
DISTRIBUTED HANDLER ARCHITECTURE
Beytullah Yildiz1, Geoffrey C. Fox2

1Department of Computer Engineering, TOBB University Economics and Technology, Ankara Turkey

2Department of Computer Science, Indiana University, Indiana USA

Abstract

Over the last couple of decades, distributed systems have been demonstrated an architectural evolvement based on
models including client/server, multi-tier, distributed objects, messaging and peer-to-peer. One recent evolutionary
step is Service Oriented Architecture (SOA), whose goal is to achieve loose-coupling among the interacting
software applications for scalability and interoperability. The SOA model is engendered in Web services, which
provide software platforms to build applications as services and to create seamless and loosely-coupled interactions.
Web services utilize supportive functionalities such as security, reliability, monitoring, logging and so forth. These
functionalities are typically provisioned as handlers, which incrementally add new capabilities to the services. Even
though handlers are very important to the services, the way of utilization is very crucial to attain potential benefits.
Every attempt to support a service with an additive functionality may increase the chance of having an
overwhelmingly crowded chain. Moreover, a handler may become a bottleneck because of having a comparably
higher processing time. We present Distributed Handler Architecture to provide an efficient, scalable and modular
architecture to address these issues.

Keywords: Service Oriented Architecture, Web Service, Parallel Computing, Pipelining, Handler, Container

1. Introduction

One recent evolutionary step in computing
environment is Service Oriented Architecture (SOA)
whose goal is to achieve loose coupling, scalability
and interoperability. SOA manifests itself perfectly in
Web services, supplying platforms to build
applications as services. Web service framework
offers standard ways to interoperate among software
applications, running on a variety of platforms [1]. It
provides seamless and loosely coupled
communications; applications can communicate with
each other without giving much effort even though
they might be utilizing different languages and
platforms.

Web service provides a common ground to
offer interoperability. Many standards have been
introduced and many of them are on the way. The
key features of the Web services, which are described
by World Wide Web Consortium (W3C), have been
introduced as Web service specifications. Simple
Object Access Protocol (SOAP)[2], Web Service
Description Language (WSDL) [3], and Universal
Description Discovery and Integration (UDDI) [4]
are de-facto standards.

One of the most crucial aspects of Web
service framework is the utilization of the XML
messaging. SOAP is an XML based data exchange
format, which is employed by Web services.
Consequently, Web service framework heavily
depends on SOAP processing. As a result, several
Web service containers, the middleware in Figure 1,

has been introduced to take pressure off the
applications. Their main goal is to hide the details of
the SOAP processing from the users. The most
popular containers are Apache Axis[5], Microsoft
Web Service Enhancement[6] and IBM
Websphere[7] .

The container architecture employs two
main SOAP processing components, Web service
endpoint logic and handler. Handler is also called as
filter. Web service endpoint logic, which is a
standalone application, carries out main task. On the
other hand, a handler is a supportive application. It
contributes to a service with additional capabilities
such as reliability, security and logging.

Despite the fact that handlers preferably deal
with header, they also have the ability to modify
SOAP body. In addition to de-facto standards, many
WS-specifications have been introduced so far. They
are the efforts where the community sets the
standards to have more interoperable systems[8].
Some of them are very good candidates to be
handlers, especially, those dealing with the headers.

Web services are able to employ a set of
handlers to acquire many capabilities in a single
execution. For instance, a service may need to be
reliable as well as secure at the same time. Handler
chains are introduced for this purpose. Container
engines let a message travel through handlers in a
chain.

Apparently, handler is a crucial aspect of
Web Service Architecture because of the key

importance in the execution path. However, the way
of utilizing handlers and their structures become
important when the number of the necessary additive
functionalities increases. The efficiency becomes
essential when power hungry and time consuming
functionalities are introduced in the execution
pipeline. For instance, reliability adds significant
amount of processing time. Similarly, security may
necessitate powerful machines to conclude its task in
a reasonable time. Any additional handler may make
the response time of a service worse.

Figure 1: A Simple Web Service Interaction

Nevertheless, a service cannot be banned

from obtaining new features. It is predestined that
services will necessitate new capabilities to present a
better computing environment. In other words,
services eventually attain more functionality in their
execution paths. Accordingly, we may wind up with
an overwhelmingly crowded pipeline of the handlers.
This circumstance will make the services slower.
This situation is named as a Web service becomes
fat; while the service is acquiring new capabilities,
the response time becomes longer and the
management of the service becomes harder.
Secondly, a handler may cause a convoy effect. In an
execution pipeline, a handler may delay the service
processing due to the fact that its execution is too
slow. In other words, a handler becomes bottleneck.
This condition mounts the request messages waiting
to be served in every second. The clients start waiting
longer and longer.

Let’s think about a highway, which has three
lanes. And it is rush hour. Everybody is driving to
reach home and get relaxed as soon as possible.
However, at some point, the road becomes narrower.
Since it is peak time; the road capacity is not
sufficient to serve the arriving cars. In every passing
minute, the number of cars grows. The people start
becoming distressed because they do not want to
waste their time in the highway by just waiting. The
first solution is to expand the narrow part of the road.
Adding one or two lanes to the narrow part will
suffice. The second solution is to detour a portion of
the traffic to a parallel road. We can utilize both
approaches in the handler architecture. Replacing the
narrow road resembles introducing new enhanced
computing environments. Using the parallel road
looks like offering concurrent execution for the
handlers.

We have additional resources out there.
Networks are becoming faster. Machines are
becoming more powerful and their speed is
constantly improving. Hence, these improvements
can contribute to remove insufficient parts.
Bottlenecks can be eradicated by delivering some of
the handlers to the powerful computers. The
distribution reduces the burden over a single
computer.

Application parallelism is not new idea; it
has been utilized for decades. Hence, handlers can be
executed concurrently. However, handler parallelism
is not able to be utilized in the conventional Web
Service Architecture. The parallelism boosts the
performance and provides very effective and
powerful solution.

Recently, an enhancement in processor
technology becomes popular. Multi-core processors
are started being widely utilized; even personal
computers leverages cores offering opportunity for
parallel executions. This opportunity contributes to
the parallel handler execution even without
introducing any network latency.

Distribution of the applications is very
crucial to improve performance and scalability.
However, there are requirements to be able to benefit
from it. The decision of a handler distribution is
influential over the system performance. Moreover,
the selection of the handlers running concurrently is
very important. The conditions and requirements of
the distribution of a handler are necessarily needed to
be investigated extensively. Handler structure
demands efficient handler orchestration. The handlers
have to be orchestrated in a way that Web Service
benefits most. The orchestration is especially
essential when the handlers are distributed. It
becomes inevitable, when the concurrency is
launched for the handler executions.

Reusability is one of the key features for an
application. Instead of deploying the same handler
many times, we may make use of a handler
repeatedly. There are many stateless handlers. They
process a SOAP message and return the results
without keeping any information for requester. For
instance, compression and decompression are
stateless functionalities. Hence, they are very suitable
to be used by the services and/or clients many times
without complications. Even stateful handlers may
become appropriate to be utilized repeatedly in
certain conditions.

