peaks are found in 
an unbiased way that requires no initial priming (i.e. no initial 
guesses at centers). All clusters are essentially located at the 
overall peak centroid at the start (high temperature) and 
emerge as temperature lowers from examination of the 
stability of existing clusters to splitting, as shown in Fig. 6. 
The splitting is determined from the eigenvalues of second-
order Taylor expansion and not as in some approaches by trial 
and error with separated centers. The open source software is 
available [39], although it is now written in C#, and we are 
working on a more broadly useful distribution in R, Java or 
C++. There are more details of current analysis available at 
[37]. 

Large-scale proteomic biomarker discovery efforts using 
label-free LC-MS experiments are beset with relatively high 
false-positive rates. The improved performance of DAVS(c) 
in identifying landmark clusters, we hope, will translate to 
lowering false-positive rates in biomarker discovery 
experiments. In addition, the scalable parallel implementation 
will enable analysis of larger and larger sample cohorts 
leading to more robust biomarker discovery. As markers 
discovered using such efforts are validated in the laboratory, 
there will be more data available to directly evaluate the 
effectiveness of our new clustering algorithms  

Furthermore, combining the recent improvements in high-
throughput mass spectrometry with these parallel clustering 
algorithms will empower biomarker discovery with fast 
turnaround times, and moves us a step closer to the promise 
of near real-time response to disease outbreaks.  

Future work will highlight extension of the analysis to 
much larger proteomics datasets and extend our work to cloud 
platforms [32, 33]. Further, we will enhance the parallel load 
balancing that needs to reconcile distributions that optimize 
peak and cluster decompositions. This has similarities with 
other better-studied parallel algorithms, such as those used in 
particle in the cell simulations. We believe that large-scale 
data analytics such as that presented here present novel 
challenges for the parallel computing community and we will 
package kernel versions of software to be used in benchmark 
analyses.  

Table 4: Charge 2 Landmark Peaks   
>3 Peaks in Cluster (at least 3 match) 

Method 

Number 
Landmark 

Clusters 
Found 

Scaled Error 
2D(x) ≤ 0.7 

# 
Landmark 

Peaks 

# Non 
Landmark 

Peaks m/Z RT 

DAVS(1) 1017 0.033 0.050 24650 6330 

DAVS(2) 1020 0.034 0.052 24717 6716 

DAVS(3) 1020 0.075 0.103 24239 8242 

DA2D 1020 0.035 0.054 23691 6709 

Mclust 1005 0.033 0.047 23394 4856 

Landmark 1023 0.000 0.000 24855 0 

Table 5: Charge 2 Landmark Peaks   
>40 Peaks in Cluster (at least 36 match) 

Method 

Number 
Landmark 

Clusters 
Found 

Scaled Error 
2D(x) ≤ 0.7 

# 
Landmark 

Peaks 

# Non 
Landmark 

Peaks m/Z RT 

DAVS(1) 125 0.018 0.024 6446 783 

DAVS(2) 126 0.018 0.026 6516 835 

DAVS(3) 128 0.022 0.030 6595 905 

DA2D 126 0.019 0.026 6315 835 

Mclust 111 0.018 0.028 5596 571 

Landmark 128 0.000 0.000 6592 0 
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