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Abstract  
 
Over the last couple of decades, distributed systems have been demonstrated an architectural evolvement based on 
models including client/server, multi-tier, distributed objects, messaging and peer-to-peer. One recent evolutionary 
step is Service Oriented Architecture (SOA), whose goal is to achieve loose-coupling among the interacting 
software applications for scalability and interoperability. The SOA model is engendered in Web services, which 
provide software platforms to build applications as services and to create seamless and loosely-coupled interactions. 
Web services utilize supportive functionalities such as security, reliability, monitoring, logging and so forth. These 
functionalities are typically provisioned as handlers, which incrementally add new capabilities to the services. Even 
though handlers are very important to the services, the way of utilization is very crucial to attain potential benefits. 
Every attempt to support a service with an additive functionality may increase the chance of having an 
overwhelmingly crowded chain. Moreover, a handler may become a bottleneck because of having a comparably 
higher processing time. We present Distributed Handler Architecture to provide an efficient, scalable and modular 
architecture to address these issues.  
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1. Introduction 

One recent evolutionary step in computing 
environment is Service Oriented Architecture (SOA) 
whose goal is to achieve loose coupling, scalability 
and interoperability. SOA manifests itself perfectly in 
Web services, supplying platforms to build 
applications as services. Web service framework 
offers standard ways to interoperate among software 
applications, running on a variety of platforms [1]. It 
provides seamless and loosely coupled 
communications; applications can communicate with 
each other without giving much effort even though 
they might be utilizing different languages and 
platforms.   

Web service provides a common ground to 
offer interoperability. Many standards have been 
introduced and many of them are on the way. The 
key features of the Web services, which are described 
by World Wide Web Consortium (W3C), have been 
introduced as Web service specifications. Simple 
Object Access Protocol (SOAP)[2], Web Service 
Description Language (WSDL) [3],  and Universal 
Description Discovery and Integration (UDDI) [4] 
are de-facto standards.  

One of the most crucial aspects of Web 
service framework is the utilization of the XML 
messaging. SOAP is an XML based data exchange 
format, which is employed by Web services. 
Consequently, Web service framework heavily 
depends on SOAP processing. As a result, several 
Web service containers, the middleware in Figure 1, 

has been introduced to take pressure off the 
applications. Their main goal is to hide the details of 
the SOAP processing from the users. The most 
popular containers are Apache Axis[5], Microsoft 
Web Service Enhancement[6] and IBM 
Websphere[7] . 

The container architecture employs two 
main SOAP processing components, Web service 
endpoint logic and handler. Handler is also called as 
filter. Web service endpoint logic, which is a 
standalone application, carries out main task. On the 
other hand, a handler is a supportive application.  It 
contributes to a service with additional capabilities 
such as reliability, security and logging.  

Despite the fact that handlers preferably deal 
with header, they also have the ability to modify 
SOAP body. In addition to de-facto standards, many 
WS-specifications have been introduced so far. They 
are the efforts where the community sets the 
standards to have more interoperable systems[8]. 
Some of them are very good candidates to be 
handlers, especially, those dealing with the headers.   

Web services are able to employ a set of 
handlers to acquire many capabilities in a single 
execution.  For instance, a service may need to be 
reliable as well as secure at the same time. Handler 
chains are introduced for this purpose. Container 
engines let a message travel through handlers in a 
chain.  

Apparently, handler is a crucial aspect of 
Web Service Architecture because of the key 



importance in the execution path. However, the way 
of utilizing handlers and their structures become 
important when the number of the necessary additive 
functionalities increases. The efficiency becomes 
essential when power hungry and time consuming 
functionalities are introduced in the execution 
pipeline. For instance, reliability adds significant 
amount of processing time. Similarly, security may 
necessitate powerful machines to conclude its task in 
a reasonable time. Any additional handler may make 
the response time of a service worse. 

 
Figure 1: A Simple Web Service Interaction 

 
Nevertheless, a service cannot be banned 

from obtaining new features. It is predestined that 
services will necessitate new capabilities to present a 
better computing environment. In other words, 
services eventually attain more functionality in their 
execution paths. Accordingly, we may wind up with 
an overwhelmingly crowded pipeline of the handlers. 
This circumstance will make the services slower. 
This situation is named as a Web service becomes 
fat; while the service is acquiring new capabilities, 
the response time becomes longer and the 
management of the service becomes harder. 
Secondly, a handler may cause a convoy effect. In an 
execution pipeline, a handler may delay the service 
processing due to the fact that its execution is too 
slow. In other words, a handler becomes bottleneck. 
This condition mounts the request messages waiting 
to be served in every second. The clients start waiting 
longer and longer.   

Let’s think about a highway, which has three 
lanes. And it is rush hour. Everybody is driving to 
reach home and get relaxed as soon as possible. 
However, at some point, the road becomes narrower. 
Since it is peak time; the road capacity is not 
sufficient to serve the arriving cars. In every passing 
minute, the number of cars grows. The people start 
becoming distressed because they do not want to 
waste their time in the highway by just waiting. The 
first solution is to expand the narrow part of the road. 
Adding one or two lanes to the narrow part will 
suffice. The second solution is to detour a portion of 
the traffic to a parallel road. We can utilize both 
approaches in the handler architecture. Replacing the 
narrow road resembles introducing new enhanced 
computing environments. Using the parallel road 
looks like offering concurrent execution for the 
handlers.   

We have additional resources out there. 
Networks are becoming faster. Machines are 
becoming more powerful and their speed is 
constantly improving. Hence, these improvements 
can contribute to remove insufficient parts. 
Bottlenecks can be eradicated by delivering some of 
the handlers to the powerful computers. The 
distribution reduces the burden over a single 
computer.  

Application parallelism is not new idea; it 
has been utilized for decades. Hence, handlers can be 
executed concurrently.  However, handler parallelism 
is not able to be utilized in the conventional Web 
Service Architecture. The parallelism boosts the 
performance and provides very effective and 
powerful solution.  

Recently, an enhancement in processor 
technology becomes popular. Multi-core processors 
are started being widely utilized; even personal 
computers leverages cores offering opportunity for 
parallel executions. This opportunity contributes to 
the parallel handler execution even without 
introducing any network latency. 

Distribution of the applications is very 
crucial to improve performance and scalability. 
However, there are requirements to be able to benefit 
from it. The decision of a handler distribution is 
influential over the system performance. Moreover, 
the selection of the handlers running concurrently is 
very important.  The conditions and requirements of 
the distribution of a handler are necessarily needed to 
be investigated extensively. Handler structure 
demands efficient handler orchestration. The handlers 
have to be orchestrated in a way that Web Service 
benefits most. The orchestration is especially 
essential when the handlers are distributed. It 
becomes inevitable, when the concurrency is 
launched for the handler executions.  

Reusability is one of the key features for an 
application. Instead of deploying the same handler 
many times, we may make use of a handler 
repeatedly. There are many stateless handlers. They 
process a SOAP message and return the results 
without keeping any information for requester. For 
instance, compression and decompression are 
stateless functionalities. Hence, they are very suitable 
to be used by the services and/or clients many times 
without complications. Even stateful handlers may 
become appropriate to be utilized repeatedly in 
certain conditions. 

Handlers offer new capability without 
increasing the complexity. Simplicity is a very 
crucial feature of applications. In Web Service 
structure, simplicity originates from very well known 
notion, divide and conquer. The whole task is divided 
between handlers and the service endpoint. Instead of 



having a large, hardly manageable application, 
clearly separable smaller tasks are more plausible. 
Charles Antony Richard Hoare states this very 
essential feature to design excellent software in his 
The Emperor’s Old Clothes [9]. He says that “There 
are two ways of constructing a software design. One 
is to make it so simple that there are obviously no 
deficiencies; the other is to make it so complicated 
that there are no obvious deficiencies. The first 
method is far more difficult.” Simplicity contributes 
to constructing modular and flexible applications.  
However, it is a challenging effort to build a perfectly 
flexible and modular system.  