Handlers offer new capability without
increasing the complexity. Simplicity is a very
crucial feature of applications. In Web Service
structure, simplicity originates from very well known
notion, divide and conquer. The whole task is divided
between handlers and the service endpoint. Instead of

having a large, hardly manageable application,
clearly separable smaller tasks are more plausible.
Charles Antony Richard Hoare states this very
essential feature to design excellent software in his
The Emperor’s Old Clothes [9]. He says that “There
are two ways of constructing a software design. One
is to make it so simple that there are obviously no
deficiencies; the other is to make it so complicated
that there are no obvious deficiencies. The first
method is far more difficult.” Simplicity contributes
to constructing modular and flexible applications.
However, it is a challenging effort to build a perfectly
flexible and modular system.

Consequently, handler architecture needs to be
investigated to provide efficient, scalable and flexible
Web services. Since a SOAP task, which is either
related with the body or header, may be costly, we
need additional resources and structures. We can
improve the performance, make the system scalable
and provide improved architectures.

2. Handler Structures

There are several conventional Web service

handler structures which provide an environment to
add new functionalities to Web service end-point.
The first structure, worth to mention, is JAX-RPC. It
offers necessary tools to deploy handlers, shown in
Figure 2. Handlers can construct handler chains in
both client and server sides. The executions are
sequential and deployment is static; the execution
path cannot be modified after being deployed.

Figure 2 : JAX-RPC architecture

Apache Axis is currently the most dominant

container in the Web service community and has a
plethora of applications developed around this
container. There are two main versions, Apache Axis
1.x and Apache Axis 2.

Apache Axis 1.x facilitates the incremental
addition of capabilities to Web service endpoint by
leveraging handlers. Handlers can be either request or
response path. At one point, a handler sends request
as well as receives response. This handler is called
pivot handler. It processes requests and passes them
to the endpoint. When the endpoint finishes its tasks,
the responses are sent back to the pivot handler.
There exist two types of handlers. The first type
contains singleton handlers, which do not require a
peer. They can be deployed to either client or server
side. On the other hand, there are handlers that

necessitate peers in the client and the service sides.
For instance, an encryption handler which encrypts
messages coming from a client requires an inverse
handler at the service side which performs the
appropriate decryption. Client side handler peers are
processed in the reverse order of the service side
handler peers. For example, if a client processes
handlers in the order of h1, h2 and h3, their
counterparts in the service side are executed in the
order of h3, h2 and h1.

Apache Axis 2 has more extensible and
modular architecture. The core modules are separable
from the remaining modules so that the new modules
can be added on the top of the core modules [10]. To
handle information and keep the states, Apache Axis
2 defines an Information Module. Information
module has a hierarchical structure that helps to
manage the object lifecycles. Apache Axis 2
basically views every transaction as a single SOAP
processing. To implement a complex SOAP
messaging, containing several messages, a top
layered framework is necessary. Apache Axis 2
framework contains two pipes: IN and OUT. They
may be combined to exchange messages. User
application can create a SOAP request by using a
client API. Before handing the message over
transport sender, new capabilities can be added with
the handlers. They provide extensibility to the SOAP
processing model. They can intercept messages in
either IN or OUT pipe.

Additionally, Apache Axis 2 introduces an
upper level abstraction on to top of handler layer:
module. A module may contain a set of handlers and
phase rules. In other words, it groups a set of
handlers to provide a specific functionality. They are
basically intended to implement Web service
specification in a modular manner such as WS-
Addressing [11] and WS-Reliable Messaging[12].

There are stages to arrange the order of the
modules. These stages are called as phases. Phases
and flows together manage the processing flow for a
specific message. Apache Axis 2 contains predefined
special handlers such as Dispatchers, Transport
receiver and Transport sender. Similarly, several
predefined special phases are also introduced:
Transport, Pre-Dispatch, Dispatch, User defined and
Message Processing phases in IN pipe and Message
Initialization, User and Transport phases in OUT
pipe. However, this mechanism is not fixed; it is
extensible and user customized phases and handlers
are allowed to be attached.

Similar to Apache Axis, Web Service
Enhancement (WSE) from Microsoft supports Web
services by offering an environment for the
supportive capabilities, which are called filters. The
execution structure of the filters is very similar to that

3. Distributed Handler
Architecture

in Apache Axis. Both Output and Input filters are
capable of processing SOAP header and body. The
real target is the header, though. WSE has already
several build-in filters. However, customizable
filters can be added. Filters can create a chain. In this
chain, the intermediary information is passed
between the filters by using a context. The context
provides an environment to share the properties and
variables.

In order to gain full benefit from Web
services for the handler execution, we introduce
Distributed Handler Architecture (DHArch). It is a
framework that provides functionalities to process
handlers concurrently as well as sequentially in a
distributed environment. The goal is to remove the
boundaries that keep the handlers in a single memory
space and to contribute to the modularity, reusability,
interoperability, scalability and responsiveness of the
system.

Finally, DEN/XSUL provides architecture
which offers an environment for the handler
execution. XSUL is a modular Java Library to
construct Web and Grid services [13, 14]. It has been
developed by Extreme Lab at Indiana University and
provides a framework for XML based processing and
supports doc-literal, request-response and one-way
messaging. Furthermore, it contains modules for a
lightweight XML/HTTP invoker and processor. DEN
addresses the performance and scalability bottleneck
[15]. It targets directly to the Web service security
processing steps without touching the endpoint
service logic at all. It granulates the application and
makes the pieces separate processing nodes. These
nodes are distributed across the Grids. The whole
scenario is depicted in Figure 3. XSUL2, the latest
version of XSUL, allows a request goes through a
chain of handlers until it reaches the destination.
DEN by utilizing XSUL2 is able to separate the
handlers from Web Service endpoint and distribute
them as individual service nodes within a chain.

Figure 4 depicts the overall picture of DHArch. It
has modular architecture. Instead of having a very
big chunk of hardly manageable implementation,
DHArch employs modules so that the
implementation management became easier and more
understandable. DHArch modules can be placed
under three umbrella-names: Distributed Handler
Manager (DHManager), Communication Manager
(CManager) and Handler Execution Manager
(HEManager).

3.1. Distributed Handler Manager

Distributed Handler Manager (DHManager)
is a group of modules that manages message
execution. It is mainly the hearth of system; it
accepts messages, orchestrates the execution and
returns the output to the place where the message
initially has been received. It contains sub-modules:
Gateway, Handler Orchestration Manager, Message
Context Creator, Messaging Helper, Queue Manager
and Message Processing Engine.

Figure 3 : DEN Web service execution

Gateway is an interface between the native
environment and DHArch. It is entrance and exit
point for the incoming and outgoing messages.
DHArch has a native environment independent
architecture. It autonomously performs the given
tasks. However, Gateway module is an exception.
Since it connects DHArch to the underlying
environments, it utilizes the libraries and tools of the
native environments.

DEN/XSUL is able to utilize asynchronous

messaging by using WS-Dispatcher. The dispatcher
allows internal services to be exposed to Internet.
With the support of asynchronous messaging, a WS-
Security implementation is divided into sub-atomic
tasks and deployed as services. Some tasks are
executed in a parallel manner to gain performance
and to remove the bottleneck.

DHArch is a system enabling the execution
of the handlers in a distributed fashion. This
environment brings many advantages such as
utilization of additional resources and concurrency.
On the other hand, the distribution complicates the
handler execution. Handlers became unaware of each
other when they are scattered around. Therefore,
introducing an orchestration to manage the execution
becomes necessary. Handler Orchestration Manager
provides the necessary orchestration capability. The
orchestration structure is investigated extensively
[16].

While DEN/XSUL touches the parallel execution by
distributing the subtasks, we cannot witness that the
parallelism is benefited enough. On the other hand,
the containers, Apache Axis and WSE, use pipelining
to run a handler chain although they do not have any
parallelism in the handler executions.

Figure 4: General Architecture of DHArch

Figure 5: Distributed Handler Message Context

Message Context Creator supports the
handler execution by creating a context, Distributed
Handler Message Context (DHMContext), shown in
Figure 5. This context wraps the messages travelling
in DHArch. Additionally, it conveys supplementary
information for the execution such as current stage
number, number of handlers, number of stages, start
and end times of handler execution and so on.
Orchestration configuration is also kept in the
context. Every message can have its unique handler
orchestration.

A Web Service may receive too many
requests in a short duration. Hence, queues are
introduced to regulate the message flow. It is similar
to having a waiting room in a doctor office. When
patient arrives, s/he is asked to fill the necessary

information and to be seated in the room until the
doctor becomes available. Similarly, DHArch
registers the necessary information and makes the
message wait to be called. Queue Manager employs
three queues. The first queue, Container Message
Context Queue (CMCQueue), stores the interacting
Web service container contexts. For example,
MessageContext is the context object of Apache Axis
container to be stored. In contrast to CMCQueue,
Incoming Message Queue (IMQueue) and Message
Processing Queue (MPQueue) store DHMContext,
which is created by Message Context Creator
module. IMQueue stores a DHMContext object for
every arriving message. On the other hand, MPQueue
only keeps the message contexts which are being
executed. Therefore, the number of the messages in
the queue is limited for the optimization purpose.

Messaging is a very significant capability to
decouple the computing nodes. Sending and
receiving the tasks between the interacting nodes via
messaging contributes to the interoperability.
Although the messages can be sent in different
formats, a specific format, DHArch Messaging
Format (DMFormat), is created by Messaging Helper
module to facilitate the remote handler executions. It
basically contains three main parts, unique ID,
properties and payload. Each DMFormat contains a
128-bit unique ID, created by a UUID generator. The
uniqueness keeps the message execution intact so that
the message execution cannot possibly interfere with
another. Properties convey the required information
for the computing nodes: Handler Execution
Manager (HEManager) and Distributed Handler

Manager (DHManager). Payload contains the
original message. There isn’t a restriction for the
payload format; any kind of message format can be
embedded to the payload.

Message Processing Engine (MPEngine) is
the maestro of DHManager. It employs three threads
to accomplish three important tasks to orchestrate the
execution: selecting candidate messages, sending
messages to the distributed handlers and receiving the
responses returning from the distributed handler.
Message Selector Thread (MSThread) selects a
DHMContext instance of candidate message from
IMQueue and puts it into MPQueue. On the other
hand, Message Processing Thread (MPThread) takes
the context from MPQueue and extracts the required
information to initiate the transportation of the
payload. The third thread, Message Receiver Thread
(MRThread), become active when an executed
payload is received. It checks the message ID to
match the corresponding context in the MPQueue and
updates the context with the response. If every
handler has completed its task, MRThread removes
the context from MPQueue, combines it with the
native context of CMCQueue and returns the output
to Gateway module.
3.2. Communication Manager

Communication Manager (CManager)
transports the messages between the computing
nodes. A Message Oriented Middleware (MOM) is
employed for the transportation. We use
NaradaBrokering for this purpose [17]. It provides
many key advantages for the messaging. The first
advantage is asynchronous messaging [18-21].
While requester is asking a service, the provider can
be in the situation of performing another job. This is
also called as non-blocking IO [22]. The requester
does not wait for the result; it is notified when the
output is ready. This eliminates the idle waiting. The
second advantage is to regulate the message flow.
Flow control has been widely investigated[23-26].
NaradaBrokering can buffer so many messages to
overcome the flow in peak times. It releases these
messages gradually so that the receivers are able to
handle the messages. The third advantage is to have a
guaranteed message delivery mechanism[27]. There
exist many researches in this area[28, 29]. Web
service community has recently introduced
specifications for the reliable communication too [30,
33]. NaradaBrokering provides a robust delivery
mechanism by storing messages in a database so that
the peers can get them later even if a failure occurs.
Moreover, it scales very well because of tree
structure broker network capability. Many brokers
can link together to build a tree. There might be a
situation that one broker can saturate that the
handlers cannot be supported efficiently. This

limitation can be gotten rid of with the introduction
of a new broker. Finally, CManager uses efficient
publish/subscribe mechanism of NaradaBrokering.
Publish/subscribe paradigm is benefited as follows;
every computing node has its own topic. In other
words, the nodes are uniquely addressable. The
messages are sent to those addresses in an order. The
topics are mapped with the handlers before
communication is started. In a parallel execution, we
may assign one topic to the handlers that are
concurrently executed. While this reduces the number
of addresses in the system, it also prevents modifying
the execution flow on the fly. Therefore, we stick the
paradigm of a single topic usage for each handler
whether it is a parallel or sequential execution.
3.3. Handler Executing Manager

Distributed handlers are the applications
executing the messages in remote places. Without
having a supportive environment, handlers cannot
perform their tasks in remote places. Handler
Execution Manager (HEManager) is considered to
build this necessary environment. Each distributed
handler is hosted by a HEManager. It supports the
execution in several ways, stretching out from
negotiating with CManager for the communication to
creating the necessary structures.

There are as many HEManagers as the
number of distributed handlers. Both incoming and
outgoing messages travel with DMFormat. When a
message arrives to a node, the essential information is
extracted and necessary structures are constructed for
the handler execution. The structures are built around
the unique ID. The execution greatly gets assistance
from the properties section of DMFormat. The
orchestration is kept hidden from HEManager with
the intention of keeping its execution simple. It only
knows how to create the environment for the
distributed handler and where to send the response.

HEManager leverages the common
interfaces to standardize the handler implementation.
A handler can be easily implanted to DHArch as far
as it implements these interfaces. Moreover,
HEManager support some well known handler
interfaces such as Apache Axis handler interface.
4. Execution and details

DHArch is a system that is capable of
processing Web service handlers in a distributed
environment. It is able to use single-processor, multi-
processor or multi-core systems as well as facilitates
multiple computers sharing a network. It supports
parallel as well as sequential execution.

Figure 6 illustrates how a message traversal
happens in DHArch. Typically, a message arrives
within a context, specifically a Web service container
context. The context consists of additional

information for the execution as well as the message
itself. It also conveys supplementary information
about the service requester. Therefore, the incoming
message context object is stored completely so that
the response to the right place is guaranteed.

DHArch can cooperate with the various
Web service containers. Since every container makes
use of its own context object for the internal
execution, creating a common format for the contexts
requires deep knowledge about each one of them.
Moreover, conversion between the context objects
and DHArch specific common format would be

costly. Hence, CMCQueue is utilized to save the
interacting container contexts. The context objects
are mapped with a unique UUID generated key.
Naming is very vital to identify a message. Many
messages may arrive to the DHArch in a short
duration. The confusion is possible if we cannot
differentiate them from each other. Hence, every
message has to be uniquely identified to be executed
correctly. Otherwise, the execution cannot go through
properly because of having confusion in source,
destination or processing.