Consequently, handler architecture needs to be 
investigated to provide efficient, scalable and flexible 
Web services. Since a SOAP task, which is either 
related with the body or header, may be costly, we 
need additional resources and structures. We can 
improve the performance, make the system scalable 
and provide improved architectures. 

 
2. Handler Structures 

 
There are several conventional Web service 

handler structures which provide an environment to 
add new functionalities to Web service end-point. 
The first structure, worth to mention, is JAX-RPC. It 
offers necessary tools to deploy handlers, shown in 
Figure 2. Handlers can construct handler chains in 
both client and server sides. The executions are 
sequential and deployment is static; the execution 
path cannot be modified after being deployed.   
 

 
Figure 2 : JAX-RPC architecture 
 
Apache Axis is currently the most dominant 

container in the Web service community and has a 
plethora of applications developed around this 
container. There are two main versions, Apache Axis 
1.x and Apache Axis 2.  

Apache Axis 1.x facilitates the incremental 
addition of capabilities to Web service endpoint by 
leveraging handlers. Handlers can be either request or 
response path.  At one point, a handler sends request 
as well as receives response. This handler is called 
pivot handler. It processes requests and passes them 
to the endpoint. When the endpoint finishes its tasks, 
the responses are sent back to the pivot handler. 
There exist two types of handlers. The first type 
contains singleton handlers, which do not require a 
peer. They can be deployed to either client or server 
side. On the other hand, there are handlers that 

necessitate peers in the client and the service sides. 
For instance, an encryption handler which encrypts 
messages coming from a client requires an inverse 
handler at the service side which performs the 
appropriate decryption. Client side handler peers are 
processed in the reverse order of the service side 
handler peers. For example, if a client processes 
handlers in the order of h1, h2 and h3, their 
counterparts in the service side are executed in the 
order of h3, h2 and h1.   

Apache Axis 2 has more extensible and 
modular architecture. The core modules are separable 
from the remaining modules so that the new modules 
can be added on the top of the core modules [10]. To 
handle information and keep the states, Apache Axis 
2 defines an Information Module.  Information 
module has a hierarchical structure that helps to 
manage the object lifecycles. Apache Axis 2 
basically views every transaction as a single SOAP 
processing. To implement a complex SOAP 
messaging, containing several messages, a top 
layered framework is necessary.  Apache Axis 2 
framework contains two pipes: IN and OUT.  They 
may be combined to exchange messages. User 
application can create a SOAP request by using a 
client API. Before handing the message over 
transport sender, new capabilities can be added with 
the handlers. They provide extensibility to the SOAP 
processing model. They can intercept messages in 
either IN or OUT pipe.  

Additionally, Apache Axis 2 introduces an 
upper level abstraction on to top of handler layer: 
module. A module may contain a set of handlers and 
phase rules. In other words, it groups a set of 
handlers to provide a specific functionality.  They are 
basically intended to implement Web service 
specification in a modular manner such as WS-
Addressing [11] and WS-Reliable Messaging[12]. 

There are stages to arrange the order of the 
modules. These stages are called as phases. Phases 
and flows together manage the processing flow for a 
specific message. Apache Axis 2 contains predefined 
special handlers such as Dispatchers, Transport 
receiver and Transport sender. Similarly, several 
predefined special phases are also introduced: 
Transport, Pre-Dispatch, Dispatch, User defined and 
Message Processing phases in IN pipe and Message 
Initialization, User and Transport phases in OUT 
pipe. However, this mechanism is not fixed; it is 
extensible and user customized phases and handlers 
are allowed to be attached.  

Similar to Apache Axis, Web Service 
Enhancement (WSE) from Microsoft supports Web 
services by offering an environment for the 
supportive capabilities, which are called filters. The 
execution structure of the filters is very similar to that 



3. Distributed Handler 
Architecture 

in Apache Axis. Both Output and Input filters are 
capable of processing SOAP header and body.  The 
real target is the header, though.  WSE has already 
several build-in filters.  However, customizable 
filters can be added. Filters can create a chain. In this 
chain, the intermediary information is passed 
between the filters by using a context. The context 
provides an environment to share the properties and 
variables.   

In order to gain full benefit from Web 
services for the handler execution, we introduce 
Distributed Handler Architecture (DHArch). It is a 
framework that provides functionalities to process 
handlers concurrently as well as sequentially in a 
distributed environment. The goal is to remove the 
boundaries that keep the handlers in a single memory 
space and to contribute to the modularity, reusability, 
interoperability, scalability and responsiveness of the 
system.  

Finally, DEN/XSUL provides architecture 
which offers an environment for the handler 
execution. XSUL is a modular Java Library to 
construct Web and Grid services [13, 14]. It has been 
developed by Extreme Lab at Indiana University and 
provides a framework for XML based processing and 
supports doc-literal, request-response and one-way 
messaging. Furthermore, it contains modules for a 
lightweight XML/HTTP invoker and processor. DEN 
addresses the performance and scalability bottleneck 
[15]. It targets directly to the Web service security 
processing steps without touching the endpoint 
service logic at all. It granulates the application and 
makes the pieces separate processing nodes. These 
nodes are distributed across the Grids. The whole 
scenario is depicted in Figure 3. XSUL2, the latest 
version of XSUL, allows a request goes through a 
chain of handlers until it reaches the destination.  
DEN by utilizing XSUL2 is able to separate the 
handlers from Web Service endpoint and distribute 
them as individual service nodes within a chain. 

Figure 4 depicts the overall picture of DHArch.  It 
has modular architecture.  Instead of having a very 
big chunk of hardly manageable implementation, 
DHArch employs modules so that the 
implementation management became easier and more 
understandable. DHArch modules can be placed 
under three umbrella-names: Distributed Handler 
Manager (DHManager), Communication Manager 
(CManager) and Handler Execution Manager 
(HEManager). 
 
3.1. Distributed Handler Manager  

Distributed Handler Manager (DHManager) 
is a group of modules that manages message 
execution.  It is mainly the hearth of system; it 
accepts messages, orchestrates the execution and 
returns the output to the place where the message 
initially has been received. It contains sub-modules: 
Gateway, Handler Orchestration Manager, Message 
Context Creator, Messaging Helper, Queue Manager 
and Message Processing Engine.  

Figure 3 : DEN Web service execution 

Gateway is an interface between the native 
environment and DHArch. It is entrance and exit 
point for the incoming and outgoing messages. 
DHArch has a native environment independent 
architecture. It autonomously performs the given 
tasks. However, Gateway module is an exception. 
Since it connects DHArch to the underlying 
environments, it utilizes the libraries and tools of the 
native environments. 

 
DEN/XSUL is able to utilize asynchronous 

messaging by using WS-Dispatcher. The dispatcher 
allows internal services to be exposed to Internet. 
With the support of asynchronous messaging, a WS-
Security implementation is divided into sub-atomic 
tasks and deployed as services. Some tasks are 
executed in a parallel manner to gain performance 
and to remove the bottleneck. 

DHArch is a system enabling the execution 
of the handlers in a distributed fashion. This 
environment brings many advantages such as 
utilization of additional resources and concurrency. 
On the other hand, the distribution complicates the 
handler execution. Handlers became unaware of each 
other when they are scattered around. Therefore, 
introducing an orchestration to manage the execution 
becomes necessary. Handler Orchestration Manager 
provides the necessary orchestration capability. The 
orchestration structure is investigated extensively 
[16]. 