Figure 6 : Message execution

 At the same time, DHArch creates its

unique message context, DHMContext, to perform its
internal execution properly. The container contexts
are not utilized for this purpose because of the reason
that we want to build an architecture having a
container independent execution. Otherwise, we need
to revise the execution mechanism for each newly
introduced container. DHMContexts are firstly stored
in IMQueue. As it is in CMCQueue, IMQueue
identifies DHMContext with the same UUID
generated unique identifier.

DHMContext employs several structures to
contribute the execution. The most important one is
the handler orchestration structure. It defines the
sequence of the handlers which consists of stages and
their corresponding handlers. All basic orchestration
constructs are mapped to two simpler processing
styles, sequential and parallel. Stages are introduced
to support parallel execution. Many stages can be
employed in an orchestration structure and their

executions are sequential among each other.
However, the handlers in a stage are executed
concurrently. Each stage should contain at least one
handler and there must be more than one handler in a
stage to have a parallel execution.

The message processing happens based on
the guidance of the orchestration structure. It can be
modified during the execution if the orchestration
policy allows it. The policy contains the rules about
must and mustn’t. A handler orchestration structure
may contain several conditions for the correct
execution. The policy may dictate the execution
sequence. For example, an encryption handler can be
forced to be executed first.

When DHMContext is generated and its
insertion to IMQueue is completed, the acceptance of
the message is finalized. At this moment, the native
container context is safe in CMCQueue and
DHMContext objects waiting to be selected for the
executions are ready in IMQueue. MSThread starts
selecting the candidate messages. The candidates are

selected according to the First Come First Serve
scheme. It is a fair selection because the first arriving
message is chosen to be processed first
[34].However, the selection scheme can be changed
to another queuing scheme such as priority.

MSThread chooses a candidate
DHMContext for the execution and places it into
MPQueue. This queue is the place where the
pipelining happens. There is an optimum value for
the number of messages in this queue. Similar
management is facilitated in TCP protocol packet rate
control procedure[35]. Queue Manager increases the
number of contexts in the queue gradually unless the
throughput starts diminishing. The optimum value is
looked for by increasing and decreasing the number
of messages in the queue. Naively, it can be thought
that it would be good idea to use a very large queue.
However, we know that the access time increases
when the queue length increases. More importantly,
processing a tremendously crowded group of
messages concurrently depletes the computing
resources and causes more frequent context switches.
There is a break-even point for the queue size that the
performance starts deteriorating while the queue size
is increasing. This defines the optimum value of the
queue size.

MSThread tries to keep MPQueue full. It
checks always whether there exist optimum number
of message contexts in the queue. If there are enough
messages, the thread sleeps. Otherwise, it selects new
candidates from IMQueue. MPQueue is much
smaller than IMQueue. We have two reasons to
employ a smaller queue. The first reason is the
message pipelining. The messages are being
processed concurrently to allow executing more
messages at a time. The second reason is to minimize
the access time. The idea is similar to the memory
structures of the modern computers; the processes are
taken into the caches, smaller and faster memory
[37]. Similar to this hierarchical memory structure of
the contemporary computers [38], DHArch utilizes a
smaller dedicated storage, MPQueue, in addition to
the bigger one, IMQueue.

MPThread starts the execution of messages
in MPQueue at once. It continues processing
messages until the MPQueue becomes empty. While
MPThread tries to deplete the messages from
MPQueue, MSThread stockpiles new messages on
the top of the queue. They work very closely and in
tandem style. It is very correct to say that MSThread
is a producer while MPThread is consumer.

MPThread carries on the message
processing by extracting necessary information from
DHMContext. Every distributed handler is located in
an addressable place. The addresses are kept within
DHMContext. The context also contains the message

and the supportive information for the message
execution. By using these data, DMFormat is created
for the transportation. When it is ready, it is sent to
the distributed handlers via CManager. The messages
are instantly sent to all handlers of a stage. However,
the message execution of those handlers may be
completed in different times. All the handler
executions in a stage have to be finished before going
to the next stage. MPThread waits the completion of
the handler executions before starting the delivery of
the message to the next stage. This procedure
continues until all stages of a message are completed.

DHArch threads require clever notification
mechanism. They are not allowed to run
continuously. Instead, they are forced to wait if they
are not needed. Otherwise, wasting the system
resources is inevitable. The threads share the
computing resources to be successful in their tasks.
The resource sharing happens according to the
system thread scheduling algorithm. If a thread
continues to run with a conditional check instead of
staying in its wait condition, it will consume the CPU
and memory resources even if it does not perform an
actual task [39]. MSThread enters in its wait
condition when MPQueue becomes full or IMQueue
becomes empty. In both situations, there is really
nothing to do for MSThread. Hence, it stays in wait
condition until it is notified. There are two notifying
events for MSThread. The first one is the number of
the messages in MPQueue. If the MPQueue becomes
empty or contains fewer messages than the optimum
number, MSThread is notified. The second
notification is a new message arrival. If MSThread
and MPThread are somehow waiting in their
conditions, they cannot restart their executions
because they notify each other. Therefore, an
independent notifier is essential to continue the
executions. When a new message arrives to IMQueue
and the number of the message in MPQueue is less
than the optimum value, MSThread receives a
notification.

Handler invocation occurs according to the
DHMContext orchestration structure. CManager
delivers the messages to their destinations in an order
defined by the context orchestration structure. When
a message is received by HEManager via CManager,
the preparation of the suitable environment for the
execution is initiated.

DHArch can utilize wide variety of handlers
such as monitoring, format converters, logging,
compression, decompression, security, reliability and
so on. They generally perform tasks that support to
Web service by introducing a new functionality. The
interesting part of a SOAP message for a handler is
the header even though the body is able to be
processed. Therefore, a handler mostly expects the

whole SOAP message as an input. On the other hand,
many handlers process only the partial SOAP
messages. For example, WS-ReliableMessaging
handler processes only wsrm tag of the entire
message. Therefore, HEManager allows utilizing the
partial execution where the size of the message
becomes a concern. However, since this is not
applicable to every handler, a full SOAP message
execution is performed unless the partial execution is
explicitly mentioned as a necessity. We also need to
keep in mind that the partial SOAP message
execution causes an overhead originating from
parsing the SOAP message and combining the
outputs later.

HEManager exploits supplementary data for
the handler executions. These data are conveyed
within the properties. Some of these properties are
applicable to every handler. One of them is oneway
feature. It describes a situation that a handler does not
have to send any response back. When DHManager
encounter an oneway handler, it applies fire and
forget paradigm and continues its remaining tasks
without waiting the response [40]. Additionally,
mustPerform property is also universal for the
handlers. If a handler has true value for the
mustPerform parameter, it always has to complete its
executions. In the situation of an error, the execution
has to be repeated if it does not lead to an inconstant
state. Otherwise, the message execution must totally
be halted and the requester must be informed. The
message execution can continue when the
mustPerform value is false even if the handler throws
an exception. For example, skipping a logging
handler may not be so crucial for a Web Service so
that the message execution can carry on without
restarting it from the beginning.

When a handler completes its task, the
output message is pushed back to the HEManager.
DMFormat is utilized to return the output. The
corresponding unique ID has to be same with the
request. When it is ready, it is passed to CManager
for the delivery to the destination. When the envelope
arrives to the destination, MRThread is activated. The
message delivery is a notification for MRThread. It
updates the corresponding context with the executed
message. First, it checks whether the ID is
represented in MPQueue. Otherwise, the response is
behaved as a malicious message and it is discarded. If
the ID passes the check, the properties and the
payload are extracted. The corresponding
DHMContext in MPQueue is retrieved by using the
unique ID. At the end, the context is updated with the
processed message.