While DEN/XSUL touches the parallel execution by 
distributing the subtasks, we cannot witness that the 
parallelism is benefited enough. On the other hand, 
the containers, Apache Axis and WSE, use pipelining 
to run a handler chain although they do not have any 
parallelism in the handler executions. 



 
Figure 4: General Architecture of DHArch 

 

 
Figure 5: Distributed Handler Message Context 

Message Context Creator supports the 
handler execution by creating a context, Distributed 
Handler Message Context (DHMContext), shown in 
Figure 5. This context wraps the messages travelling 
in DHArch. Additionally, it conveys supplementary 
information for the execution such as current stage 
number, number of handlers, number of stages, start 
and end times of handler execution and so on. 
Orchestration configuration is also kept in the 
context. Every message can have its unique handler 
orchestration.  

A Web Service may receive too many 
requests in a short duration. Hence, queues are 
introduced to regulate the message flow. It is similar 
to having a waiting room in a doctor office. When 
patient arrives, s/he is asked to fill the necessary 

information and to be seated in the room until the 
doctor becomes available. Similarly, DHArch 
registers the necessary information and makes the 
message wait to be called. Queue Manager employs 
three queues. The first queue, Container Message 
Context Queue (CMCQueue), stores the interacting 
Web service container contexts. For example, 
MessageContext is the context object of Apache Axis 
container to be stored. In contrast to CMCQueue, 
Incoming Message Queue (IMQueue) and Message 
Processing Queue (MPQueue) store DHMContext, 
which is created by Message Context Creator 
module. IMQueue stores a DHMContext object for 
every arriving message. On the other hand, MPQueue 
only keeps the message contexts which are being 
executed. Therefore, the number of the messages in 
the queue is limited for the optimization purpose.  

Messaging is a very significant capability to 
decouple the computing nodes. Sending and 
receiving the tasks between the interacting nodes via 
messaging contributes to the interoperability. 
Although the messages can be sent in different 
formats, a specific format, DHArch Messaging 
Format (DMFormat), is created by Messaging Helper 
module to facilitate the remote handler executions. It 
basically contains three main parts, unique ID, 
properties and payload.  Each DMFormat contains a 
128-bit unique ID, created by a UUID generator. The 
uniqueness keeps the message execution intact so that 
the message execution cannot possibly interfere with 
another. Properties convey the required information 
for the computing nodes: Handler Execution 
Manager (HEManager) and Distributed Handler 



Manager (DHManager). Payload contains the 
original message. There isn’t a restriction for the 
payload format; any kind of message format can be 
embedded to the payload. 

Message Processing Engine (MPEngine) is 
the maestro of DHManager. It employs three threads 
to accomplish three important tasks to orchestrate the 
execution: selecting candidate messages, sending 
messages to the distributed handlers and receiving the 
responses returning from the distributed handler. 
Message Selector Thread (MSThread) selects a 
DHMContext instance of candidate message from 
IMQueue and puts it into MPQueue. On the other 
hand, Message Processing Thread (MPThread) takes 
the context from MPQueue and extracts the required 
information to initiate the transportation of the 
payload.  The third thread, Message Receiver Thread 
(MRThread), become active when an executed 
payload is received. It checks the message ID to 
match the corresponding context in the MPQueue and 
updates the context with the response. If every 
handler has completed its task, MRThread removes 
the context from MPQueue, combines it with the 
native context of CMCQueue and returns the output 
to Gateway module. 
3.2. Communication Manager  

Communication Manager (CManager) 
transports the messages between the computing 
nodes. A Message Oriented Middleware (MOM) is 
employed for the transportation. We use 
NaradaBrokering for this purpose [17]. It provides 
many key advantages for the messaging. The first 
advantage is asynchronous messaging  [18-21]. 
While requester is asking a service, the provider can 
be in the situation of performing another job. This is 
also called as non-blocking IO [22]. The requester 
does not wait for the result; it is notified when the 
output is ready. This eliminates the idle waiting. The 
second advantage is to regulate the message flow. 
Flow control has been widely investigated[23-26]. 
NaradaBrokering can buffer so many messages to 
overcome the flow in peak times. It releases these 
messages gradually so that the receivers are able to 
handle the messages. The third advantage is to have a 
guaranteed message delivery mechanism[27]. There 
exist many researches in this area[28, 29]. Web 
service community has recently introduced 
specifications for the reliable communication too [30, 
33]. NaradaBrokering provides a robust delivery 
mechanism by storing messages in a database so that 
the peers can get them later even if a failure occurs. 
Moreover, it scales very well because of tree 
structure broker network capability. Many brokers 
can link together to build a tree. There might be a 
situation that one broker can saturate that the 
handlers cannot be supported efficiently. This 

limitation can be gotten rid of with the introduction 
of a new broker.  Finally, CManager uses efficient 
publish/subscribe mechanism of NaradaBrokering. 
Publish/subscribe paradigm is benefited as follows; 
every computing node has its own topic. In other 
words, the nodes are uniquely addressable. The 
messages are sent to those addresses in an order. The 
topics are mapped with the handlers before 
communication is started. In a parallel execution, we 
may assign one topic to the handlers that are 
concurrently executed. While this reduces the number 
of addresses in the system, it also prevents modifying 
the execution flow on the fly. Therefore, we stick the 
paradigm of a single topic usage for each handler 
whether it is a parallel or sequential execution.  
3.3. Handler Executing Manager  

Distributed handlers are the applications 
executing the messages in remote places.  Without 
having a supportive environment, handlers cannot 
perform their tasks in remote places. Handler 
Execution Manager (HEManager) is considered to 
build this necessary environment. Each distributed 
handler is hosted by a HEManager.  It supports the 
execution in several ways, stretching out from 
negotiating with CManager for the communication to 
creating the necessary structures. 

There are as many HEManagers as the 
number of distributed handlers.  Both incoming and 
outgoing messages travel with DMFormat. When a 
message arrives to a node, the essential information is 
extracted and necessary structures are constructed for 
the handler execution. The structures are built around 
the unique ID. The execution greatly gets assistance 
from the properties section of DMFormat. The 
orchestration is kept hidden from HEManager with 
the intention of keeping its execution simple. It only 
knows how to create the environment for the 
distributed handler and where to send the response.  

HEManager leverages the common 
interfaces to standardize the handler implementation. 
A handler can be easily implanted to DHArch as far 
as it implements these interfaces. Moreover, 
HEManager support some well known handler 
interfaces such as Apache Axis handler interface.  
4. Execution and details 

DHArch is a system that is capable of 
processing Web service handlers in a distributed 
environment. It is able to use single-processor, multi-
processor or multi-core systems as well as facilitates 
multiple computers sharing a network. It supports 
parallel as well as sequential execution.  

Figure 6 illustrates how a message traversal 
happens in DHArch. Typically, a message arrives 
within a context, specifically a Web service container 
context. The context consists of additional 



information for the execution as well as the message 
itself. It also conveys supplementary information 
about the service requester. Therefore, the incoming 
message context object is stored completely so that 
the response to the right place is guaranteed.  

DHArch can cooperate with the various 
Web service containers. Since every container makes 
use of its own context object for the internal 
execution, creating a common format for the contexts 
requires deep knowledge about each one of them. 
Moreover, conversion between the context objects 
and DHArch specific common format would be 

costly. Hence, CMCQueue is utilized to save the 
interacting container contexts. The context objects 
are mapped with a unique UUID generated key. 
Naming is very vital to identify a message. Many 
messages may arrive to the DHArch in a short 
duration. The confusion is possible if we cannot 
differentiate them from each other. Hence, every 
message has to be uniquely identified to be executed 
correctly. Otherwise, the execution cannot go through 
properly because of having confusion in source, 
destination or processing. 

 
Figure 6 : Message execution

 
 At the same time, DHArch creates its 

unique message context, DHMContext, to perform its 
internal execution properly. The container contexts 
are not utilized for this purpose because of the reason 
that we want to build an architecture having a 
container independent execution. Otherwise, we need 
to revise the execution mechanism for each newly 
introduced container. DHMContexts are firstly stored 
in IMQueue. As it is in CMCQueue, IMQueue 
identifies DHMContext with the same UUID 
generated unique identifier.    

DHMContext employs several structures to 
contribute the execution. The most important one is 
the handler orchestration structure. It defines the 
sequence of the handlers which consists of stages and 
their corresponding handlers. All basic orchestration 
constructs are mapped to two simpler processing 
styles, sequential and parallel. Stages are introduced 
to support parallel execution. Many stages can be 
employed in an orchestration structure and their 

executions are sequential among each other. 
However, the handlers in a stage are executed 
concurrently. Each stage should contain at least one 
handler and there must be more than one handler in a 
stage to have a parallel execution.   

The message processing happens based on 
the guidance of the orchestration structure. It can be 
modified during the execution if the orchestration 
policy allows it. The policy contains the rules about 
must and mustn’t.  A handler orchestration structure 
may contain several conditions for the correct 
execution. The policy may dictate the execution 
sequence. For example, an encryption handler can be 
forced to be executed first.  

When DHMContext is generated and its 
insertion to IMQueue is completed, the acceptance of 
the message is finalized. At this moment, the native 
container context is safe in CMCQueue and 
DHMContext objects waiting to be selected for the 
executions are ready in IMQueue. MSThread starts 
selecting the candidate messages. The candidates are 



selected according to the First Come First Serve 
scheme. It is a fair selection because the first arriving 
message is chosen to be processed first 
[34].However, the selection scheme can be changed 
to another queuing scheme such as priority.  

MSThread chooses a candidate 
DHMContext for the execution and places it into 
MPQueue. This queue is the place where the 
pipelining happens. There is an optimum value for 
the number of messages in this queue.  Similar 
management is facilitated in TCP protocol packet rate 
control procedure[35].  Queue Manager increases the 
number of contexts in the queue gradually unless the 
throughput starts diminishing.  The optimum value is 
looked for by increasing and decreasing the number 
of messages in the queue. Naively, it can be thought 
that it would be good idea to use a very large queue.  
However, we know that the access time increases 
when the queue length increases. More importantly, 
processing a tremendously crowded group of 
messages concurrently depletes the computing 
resources and causes more frequent context switches. 
There is a break-even point for the queue size that the 
performance starts deteriorating while the queue size 
is increasing. This defines the optimum value of the 
queue size. 

MSThread tries to keep MPQueue full. It 
checks always whether there exist optimum number 
of message contexts in the queue. If there are enough 
messages, the thread sleeps. Otherwise, it selects new 
candidates from IMQueue. MPQueue is much 
smaller than IMQueue. We have two reasons to 
employ a smaller queue. The first reason is the 
message pipelining. The messages are being 
processed concurrently to allow executing more 
messages at a time. The second reason is to minimize 
the access time. The idea is similar to the memory 
structures of the modern computers; the processes are 
taken into the caches, smaller and faster memory 
[37]. Similar to this  hierarchical memory structure of 
the contemporary computers [38], DHArch utilizes a 
smaller dedicated storage, MPQueue,  in addition to 
the bigger one, IMQueue.  

MPThread starts the execution of messages 
in MPQueue at once. It continues processing 
messages until the MPQueue becomes empty. While 
MPThread tries to deplete the messages from 
MPQueue, MSThread stockpiles new messages on 
the top of the queue. They work very closely and in 
tandem style.  It is very correct to say that MSThread 
is a producer while MPThread is consumer. 

MPThread carries on the message 
processing by extracting necessary information from 
DHMContext. Every distributed handler is located in 
an addressable place. The addresses are kept within 
DHMContext.  The context also contains the message 

and the supportive information for the message 
execution. By using these data, DMFormat is created 
for the transportation. When it is ready, it is sent to 
the distributed handlers via CManager. The messages 
are instantly sent to all handlers of a stage. However, 
the message execution of those handlers may be 
completed in different times. All the handler 
executions in a stage have to be finished before going 
to the next stage. MPThread waits the completion of 
the handler executions before starting the delivery of 
the message to the next stage. This procedure 
continues until all stages of a message are completed. 

DHArch threads require clever notification 
mechanism. They are not allowed to run 
continuously. Instead, they are forced to wait if they 
are not needed. Otherwise, wasting the system 
resources is inevitable. The threads share the 
computing resources to be successful in their tasks. 
The resource sharing happens according to the 
system thread scheduling algorithm. If a thread 
continues to run with a conditional check instead of 
staying in its wait condition, it will consume the CPU 
and memory resources even if it does not perform an 
actual task [39]. MSThread enters in its wait 
condition when MPQueue becomes full or IMQueue 
becomes empty.  In both situations, there is really 
nothing to do for MSThread. Hence, it stays in wait 
condition until it is notified. There are two notifying 
events for MSThread. The first one is the number of 
the messages in MPQueue. If the MPQueue becomes 
empty or contains fewer messages than the optimum 
number, MSThread is notified. The second 
notification is a new message arrival. If MSThread 
and MPThread are somehow waiting in their 
conditions, they cannot restart their executions 
because they notify each other.  Therefore, an 
independent notifier is essential to continue the 
executions. When a new message arrives to IMQueue 
and the number of the message in MPQueue is less 
than the optimum value, MSThread receives a 
notification. 

Handler invocation occurs according to the 
DHMContext orchestration structure. CManager 
delivers the messages to their destinations in an order 
defined by the context orchestration structure. When 
a message is received by HEManager via CManager, 
the preparation of the suitable environment for the 
execution is initiated.  

DHArch can utilize wide variety of handlers 
such as monitoring, format converters, logging, 
compression, decompression, security, reliability and 
so on. They generally perform tasks that support to 
Web service by introducing a new functionality. The 
interesting part of a SOAP message for a handler is 
the header even though the body is able to be 
processed. Therefore, a handler mostly expects the 



whole SOAP message as an input. On the other hand, 
many handlers process only the partial SOAP 
messages.  For example, WS-ReliableMessaging 
handler processes only wsrm tag of the entire 
message. Therefore, HEManager allows utilizing the 
partial execution where the size of the message 
becomes a concern.  However, since this is not 
applicable to every handler, a full SOAP message 
execution is performed unless the partial execution is 
explicitly mentioned as a necessity. We also need to 
keep in mind that the partial SOAP message 
execution causes an overhead originating from 
parsing the SOAP message and combining the 
outputs later.  

HEManager exploits supplementary data for 
the handler executions. These data are conveyed 
within the properties.  Some of these properties are 
applicable to every handler.  One of them is oneway 
feature. It describes a situation that a handler does not 
have to send any response back. When DHManager 
encounter an oneway handler, it applies fire and 
forget paradigm and continues its remaining tasks 
without waiting the response [40]. Additionally, 
mustPerform property is also universal for the 
handlers. If a handler has true value for the 
mustPerform parameter, it always has to complete its 
executions. In the situation of an error, the execution 
has to be repeated if it does not lead to an inconstant 
state. Otherwise, the message execution must totally 
be halted and the requester must be informed. The 
message execution can continue when the 
mustPerform value is false even if the handler throws 
an exception. For example, skipping a logging 
handler may not be so crucial for a Web Service so 
that the message execution can carry on without 
restarting it from the beginning.  