The modification of a context with a
successful handler execution may not be the end of
the journey. The message has to repeat these

procedures for every handler in its orchestration
structure. MRThread checks whether the message
completes the execution for every handler. If it is the
case, the context is taken out from the queue. The
container context object has been kept in CMCQueue
until this moment. It was preserving the essential
information to continue the message execution in the
interacting Web service container. Therefore, saving
the container context object is very important. When
the container context is taken out from the
CMCQueue, it is updated by utilizing DHMContext
that we have retrieved from MPQueue. Finally, the
processed container context is passed back to the
Web Service container to finalize the message
execution in DHArch.

It is possible to have errors while the
execution is happening. If a handler stops abruptly
because of a failure, the error need to be handled so
that the system continues to its execution. An error is
a state that may lead to a failure. Being clear about
the basis of an error is crucial to provide a solution.
Laprie et al. describes two ways of dealing with
failures, fault prevention and fault tolerance [41].
While the first one works to prevent the occurrence
of a fault, the second copes with providing the
continuation of the service even in the presence of the
failure. Even though a complete avoidance of failure
is not possible, there are tools supporting fault
prevention [42]. Apparently, fault tolerance is
necessary to be able to continue execution while a
fault occurs. Fault tolerance requires enhancing the
language to detect and handle the error. Additionally,
a new semantics is essential to modify the execution
on the fly.

When a fault tolerance is mentioned, we
need to bear in mind that forward recovery can be
used as well as the backward recovery. In the forward
recovery, the tasks are tried to be completed by
processing several times. Backward capability
requires atomicity. It is one of the most essential
notions for the consistency. In regard to atomicity,
Hagen at al. [43] defines three task types, atomic,
quasi-atomic and nonatomic. Atomic tasks are those
that they have no effect at all if they fail. For
example, every read-only task can be thought as an
atomic task even if they fail because it does not cause
any change. Quasi-atomic effects do not vanish
naturally. The effects can be eliminated via a roll-
back action, though. Nonatomic tasks are the one
that the effects cannot be removed when they are
committed.

Handlers can be either statefull or stateless.
A handler generally processes a SOAP message and
applies its procedure over it. In other words, they do
not keep any state for the message. This feature
contributes to utilizing forward recovery. DHArch

restarts the execution if a stateless handler fails.
HEManeger notifies the error to DHManager. In
other words, the exception is propagated back to
DHManager. DHManager starts the message
execution again when it receives the exception for the
stateless handler. It may be repeated several times
depending on the situation. If the execution is not
successful after these efforts, the message execution
is totally halted and the exception is propagated back
all the way to the service requester. In this case, the
requester may assume that the handler may be down
or crashed.

Handlers are not always stateless. They
might be keeping states for the messages. DHArch
expects atomicity from the statefull handlers. If a
handler fails during its execution, it should not have
any effect at all. If having atomic handler is not
possible or the handler is a quasi-atomic, it is
necessary to utilize two-phase commit. There exists a
solution for the distributed commit [44]. However,
we prefer to employ a handler in a suitable place to
commit or roll-back the effects if the handler is not
atomic and statefull.

There exist cases that the execution can
continue even if an error occurs. The handler
orchestration consists of a property that defines
whether it is an obligatory to be performed.
mustPerform element tells to the system whether it
has to be executed. If a handler contains true value
for mustPerform, the message execution cannot
continue without achieving its execution. Otherwise,
the error can be neglected and the execution
continues.
5. Measurement and Analysis

We performed series of measurements
illustrating the advantages of distributed handler
execution in various environments. The first set of
measurements is to examine the performance of a
single message in DHArch. The second set of
experiments is conducted to explore the scalability to
illustrate the efficiency of the system. Finally we
perform measurements by using two well-known
Web Service Specifications, WS-Eventing and WS
Resource Framework.
5.1. Performance measurements

DHArch offers a promising environment for
Web service handlers. It supports concurrent
execution and allows utilizing additional resources.
Many types of resources such as computer, processor,
memory, storage or even an application can be
utilized.

DHArch is evaluated by utilizing 6 different
configurations of 5 Web service handlers. They are
customized for benchmarking purpose. Two of the
handlers are CPU bound handlers. The remaining

three handlers have been chosen from the
applications that are gradually switching from CPU
bound to I/O bound. The handlers are named in these
benchmarks as in Table 1. The combinations of the
parallel executable handlers can create so many
different configurations. However, the dependencies
between handlers and the performance issues need to
be carefully investigated for the correctness of the
execution while deciding these combinations.

Table 1: Handler list for the performance
benchmarking

Handler Name Handler Type
Handler A CPU Bound
Handler B CPU Bound
Handler C IO Bound
Handler D IO Bound
Handler E CPU/IO

Out of many, six different handler
configurations are selected for this benchmark. The
first configuration is sequential execution of the
handlers in Apache Axis. This is for the comparison
purpose. The second configuration is sequential
execution utilizing DHArch. The sequence of the
handlers is exactly same with the first configuration.
The third configuration contains two parallel and one
sequential handler executions. Handler A is parallel
with Handler C and Handler B is parallel with
Handler D. After the execution of these handlers,
handler E is executed. The execution time of a
handler joining to a parallel execution is significant
for the performance. The fourth configuration
contains the same number of parallelism. However,
in this configuration, the first stage contains Handler
A and Handler B and the second stage contains
Handler C and Handler D. Therefore, we expect that
their performance will be different even though they
do the same job. The fifth configuration contains two
stages. The handlers are executed concurrently except
handler E, which is separated because of the
dependency. It modifies the incoming SOAP
message. Therefore, it is kept last to prevent an
incorrect execution. Finally, the last configuration is
created without concerning about the dependencies. It
consists of a single stage containing five handlers. In
other words, all of the handlers are parallel.

The benchmarks are conducted in three
different hardware environments. The first
environment is a multi-core system. The intention is
to figure out the behavior of DHArch in a multi-core
system. Nowadays, the trend is to have multi-core
computers and it is expected that more cores will be
seen in a single processor in near future [45]. Hence,
we give a special attention to the measurements in
multi-core systems. The utilized machine in this
experiment has UltraSPARC T1 processor that
contains 8 cores running Solaris Operating System, 4

threads per core, with 8GB physical memory.
Although concurrent execution has many challenges
[46], it activates the individual core usage in the
multi-core systems; a handler may claim its own
core. We can conceive this core acquisition as if
every handler has its own computing node so that the
tasks are achieved without competing for the
computing power.

The second benchmarking environment is
the computers sharing a Local Area Network. The
computers in this cluster have the same hardware
features. They utilizes Fedora Core release 1
(Yarrow) in Intel Xeon CPU running on 2.40GHz
and 2GB memory. In this environment, the handlers
are distributed to the different machines.

The last environment is a single computer,
utilizing Pentium 4 processor operating at 2.80GHz
with 1.5 GB memory. It is running Red Hat
Enterprise Linux AS 4 operating system. In contrast
to previous systems, the distributed handlers need to
share a single computing resource. Therefore, we
may witness context switches among the distributed
handlers and the other components of DHArch so
that the result may be undesirable for the
performance.

5.1.1. Results and analysis

We measure the overall performance of a
Web service deployment in Apache Axis and
DHArch. Handler distribution causes an overhead.
The management of the distributed handler execution
and the transportation of tasks increase the execution
time. However, there are also gains because of the
advantages of parallel execution. Our interest is to
find out the performance benefits coming from the
advantages of the distribution.

There are ways of compensating the
overhead and even achieving a promising overall
performance. The first way of improving the
performance of a deployment is to establish
concurrent handler execution in a distributed
environment. Conventional handler deployment does
not let the handlers run in a parallel manner.
However, there are many independent handlers from
each other so that they can process the SOAP
messages concurrently. For instance, a monitoring
handler does not depend on a logging handler. They
can be easily executed concurrently. The second way

of improving performance is to utilize faster
machines. A faster machine may contribute to the
overall performance when an appropriate handler is
deployed into it. For instance, encryption and
decryption handlers’ distribution to the faster
machines within a secure environment contributes
best to the overall system.

The measurement, shown in Figure 7,
depicts the results from the multi-core system. The
values show the round trip time of a service request.
Clients record the time of the request initiations and
calculate the elapsed time when they receive the
responses. Hence, the measurements contain
transportation, service and execution times of the
handlers. Every observation was repeated 100 times.

It is clearly seen that the best results are
observed when all handlers are able to run
concurrently. However, processing them concurrently
may not be always possible. As we discussed earlier,
the dependencies between the handlers have to be
considered. For example, an encryption handler may
need to be processed first. Otherwise, the remaining
handlers cannot understand the message because of
the encryption. The difference between configuration
1 and 2 is the overhead originating from the
distribution of five handlers. The first configuration
utilizes Apache Axis in-memory handler deployment.
In the second configuration, because of the
distribution of the handlers to the individual cores,
DHArch increases the execution time slightly. The
gain may be small; in the configuration 3, it is around
50-70 milliseconds because of the processing time of
Handler C and Handler D. As a result, this
configuration slightly provides enough gain to
overcome the overhead. Sometimes, gain may not
even compensate the overhead. On the other hand, a
gain can be very appealing as it is in configuration 4,
5 and 6. They provide good results due to processing
times of Handler A and Handler B. The numerical
values of the results are stated in Table 2.

Gain completely depends on handler
configuration. On the one hand, it can provide a
fascinating performance with the execution of all the
handlers in a parallel manner. On the other hand, it
may not even present a slight gain in the execution
time to compensate the overhead coming from the
distribution of handlers.

Figure 7: The execution of Web service containing the five handlers with six handler configurations in the
multi-core system

Table 2: The elapsed time and the standard deviation of the performance benchmark in the multi-core system

Configuration number 1 2 3 4 5 6
Mean value (msec) 7192.9 7220.92 7164.98 4324.86 4279.37 4264.78
Standard deviation 42.97 56.68 57.75 49.66 29.92 36.96

Figure 8 : The execution of Web service containing the five handlers with six handler configurations in the

cluster utilizing Local Area Network

Figure 8 illustrates results from the

executions of the handlers in cluster that
communicates with a Local Area Network. The
execution times get smaller due to faster computers.
However, this does not change the behavior of the
handler configurations. They follow the same
patterns of the previous systems. The sequential
execution of DHArch is executed slower than those

from the remaining configurations. The numerical
values of the results are shown in Table 3.

The standard deviations are reasonable even
if the tasks between handlers travel over the local
network. The network is fast and consistent. The
message transportation does not take too much time.
When the results are compared with those from the
previous systems, any side effect coming from the
usage of LAN is not observed.

Table 3: The elapsed time and the standard deviation of the performance benchmark in the cluster utilizing

Local Area Network
Configuration number 1 2 3 4 5 6
Mean value (msec) 1717.08 1741.95 1712.22 1182.06 1150.55 1139.26
Standard Deviation (msec) 42.56 35.32 36.30 44.06 37.79 45.90

The results, shown in Figure 9 and Table 4,
are from the single processor system. In contrast to
previous measurements, single processor system
provides a different pattern. Thread scheduling
becomes an issue. Since two handlers are heavily
CPU-bound, the individual execution times of them

are increasing when they are executed concurrently.
Moreover, NaradaBrokering and Apache Axis in
Apache Tomcat container use the same processor.
This worsens the thread scheduling.

Figure 9 : The execution of Web service containing the five handlers with six handler configurations in the

single processor system
Table 4 : The elapsed time and the standard deviation of the performance benchmark in the single processor

system
Configuration number 1 2 3 4 5 6
Mean value (msec) 1538.14 1661.73 1638.54 1558.9 1528.21 1488.67
Standard Deviation (msec) 56.32 58.29 54.86 73.82 85.90 86.80

5.2. Scalability
In this experiment, we will investigate the

throughput in DHArch comparing with a
conventional handler mechanism. We will also find
answers for the effect of request rate over the
processing time.
5.2.1. Message rate

Web service is basically a paradigm that
clients make requests to execute a task in a remote
application. This structure may lead the situation that
many clients make requests in a short time. For
instance, an online shopping center which utilizes
Web service technology may receive hundreds of
transactions. There might be scenarios that the
request rate may be even higher. For example, Web
service, which presents an interface to illustrate a real
time tornado development, may receive inputs from
thousands of sensors. Consequently, a Web service
may have a very high request rate. Therefore, the
system architecture must be efficient and effective

that it can answer the increasing number of requests.
Handler chain is one of the most crucial parts of the
service execution. Its performance directly affects
overall system performance. We will investigate the
scalability of DHArch by comparing with Apache
Axis 1.x handler execution mechanism.

We utilize multi-core machines in a cluster
for benchmarking purpose. In this cluster, 8
computers communicate via a Local Area Network.
Every computer has 2 Quad-core Intel Xeon
processors running at 2.33 GHz with 8 GB of
memory and operating Red Hat Enterprise Linux ES
release 4 (Nahant Update 4).

Three handlers are utilized for this
measurement: Logger, Monitor and Format
Converter. Logger stores the incoming messages in a
file. Monitor keeps the information for the services
such as the incoming message rate, the message size,
and information about the clients, and number of
clients which are connected and so on. The last
handler, Format Converter, converts incoming
message formats to a uniform format, a format that
the service expects.

Apache Axis handler structure utilizes a cain
of handlers that passes the massage from one handler
to another. A configuration file defines the handlers
and their position in the execution path. Apache Axis
handler executions can be depicted as it is in Figure
10.

Figure 10: Apache Axis sequential handler

deployment for scalability measurement
DHArch provides concurrent as well as

sequential execution for the handlers. The group of
handlers, used in Apache Axis benchmarking, is also
utilized for DHArch. Even though handlers may not
be possibly processed in a parallel manner because of
dependencies, the handlers selected for this
experiment are suitable for parallel execution. Hence
parallel as well as sequential execution has been
utilized for DHArch benchmarking. The deployments
are portrayed in Figure 11 and Figure 12.

Figure 11: DHArch sequential handler

deployment for the scalability measurement

Figure 12: DHArch parallel handler deployment

for the scalability measurement
Two experiments have been conducted. In

the first one, we have measured elapsed execution

time of a single message while the number of
messages per second is increasing. The second
experiment has been performed to measure the
cumulative time for the completion of the certain
number of messages.

In order to measure the execution time for a
single message while the number of message per
second is increasing, we use the following
experimental setup. The messages are sent within the
same rate during 100 seconds. The rate starts from 1
message per second and continually increases 10
messages in every step to the level that the service
can support. Figure 13 shows the results gathered
from a single machine in the cluster. A single
machine is used for the comparison purpose. The
figure shows the elapsed execution times, measured
in client side.