When a handler completes its task, the 
output message is pushed back to the HEManager. 
DMFormat is utilized to return the output. The 
corresponding unique ID has to be same with the 
request. When it is ready, it is passed to CManager 
for the delivery to the destination. When the envelope 
arrives to the destination, MRThread is activated. The 
message delivery is a notification for MRThread. It 
updates the corresponding context with the executed 
message. First, it checks whether the ID is 
represented in MPQueue. Otherwise, the response is 
behaved as a malicious message and it is discarded. If 
the ID passes the check, the properties and the 
payload are extracted. The corresponding 
DHMContext in MPQueue is retrieved by using the 
unique ID. At the end, the context is updated with the 
processed message. 

The modification of a context with a 
successful handler execution may not be the end of 
the journey. The message has to repeat these 

procedures for every handler in its orchestration 
structure. MRThread checks whether the message 
completes the execution for every handler. If it is the 
case, the context is taken out from the queue.  The 
container context object has been kept in CMCQueue 
until this moment. It was preserving the essential 
information to continue the message execution in the 
interacting Web service container.  Therefore, saving 
the container context object is very important. When 
the container context is taken out from the 
CMCQueue, it is updated by utilizing DHMContext 
that we have retrieved from MPQueue. Finally, the 
processed container context is passed back to the 
Web Service container to finalize the message 
execution in DHArch.  

It is possible to have errors while the 
execution is happening. If a handler stops abruptly 
because of a failure, the error need to be handled so 
that the system continues to its execution. An error is 
a state that may lead to a failure. Being clear about 
the basis of an error is crucial to provide a solution. 
Laprie et al. describes two ways of dealing with 
failures, fault prevention and fault tolerance [41]. 
While the first one works to prevent the occurrence 
of a fault, the second copes with providing the 
continuation of the service even in the presence of the 
failure.  Even though a complete avoidance of failure 
is not possible, there are tools supporting fault 
prevention [42]. Apparently, fault tolerance is 
necessary to be able to continue execution while a 
fault occurs. Fault tolerance requires enhancing the 
language to detect and handle the error. Additionally, 
a new semantics is essential to modify the execution 
on the fly. 

When a fault tolerance is mentioned, we 
need to bear in mind that forward recovery can be 
used as well as the backward recovery. In the forward 
recovery, the tasks are tried to be completed by 
processing several times. Backward capability 
requires atomicity. It is one of the most essential 
notions for the consistency. In regard to atomicity, 
Hagen at al. [43]  defines three task types, atomic, 
quasi-atomic and nonatomic. Atomic tasks are those 
that they have no effect at all if they fail. For 
example, every read-only task can be thought as an 
atomic task even if they fail because it does not cause 
any change. Quasi-atomic effects do not vanish 
naturally. The effects can be eliminated via a roll-
back action, though.  Nonatomic tasks are the one 
that the effects cannot be removed when they are 
committed. 

Handlers can be either statefull or stateless. 
A handler generally processes a SOAP message and 
applies its procedure over it. In other words, they do 
not keep any state for the message. This feature 
contributes to utilizing forward recovery.  DHArch 



restarts the execution if a stateless handler fails. 
HEManeger notifies the error to DHManager. In 
other words, the exception is propagated back to 
DHManager.  DHManager starts the message 
execution again when it receives the exception for the 
stateless handler. It may be repeated several times 
depending on the situation. If the execution is not 
successful after these efforts, the message execution 
is totally halted and the exception is propagated back 
all the way to the service requester. In this case, the 
requester may assume that the handler may be down 
or crashed.  

Handlers are not always stateless. They 
might be keeping states for the messages. DHArch 
expects atomicity from the statefull handlers. If a 
handler fails during its execution, it should not have 
any effect at all. If having atomic handler is not 
possible or the handler is a quasi-atomic, it is 
necessary to utilize two-phase commit. There exists a 
solution for the distributed commit [44]. However, 
we prefer to employ a handler in a suitable place to 
commit or roll-back the effects if the handler is not 
atomic and statefull. 

There exist cases that the execution can 
continue even if an error occurs. The handler 
orchestration consists of a property that defines 
whether it is an obligatory to be performed. 
mustPerform element tells to the system whether it 
has to be executed.  If a handler contains true value 
for mustPerform, the message execution cannot 
continue without achieving its execution.  Otherwise, 
the error can be neglected and the execution 
continues. 
5. Measurement and Analysis 

We performed series of measurements 
illustrating the advantages of distributed handler 
execution in various environments. The first set of 
measurements is to examine the performance of a 
single message in DHArch. The second set of 
experiments is conducted to explore the scalability to 
illustrate the efficiency of the system. Finally we 
perform measurements by using two well-known 
Web Service Specifications, WS-Eventing and WS 
Resource Framework. 
5.1. Performance measurements 

DHArch offers a promising environment for 
Web service handlers. It supports concurrent 
execution and allows utilizing additional resources. 
Many types of resources such as computer, processor, 
memory, storage or even an application can be 
utilized.  

DHArch is evaluated by utilizing 6 different 
configurations of 5 Web service handlers. They are 
customized for benchmarking purpose. Two of the 
handlers are CPU bound handlers. The remaining 

three handlers have been chosen from the 
applications that are gradually switching from CPU 
bound to I/O bound. The handlers are named in these 
benchmarks as in Table 1. The combinations of the 
parallel executable handlers can create so many 
different configurations. However, the dependencies 
between handlers and the performance issues need to 
be carefully investigated for the correctness of the 
execution while deciding these combinations.  

Table 1: Handler list for the performance 
benchmarking 

Handler Name Handler Type 
Handler A  CPU Bound   
Handler B  CPU Bound 
Handler C  IO Bound 
Handler D  IO Bound  
Handler E  CPU/IO 

Out of many, six different handler 
configurations are selected for this benchmark. The 
first configuration is sequential execution of the 
handlers in Apache Axis. This is for the comparison 
purpose. The second configuration is sequential 
execution utilizing DHArch.  The sequence of the 
handlers is exactly same with the first configuration. 
The third configuration contains two parallel and one 
sequential handler executions. Handler A is parallel 
with Handler C and Handler B is parallel with 
Handler D. After the execution of these handlers, 
handler E is executed. The execution time of a 
handler joining to a parallel execution is significant 
for the performance. The fourth configuration 
contains the same number of parallelism. However, 
in this configuration, the first stage contains Handler 
A and Handler B and the second stage contains 
Handler C and Handler D. Therefore, we expect that 
their performance will be different even though they 
do the same job. The fifth configuration contains two 
stages. The handlers are executed concurrently except 
handler E, which is separated because of the 
dependency. It modifies the incoming SOAP 
message. Therefore, it is kept last to prevent an 
incorrect execution. Finally, the last configuration is 
created without concerning about the dependencies. It 
consists of a single stage containing five handlers. In 
other words, all of the handlers are parallel. 

The benchmarks are conducted in three 
different hardware environments. The first 
environment is a multi-core system. The intention is 
to figure out the behavior of DHArch in a multi-core 
system. Nowadays, the trend is to have multi-core 
computers and it is expected that more cores will be  
seen in a single processor in near future [45]. Hence, 
we give a special attention to the measurements in 
multi-core systems. The utilized machine in this 
experiment has UltraSPARC T1 processor that 
contains 8 cores running Solaris Operating System, 4 



threads per core, with 8GB physical memory. 
Although concurrent execution has many challenges 
[46], it activates the individual core usage in the 
multi-core systems; a handler may claim its own 
core. We can conceive this core acquisition as if 
every handler has its own computing node so that the 
tasks are achieved without competing for the 
computing power. 

The second benchmarking environment is 
the computers sharing a Local Area Network. The 
computers in this cluster have the same hardware 
features. They utilizes Fedora Core release 1 
(Yarrow) in Intel Xeon CPU running on 2.40GHz 
and 2GB memory. In this environment, the handlers 
are distributed to the different machines.  

The last environment is a single computer, 
utilizing Pentium 4 processor operating at 2.80GHz 
with 1.5 GB memory. It is running Red Hat 
Enterprise Linux AS 4 operating system. In contrast 
to previous systems, the distributed handlers need to 
share a single computing resource. Therefore, we 
may witness context switches among the distributed 
handlers and the other components of DHArch so 
that the result may be undesirable for the 
performance. 

 
5.1.1. Results and analysis   
 

We measure the overall performance of a 
Web service deployment in Apache Axis and 
DHArch. Handler distribution causes an overhead. 
The management of the distributed handler execution 
and the transportation of tasks increase the execution 
time. However, there are also gains because of the 
advantages of parallel execution. Our interest is to 
find out the performance benefits coming from the 
advantages of the distribution.  

There are ways of compensating the 
overhead and even achieving a promising overall 
performance. The first way of improving the 
performance of a deployment is to establish 
concurrent handler execution in a distributed 
environment. Conventional handler deployment does 
not let the handlers run in a parallel manner. 
However, there are many independent handlers from 
each other so that they can process the SOAP 
messages concurrently. For instance, a monitoring 
handler does not depend on a logging handler. They 
can be easily executed concurrently. The second way 

of improving performance is to utilize faster 
machines. A faster machine may contribute to the 
overall performance when an appropriate handler is 
deployed into it. For instance, encryption and 
decryption handlers’ distribution to the faster 
machines within a secure environment contributes 
best to the overall system. 

The measurement, shown in Figure 7, 
depicts the results from the multi-core system. The 
values show the round trip time of a service request. 
Clients record the time of the request initiations and 
calculate the elapsed time when they receive the 
responses. Hence, the measurements contain 
transportation, service and execution times of the 
handlers. Every observation was repeated 100 times. 

It is clearly seen that the best results are 
observed when all handlers are able to run 
concurrently. However, processing them concurrently 
may not be always possible. As we discussed earlier, 
the dependencies between the handlers have to be 
considered. For example, an encryption handler may 
need to be processed first. Otherwise, the remaining 
handlers cannot understand the message because of 
the encryption. The difference between configuration 
1 and 2 is the overhead originating from the 
distribution of five handlers. The first configuration 
utilizes Apache Axis in-memory handler deployment.  
In the second configuration, because of the 
distribution of the handlers to the individual cores, 
DHArch increases the execution time slightly. The 
gain may be small; in the configuration 3, it is around 
50-70 milliseconds because of the processing time of 
Handler C and Handler D. As a result, this 
configuration slightly provides enough gain to 
overcome the overhead. Sometimes, gain may not 
even compensate the overhead.  On the other hand, a 
gain can be very appealing as it is in configuration 4, 
5 and 6. They provide good results due to processing 
times of Handler A and Handler B. The numerical 
values of the results are stated in Table 2. 

Gain completely depends on handler 
configuration. On the one hand, it can provide a 
fascinating performance with the execution of all the 
handlers in a parallel manner. On the other hand, it 
may not even present a slight gain in the execution 
time to compensate the overhead coming from the 
distribution of handlers.  

 
 



 
 

Figure 7: The execution of Web service containing the five handlers with six handler configurations in the 
multi-core system 

 
Table 2: The elapsed time and the standard deviation of the performance benchmark in the multi-core system 

Configuration number 1 2 3 4 5 6 
Mean value (msec) 7192.9 7220.92 7164.98 4324.86 4279.37 4264.78 
Standard deviation  42.97 56.68 57.75 49.66 29.92 36.96 

 
Figure 8 : The execution of Web service containing the five handlers with six handler configurations in the 

cluster utilizing Local Area Network 
 
Figure 8 illustrates results from the 

executions of the handlers in cluster that 
communicates with a Local Area Network. The 
execution times get smaller due to faster computers. 
However, this does not change the behavior of the 
handler configurations. They follow the same 
patterns of the previous systems. The sequential 
execution of DHArch is executed slower than those 

from the remaining configurations. The numerical 
values of the results are shown in Table 3.   

The standard deviations are reasonable even 
if the tasks between handlers travel over the local 
network. The network is fast and consistent. The 
message transportation does not take too much time. 
When the results are compared with those from the 
previous systems, any side effect coming from the 
usage of LAN is not observed.  



 
Table 3: The elapsed time and the standard deviation of the performance benchmark in the cluster utilizing 

Local Area Network
Configuration number 1 2 3 4 5 6 
Mean value (msec) 1717.08 1741.95 1712.22 1182.06 1150.55 1139.26 
Standard Deviation (msec) 42.56 35.32 36.30 44.06 37.79 45.90 

The results, shown in Figure 9 and Table 4, 
are from the single processor system. In contrast to 
previous measurements, single processor system 
provides a different pattern. Thread scheduling 
becomes an issue. Since two handlers are heavily 
CPU-bound, the individual execution times of them 

are increasing when they are executed concurrently. 
Moreover, NaradaBrokering and Apache Axis in 
Apache Tomcat container use the same processor. 
This worsens the thread scheduling. 

 

   
Figure 9 : The execution of Web service containing the five handlers with six handler configurations in the 

single processor system
Table 4 : The elapsed time and the standard deviation of the performance benchmark in the single processor 

system
Configuration number 1 2 3 4 5 6 
Mean value (msec) 1538.14 1661.73 1638.54 1558.9 1528.21 1488.67 
Standard Deviation (msec) 56.32 58.29 54.86 73.82 85.90 86.80 

 

5.2. Scalability   
In this experiment, we will investigate the 

throughput in DHArch comparing with a 
conventional handler mechanism. We will also find 
answers for the effect of request rate over the 
processing time.  
5.2.1. Message rate 

Web service is basically a paradigm that 
clients make requests to execute a task in a remote 
application. This structure may lead the situation that 
many clients make requests in a short time. For 
instance, an online shopping center which utilizes 
Web service technology may receive hundreds of 
transactions. There might be scenarios that the 
request rate may be even higher. For example, Web 
service, which presents an interface to illustrate a real 
time tornado development, may receive inputs from 
thousands of sensors. Consequently, a Web service 
may have a very high request rate.  Therefore, the 
system architecture must be efficient and effective 

that it can answer the increasing number of requests. 
Handler chain is one of the most crucial parts of the 
service execution.  Its performance directly affects 
overall system performance. We will investigate the 
scalability of DHArch by comparing with Apache 
Axis 1.x handler execution mechanism.  

We utilize multi-core machines in a cluster 
for benchmarking purpose. In this cluster, 8 
computers communicate via a Local Area Network.  
Every computer has 2 Quad-core Intel Xeon 
processors running at 2.33 GHz with 8 GB of 
memory and operating Red Hat Enterprise Linux ES 
release 4 (Nahant Update 4). 

Three handlers are utilized for this 
measurement: Logger, Monitor and Format 
Converter. Logger stores the incoming messages in a 
file. Monitor keeps the information for the services 
such as the incoming message rate, the message size, 
and information about the clients, and number of 
clients which are connected and so on.  The last 
handler, Format Converter, converts incoming 
message formats to a uniform format,  a format that 
the service expects.  



Apache Axis handler structure utilizes a cain 
of handlers that passes the massage from one handler 
to another. A configuration file defines the handlers 
and their position in the execution path. Apache Axis 
handler executions can be depicted as it is in Figure 
10.  

 
Figure 10: Apache Axis sequential handler 

deployment for scalability measurement 
DHArch provides concurrent as well as 

sequential execution for the handlers.  The group of 
handlers, used in Apache Axis benchmarking, is also 
utilized for DHArch.  Even though handlers may not 
be possibly processed in a parallel manner because of 
dependencies, the handlers selected for this 
experiment are suitable for parallel execution. Hence 
parallel as well as sequential execution has been 
utilized for DHArch benchmarking. The deployments 
are portrayed in Figure 11  and Figure 12.  