DHArch parallel execution has the fastest
execution time while the sequential execution yields
the highest processing time because of the
distribution. Between these two, we see Apache Axis
result. At one point, the processing times increases
noticeably. This incident happens where the system
resources are fully utilized. The message execution
time has been slowly increasing because every
additional message starts sharing the computing
resources. However, it has not been causing abrupt
changes until the resources are fully used. When the
resources start unable to meet the demands, the
execution times has been skyrocketing. In Apache
Axis, every arriving message starts another handler
pipelining which shares the scarce resources. The
context switches starts occurring more frequently.
Hence, the execution time increases faster. There is
not a regulation for the incoming messages to prevent
this dilemma. On the other hand, DHArch has a
different reason for the spike. DHArch does not allow
the context switching cost worsening the system
performance. Instead, the increase in execution time
comes from the message waiting in IMQueue.
DHArch forces the messages wait in IMQueue; it
keeps optimum number of messages in MPQueue not
to worsen the processing time because of the context
switching. Hence, we observe a slower increment in
the execution time for the message rate between 70
and 80.

For the Apache Axis deployment, we
observe that the message execution time started to
decline significantly when the number of threads hits
a point that thread scheduling becomes an issue. The
performance begins deteriorating dramatically. The
problem is that there are too many threads running
and handler mechanism did not have any regulation
to keep the performance in its optimum level. We
notice that the fluctuation in the message processing
increases considerably. When the engine completes

enough message executions, the performance is
improving and the system starts processing more
messages. At the same time, the newly arriving
messages begin building up the new threads. When it
reached its limits, the performance starts declining
again. This pattern repeats itself until the message
executions are completed. The standard deviation for
80 messages per second illustrates the incident. On
the other hand, since context switching does not

affect the execution as it is in Apache Axis, the same
fluctuation is not observed in DHArch. However, the
increase in the execution time is not preventable
when the system resources are drenched. In order to
optimize message execution, the remaining messages
that system cannot support are forced to wait in the
queue. Hence, the message processing time increases
steadily in DHArch.

Figure 13 : Message execution for increasing message rate in a single machine

Figure 14 : Message execution for increasing number of messages per second in multiple machines

communicating via Local Area Network

A multi-core system provides advantages

due to the individual core use for handler executions.
If the resources are enough for the handlers which are
running in a parallel manner, the computing
resources do not have to be relinquished while the
execution continues. For a single request, we

definitely see the advantage of utilizing individual
cores when the handler parallelism is applied. On the
other hand, the advantage of the parallel execution of
the handlers fades away for higher message rates. In
other words, pipelining becomes dominant factor in
the executions. Both Apache Axis and DHArch

benefits from pipelining. Hence, in this experiment,
we investigate mainly pipelining rather than handler
parallelism.

When we introduce multiple computers, we
see the immense gain in DHArch. Apache Axis
cannot benefit from multiple computers but DHArch
can. Hence, the processing time stays stable longer
time. Figure 14 portrays this situation. The message
rate does not change the response time until 160

messages per second. One of the important events in
the graph is the convergence of the Apache Axis
single machine execution to the DHArch multiple
machine sequential execution. In a single machine,
Apache Axis processes massages faster than DHArch
sequential execution. When we introduce the
additional computers for DHArch, Apache Axis
catches and later passes the execution time of
DHArch sequential.

Figure 15 : Execution for increasing number of messages in a single machine

In the second experiment, message rate is 80
messages per second where the system resources start
being utilized fully in a single machine. The message
rate is kept same for 100 seconds. In other words,

8000 messages are sent in total. In every second, we
measure the cumulative number of the executed
messages. The results are depicted in Figure 15.

Figure 16 : Execution for increasing number of messages in multiple machines

When we look at the graph, we notice that
Apache Axis completes its executions later than
DHArch. The reason is the thread scheduling.

DHArch employs a regulatory mechanism to control
thread scheduling. It does not allow creating too
many parallel message execution pipelines that

shares the resources and causes performance
degradation. Another observation from the figure is
the closeness of the parallel and sequential executions
of DHArch. While the system resources are being
used fully, the parallel or sequential execution does
not differ so much because the dominant factor is
pipelining rather than handler parallelism.

When additional computers are introduced
to DHArch, the performance becomes very
promising. The processing time of the same amount
of messages is reduced more than two fold and
number of messages executed in a given time is
increased considerably. Figure 16 portrays the
results.

We clearly notice the advantages of utilizing
DHArch in terms of throughput when multiple
computes are used for the computation, shown in
Table 5. In single machine, the message rate is 80
messages per second. The throughputs are very close
to one another. When the multiple machines are used
in DHArch, the throughput becomes favorable to the
DHArch because the number of the processed
messages doubles.
Table 5 : Throughput where the system resources

are being utilized fully
Throughput
(messages
per second)

Apache Axis in single machine 72
DHArch sequential in single
machine 78
DHArch parallel in single machine 76
DHArch sequential in multiple
machines 166
DHArch parallel in multiple
machines 173

5.3 Deploying Web Service Resource
Framework and Web Service Eventing

We want to crown the experiments by
showing deployment of two well-known Web service
specifications. Many efforts have been dedicated to
the WS-specification. The implementations gradually
have started to appear Web service arena. We have
found several groups providing the WS-specification
implementations. Among them, two specs were
fitting for our purpose; WS-Resource Framework
[32] and WS-Eventing[47].

Web services must offer ability to the clients
to access and manipulate state. Even though
managing states is challenging, stateful resources are
not utterly evitable. A service may utilize one or
more stateful resources. Hence, Web service
architecture should provide eligible functionalities to
access them. On the other hand, while this capability

is being offered, having a standard way is essential.
Web Service Resource Framework (WSRF)
establishes the necessary standards for the states. It
provides capabilities to insert, update, and discover
the stateful resources in a standard and interoperable
way. We utilize the Apache implementation of
WSRF for the experimental purpose. We created our
stateful resource for sensors. In addition to inquiry,
insert and update functionalities can also be achieved
in a standard way.

A Web service may benefit from receiving a
notification when an event occurs. Instead of
checking an event occurrence repeatedly, an entity
can be notified by an event source when an event
happens. In this paradigm, a service, called as
subscriber, needs to register itself to a certain interest
with another service, called as event source. Web
Service Eventing (WS-Eventing) defines a protocol
to standardize this effort. A subscription manager can
be employed to administer subscriptions. We utilize
FIN, an implementation of WS-Eventing from
Pervasive Technology Lab [48].

A computer cluster is utilized for this
experiment. It contains 8 machines having the same
features. They share Local Area Network to
communicate each other and utilize Fedora Core
release 1 (Yarrow) in Intel Xeon CPU running on
2.40GHz and 2GB memory.

Before starting benchmarking, the
initializations of the specifications are completed.
Sink registers itself to the topic /sensor/california and
sensor stateful resource stores the initial information.
Most importantly, the suitable massages are selected,
one from WS-Eventing and one from WSRF. These
messages are combined to create a new message in
order to run WSRF and WS-Eventing handlers in a
parallel manner.