 

 
Figure 11: DHArch sequential handler 

deployment for the scalability measurement 
 

 
Figure 12:  DHArch parallel handler deployment 

for the scalability measurement 
Two experiments have been conducted. In 

the first one, we have measured elapsed execution 

time of a single message while the number of 
messages per second is increasing. The second 
experiment has been performed to measure the 
cumulative time for the completion of the certain 
number of messages.  

In order to measure the execution time for a 
single message while the number of message per 
second is increasing, we use the following 
experimental setup.  The messages are sent within the 
same rate during 100 seconds. The rate starts from 1 
message per second and continually increases 10 
messages in every step to the level that the service 
can support. Figure 13 shows the results gathered 
from a single machine in the cluster. A single 
machine is used for the comparison purpose. The 
figure shows the elapsed execution times, measured 
in client side. 

DHArch parallel execution has the fastest 
execution time while the sequential execution yields 
the highest processing time because of the 
distribution. Between these two, we see Apache Axis 
result. At one point, the processing times increases 
noticeably. This incident happens where the system 
resources are fully utilized. The message execution 
time has been slowly increasing because every 
additional message starts sharing the computing 
resources. However, it has not been causing abrupt 
changes until the resources are fully used. When the 
resources start unable to meet the demands, the 
execution times has been skyrocketing. In Apache 
Axis, every arriving message starts another handler 
pipelining which shares the scarce resources. The 
context switches starts occurring more frequently. 
Hence, the execution time increases faster. There is 
not a regulation for the incoming messages to prevent 
this dilemma.  On the other hand, DHArch has a 
different reason for the spike. DHArch does not allow 
the context switching cost worsening the system 
performance. Instead, the increase in execution time 
comes from the message waiting in IMQueue. 
DHArch forces the messages wait in IMQueue; it 
keeps optimum number of messages in MPQueue not 
to worsen the processing time because of the context 
switching. Hence, we observe a slower increment in 
the execution time for the message rate between 70 
and 80. 

For the Apache Axis deployment, we 
observe that the message execution time started to 
decline significantly when the number of threads hits 
a point that thread scheduling becomes an issue. The 
performance begins deteriorating dramatically.  The 
problem is that there are too many threads running 
and handler mechanism did not have any regulation 
to keep the performance in its optimum level. We 
notice that the fluctuation in the message processing 
increases considerably. When the engine completes 



enough message executions, the performance is 
improving and the system starts processing more 
messages. At the same time, the newly arriving 
messages begin building up the new threads. When it 
reached its limits, the performance starts declining 
again. This pattern repeats itself until the message 
executions are completed. The standard deviation for 
80 messages per second illustrates the incident. On 
the other hand, since context switching does not 

affect the execution as it is in Apache Axis, the same 
fluctuation is not observed in DHArch.  However, the 
increase in the execution time is not preventable 
when the system resources are drenched. In order to 
optimize message execution, the remaining messages 
that system cannot support are forced to wait in the 
queue. Hence, the message processing time increases 
steadily in DHArch.  

 
Figure 13 : Message execution for increasing message rate in a single machine 

 
Figure 14 : Message execution for increasing number of messages per second in multiple machines 

communicating via Local Area Network 
 
A multi-core system provides advantages 

due to the individual core use for handler executions. 
If the resources are enough for the handlers which are 
running in a parallel manner, the computing 
resources do not have to be relinquished while the 
execution continues. For a single request, we 

definitely see the advantage of utilizing individual 
cores when the handler parallelism is applied. On the 
other hand, the advantage of the parallel execution of 
the handlers fades away for higher message rates. In 
other words, pipelining becomes dominant factor in 
the executions. Both Apache Axis and DHArch 



benefits from pipelining. Hence, in this experiment, 
we investigate mainly pipelining rather than handler 
parallelism. 

When we introduce multiple computers, we 
see the immense gain in DHArch. Apache Axis 
cannot benefit from multiple computers but DHArch 
can. Hence, the processing time stays stable longer 
time. Figure 14 portrays this situation. The message 
rate does not change the response time until 160 

messages per second. One of the important events in 
the graph is the convergence of the Apache Axis 
single machine execution to the DHArch multiple 
machine sequential execution. In a single machine, 
Apache Axis processes massages faster than DHArch 
sequential execution. When we introduce the 
additional computers for DHArch, Apache Axis 
catches and later passes the execution time of 
DHArch sequential.   

 
Figure 15 : Execution for increasing number of messages in a single machine

In the second experiment, message rate is 80 
messages per second where the system resources start 
being utilized fully in a single machine. The message 
rate is kept same for 100 seconds. In other words, 

8000 messages are sent in total. In every second, we 
measure the cumulative number of the executed 
messages. The results are depicted in Figure 15.  

 
Figure 16 : Execution for increasing number of messages in multiple machines 

When we look at the graph, we notice that 
Apache Axis completes its executions later than 
DHArch. The reason is the thread scheduling. 

DHArch employs a regulatory mechanism to control 
thread scheduling. It does not allow creating too 
many parallel message execution pipelines that 



shares the resources and causes performance 
degradation. Another observation from the figure is 
the closeness of the parallel and sequential executions 
of DHArch. While the system resources are being 
used fully, the parallel or sequential execution does 
not differ so much because the dominant factor is 
pipelining rather than handler parallelism.  

When additional computers are introduced 
to DHArch, the performance becomes very 
promising. The processing time of the same amount 
of messages is reduced more than two fold and 
number of messages executed in a given time is 
increased considerably. Figure 16 portrays the 
results. 

We clearly notice the advantages of utilizing 
DHArch in terms of throughput when multiple 
computes are used for the computation, shown in 
Table 5.  In single machine, the message rate is 80 
messages per second. The throughputs are very close 
to one another. When the multiple machines are used 
in DHArch, the throughput becomes favorable to the 
DHArch because the number of the processed 
messages doubles. 
Table 5 : Throughput where the system resources 

are being utilized fully 
Throughput 
( messages 
per second) 

Apache Axis in single machine 72 
DHArch  sequential in single 
machine 78 
DHArch  parallel in single machine 76 
DHArch  sequential in multiple 
machines 166 
DHArch  parallel in multiple 
machines 173 

 
5.3 Deploying Web Service Resource 
Framework and Web Service Eventing  

We want to crown the experiments by 
showing deployment of two well-known Web service 
specifications. Many efforts have been dedicated to 
the WS-specification. The implementations gradually 
have started to appear Web service arena. We have 
found several groups providing the WS-specification 
implementations. Among them, two specs were 
fitting for our purpose; WS-Resource Framework 
[32] and WS-Eventing[47].  

Web services must offer ability to the clients 
to access and manipulate state. Even though 
managing states is challenging, stateful resources are 
not utterly evitable. A service may utilize one or 
more stateful resources. Hence, Web service 
architecture should provide eligible functionalities to 
access them. On the other hand, while this capability 

is being offered, having a standard way is essential. 
Web Service Resource Framework (WSRF) 
establishes the necessary standards for the states. It 
provides capabilities to insert, update, and discover 
the stateful resources in a standard and interoperable 
way. We utilize the Apache implementation of 
WSRF for the experimental purpose. We created our 
stateful resource for sensors. In addition to inquiry, 
insert and update functionalities can also be achieved 
in a standard way.  

A Web service may benefit from receiving a 
notification when an event occurs. Instead of 
checking an event occurrence repeatedly, an entity 
can be notified by an event source when an event 
happens. In this paradigm, a service, called as 
subscriber, needs to register itself to a certain interest 
with another service, called as event source. Web 
Service Eventing (WS-Eventing) defines a protocol 
to standardize this effort. A subscription manager can 
be employed to administer subscriptions. We utilize 
FIN, an implementation of WS-Eventing from 
Pervasive Technology Lab [48].  

A computer cluster is utilized for this 
experiment. It contains 8 machines having the same 
features. They share Local Area Network to 
communicate each other and utilize Fedora Core 
release 1 (Yarrow) in Intel Xeon CPU running on 
2.40GHz and 2GB memory. 

Before starting benchmarking, the 
initializations of the specifications are completed. 
Sink registers itself to the topic /sensor/california and 
sensor stateful resource stores the initial information. 
Most importantly, the suitable massages are selected, 
one from WS-Eventing and one from WSRF. These 
messages are combined to create a new message in 
order to run WSRF and WS-Eventing handlers in a 
parallel manner.  

 
Figure 17 : Sequential Execution of WSRF and 

WS-Eventing 
The message notifies an important activity 

and updates information for a sensor stateful 
resource. When it is received, WS-Eventing source 
handler looks for the subscription manager service to 
find out the interested subscribers. Then, it delivers 



the event to the sinks, the interested subscribers. 
While notification is happening, WSRF handler also 
updates the values of the states, which are kept in 
storage, and forwards the information with the 
additional data previously stored.  

Specifications are, first, deployed for 
Apache Axis. Every single request is observed 100 
times. Handlers and service endpoint utilize a single 
computer. The remaining components of the 
specifications are hosted by the individual computers 
in the cluster. The logical deployment is depicted in 
Figure 17. 

The environment to execute WS- Eventing 
and WSRF is also created for DHArch.WS-Eventing 
requires individual computers for its components; 
Sink Source and Subscription Manager. Hence, they 
are located to the separate computers. Similarly, 
WSRF as well as NaradaBrokering are located into 
the individual computers in the cluster. Finally, the 
service endpoint is placed its location in the cluster. 
The deployment can be portrayed as in Figure 18.  

 
Figure 18 : Parallel Execution of WSRF and WS- 
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The handlers are deployed into the request path. They 
look for their responsible elements in the messages. 

In other words, the handlers process only the relevant 
elements. We have individually measured the 
execution times of the WSRF and WS-Eventing. The 
results are shown in Table 6. 

We perform the sa
on in DHArch. Because of the overhead 

originating from the distribution of the handlers, the 
time of processing a single message increases. The 
results are shown in Table 7. 

Table 7 : WSRF and WS-E
execution in DHArch  

WSRF WS-
Even service

Execution time 70.25 
(millisecond) 

54.68 171.64 

Standard deviation 4.45 3.93 10.08 
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ant improvement in the service performance. 

The concurrency reduces the execution cost of a 
single request by one forth. The cumulative execution 
time of the handlers in a sequential processing is 
around 124 milliseconds. It is slightly higher than the 
total execution time of the service in DHArch parallel 
handler execution. Since WSRF processing time is 
higher, it is the main player to determine the 
processing time of the handlers joining to the parallel 
execution. Due to the fact that DHArch deals with 
only handlers, the service endpoint processing time 
does not change. A service without handler 
executions takes almost 40 milliseconds. Table 8 
shows the execution times and standard deviations of 
DHArch parallel handler execution.  

Table 8 : WSRF and WS-Event
execution in DHArch 

WSRF WS-
Even service

Execution time 69.49 
(millisecond) 

54.45 115.15 

Standard deviation 5.53 3.42 12.15 
The benc ing demonstr the 

advantag

nted Architectures, specifically 
Web se

hmark ates 
e of parallelism for the handler execution. 

While the search goes on for the handler candidates 
among the specification, we encounter a very small 
domain of handlers which is possibly executable 
concurrently. Even in this domain, the way of 
implementation causes problems for the distribution. 
We are expecting that this domain grows in near 
future. Hence, utilizing the distribution and 
parallelism for the specifications will produce many 
state-of-art applications. 

6. Conclusion 
Service Orie
rvice technologies, focus on benefiting 

maximally from interoperability and reusability. 



Many standards and structures have been developed 
to provide an interoperable environment. Web 
Service Description Language (WSDL), Universal 
Description Discovery and Integration (UDDI) and 
Simple Object Access Protocol (SOAP) are de-facto 
standards to build Web services, which are basically 
an application offering a service via SOAP 
messaging. On top of these standards, many WS-
specifications have been introduced to provide 
additional capabilities. Many others are already on 
the way. Furthermore, there are efforts to build 
efficient Web service processing environments. 
These environments contain many tools to process 
SOAP messages, which is the most basic and 
essential task of a service execution framework. 
Hence, SOAP processing engines, Web service 
containers, have been constructed to provide an 
efficient environment and to hide the complexity of 
the SOAP processing from the user. 

Web services exploit additive functionalities 
to impro

ry efficient handler 
architect

ve its capabilities such as security, reliability, 
logging and so on. Some of these functionalities have 
been standardized as WS-specifications such as WS-
Security and WS-Reliable Messaging. In many cases, 
the functionalities are very essential for a service. For 
example, a health service without reliability may be 
deadly. A monitoring service without logging may be 
useless. Consequently, a Web service needs 
additional functionalities to improve its capabilities. 
These additive functionalities are called handlers or 
filters. They are inevitable for many services as the 
necessary capabilities are stated for the health and 
monitoring services. This necessity forces the 
containers to create their internal handler 
architecture. However, the design is very critical in 
order to be successful in this effort. Since handlers 
are one of the key SOAP processing component of 
Web service architecture, this design affects the 
whole Web service execution. Therefore, we have 
investigated the handler architectures extensively and 
derived very vital and important results from this 
conclusive research. Distributed Handler Architecture 
(DHArch) shows us many essential features that are 
necessary for efficient, scalable, flexible, and 
modular handler architecture.  

DHArch provides ve
ure by exploiting concurrent handler 

execution and utilizing additional resources. Many 
handlers are independent from each other. In other 
words, they can be processed concurrently without 
harming the correctness of the execution. This 
improves the performance dramatically. Moreover, 
the efficiency significantly increases when the 
parallel executions leverages additional resources. 
For example, taking advantage of an individual 

powerful machine for WS-Security in LAN network 
contributes to the system efficiency incredibly.  

DHArch benefits from message parallelism 
in addition to the handler parallelism. Instead of 
waiting for the completion of a message execution, 
many messages can be processed at the same time. 
We called this message pipelining. DHArch utilizes 
pipelining by leveraging its internal structures. 
DHArch processes the optimum number of messages 
and keeps the remaining in a queue instead of letting 
every message arriving to the system to start its 
execution right away. This regulation prevents the 
performance degradation because of too many 
messages running concurrently.  

Orchestration is a significant feature to 
collaborate the distributed applications. 
Dissemination of the handlers requires a handler 
orchestration. Promising results cannot be expected 
without a decent orchestration mechanism for the 
handlers. Hence, an orchestration mechanism has 
been introduced.  It provides two main advantages. 
First of all, it offers very efficient and effective 
engine by introduction of the separation of the 
description and the execution while it is providing 
very powerful expressiveness. Secondly, this 
mechanism helps to build dynamic handler structure.  

DHArch scales very well. Having additional 
resources improves the scalability.  More resources 
allow answering more requests.  Since a Web service 
may contain many handlers in addition to the Service 
endpoint, they all together may saturate a single 
machine. It gets worse while many clients are 
requesting many services concurrently. The response 
time keeps increasing. Instead, the bottleneck points 
can be eliminated by introducing additional resources 
and utilization of the concurrency. 

DHArch is a very flexible system. It easily 
allows adding new handlers.  The architecture can 
also easily be adapted to a Web service container.  
The only necessary action is the implanting a suitable 
gateway. Furthermore, it is also able to utilize a 
variety of platforms for the handler distribution. It 
can process handlers in a system ranging from a 
single computer, multi-core, and multi processor to 
many computers.  
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