Figure 17 : Sequential Execution of WSRF and

WS-Eventing
The message notifies an important activity

and updates information for a sensor stateful
resource. When it is received, WS-Eventing source
handler looks for the subscription manager service to
find out the interested subscribers. Then, it delivers

the event to the sinks, the interested subscribers.
While notification is happening, WSRF handler also
updates the values of the states, which are kept in
storage, and forwards the information with the
additional data previously stored.

Specifications are, first, deployed for
Apache Axis. Every single request is observed 100
times. Handlers and service endpoint utilize a single
computer. The remaining components of the
specifications are hosted by the individual computers
in the cluster. The logical deployment is depicted in
Figure 17.

The environment to execute WS- Eventing
and WSRF is also created for DHArch.WS-Eventing
requires individual computers for its components;
Sink Source and Subscription Manager. Hence, they
are located to the separate computers. Similarly,
WSRF as well as NaradaBrokering are located into
the individual computers in the cluster. Finally, the
service endpoint is placed its location in the cluster.
The deployment can be portrayed as in Figure 18.

Figure 18 : Parallel Execution of WSRF and WS-

Table 6 : WSRF a enting sequential

ting

otal

Eventing
nd WS-Ev

execution in Axis handler structure
WSRF WS- T

Even service
Execution time 69.32
(millisecond)

55.08 162.14

Standard deviation 6.51 4.98 7.18
We first gathered the re n Apa xis

by run

me sequential handler
executi

venting sequential

ting

Total

sults i che A
ning WS-Eventing and WSRF sequentially.

The handlers are deployed into the request path. They
look for their responsible elements in the messages.

In other words, the handlers process only the relevant
elements. We have individually measured the
execution times of the WSRF and WS-Eventing. The
results are shown in Table 6.

We perform the sa
on in DHArch. Because of the overhead

originating from the distribution of the handlers, the
time of processing a single message increases. The
results are shown in Table 7.

Table 7 : WSRF and WS-E
execution in DHArch

WSRF WS-
Even service

Execution time 70.25
(millisecond)

54.68 171.64

Standard deviation 4.45 3.93 10.08
When we in h allelism see

signific

ing parallel

ting

Total

troduce t e par , we
ant improvement in the service performance.

The concurrency reduces the execution cost of a
single request by one forth. The cumulative execution
time of the handlers in a sequential processing is
around 124 milliseconds. It is slightly higher than the
total execution time of the service in DHArch parallel
handler execution. Since WSRF processing time is
higher, it is the main player to determine the
processing time of the handlers joining to the parallel
execution. Due to the fact that DHArch deals with
only handlers, the service endpoint processing time
does not change. A service without handler
executions takes almost 40 milliseconds. Table 8
shows the execution times and standard deviations of
DHArch parallel handler execution.

Table 8 : WSRF and WS-Event
execution in DHArch

WSRF WS-
Even service

Execution time 69.49
(millisecond)

54.45 115.15

Standard deviation 5.53 3.42 12.15
The benc ing demonstr the

advantag

nted Architectures, specifically
Web se

hmark ates
e of parallelism for the handler execution.

While the search goes on for the handler candidates
among the specification, we encounter a very small
domain of handlers which is possibly executable
concurrently. Even in this domain, the way of
implementation causes problems for the distribution.
We are expecting that this domain grows in near
future. Hence, utilizing the distribution and
parallelism for the specifications will produce many
state-of-art applications.

6. Conclusion
Service Orie
rvice technologies, focus on benefiting

maximally from interoperability and reusability.

Many standards and structures have been developed
to provide an interoperable environment. Web
Service Description Language (WSDL), Universal
Description Discovery and Integration (UDDI) and
Simple Object Access Protocol (SOAP) are de-facto
standards to build Web services, which are basically
an application offering a service via SOAP
messaging. On top of these standards, many WS-
specifications have been introduced to provide
additional capabilities. Many others are already on
the way. Furthermore, there are efforts to build
efficient Web service processing environments.
These environments contain many tools to process
SOAP messages, which is the most basic and
essential task of a service execution framework.
Hence, SOAP processing engines, Web service
containers, have been constructed to provide an
efficient environment and to hide the complexity of
the SOAP processing from the user.

Web services exploit additive functionalities
to impro

ry efficient handler
architect

ve its capabilities such as security, reliability,
logging and so on. Some of these functionalities have
been standardized as WS-specifications such as WS-
Security and WS-Reliable Messaging. In many cases,
the functionalities are very essential for a service. For
example, a health service without reliability may be
deadly. A monitoring service without logging may be
useless. Consequently, a Web service needs
additional functionalities to improve its capabilities.
These additive functionalities are called handlers or
filters. They are inevitable for many services as the
necessary capabilities are stated for the health and
monitoring services. This necessity forces the
containers to create their internal handler
architecture. However, the design is very critical in
order to be successful in this effort. Since handlers
are one of the key SOAP processing component of
Web service architecture, this design affects the
whole Web service execution. Therefore, we have
investigated the handler architectures extensively and
derived very vital and important results from this
conclusive research. Distributed Handler Architecture
(DHArch) shows us many essential features that are
necessary for efficient, scalable, flexible, and
modular handler architecture.

DHArch provides ve
ure by exploiting concurrent handler

execution and utilizing additional resources. Many
handlers are independent from each other. In other
words, they can be processed concurrently without
harming the correctness of the execution. This
improves the performance dramatically. Moreover,
the efficiency significantly increases when the
parallel executions leverages additional resources.
For example, taking advantage of an individual

powerful machine for WS-Security in LAN network
contributes to the system efficiency incredibly.

DHArch benefits from message parallelism
in addition to the handler parallelism. Instead of
waiting for the completion of a message execution,
many messages can be processed at the same time.
We called this message pipelining. DHArch utilizes
pipelining by leveraging its internal structures.
DHArch processes the optimum number of messages
and keeps the remaining in a queue instead of letting
every message arriving to the system to start its
execution right away. This regulation prevents the
performance degradation because of too many
messages running concurrently.

Orchestration is a significant feature to
collaborate the distributed applications.
Dissemination of the handlers requires a handler
orchestration. Promising results cannot be expected
without a decent orchestration mechanism for the
handlers. Hence, an orchestration mechanism has
been introduced. It provides two main advantages.
First of all, it offers very efficient and effective
engine by introduction of the separation of the
description and the execution while it is providing
very powerful expressiveness. Secondly, this
mechanism helps to build dynamic handler structure.

DHArch scales very well. Having additional
resources improves the scalability. More resources
allow answering more requests. Since a Web service
may contain many handlers in addition to the Service
endpoint, they all together may saturate a single
machine. It gets worse while many clients are
requesting many services concurrently. The response
time keeps increasing. Instead, the bottleneck points
can be eliminated by introducing additional resources
and utilization of the concurrency.

DHArch is a very flexible system. It easily
allows adding new handlers. The architecture can
also easily be adapted to a Web service container.
The only necessary action is the implanting a suitable
gateway. Furthermore, it is also able to utilize a
variety of platforms for the handler distribution. It
can process handlers in a system ranging from a
single computer, multi-core, and multi processor to
many computers.

References
1. Web Service Architecture, http://www.w3.org/TR/ws-arch/.
2. Simple Object Access Protocol (SOAP),
http://www.w3.org/TR/soap12-part1/.
3. Web Service Description Language (WSDL),
http://www.w3.org/TR/wsdl.
4. Universal Description Discovery and Integration (UDDI),
http://www.uddi.org/ .
5. Apache Axis, http://ws.apache.org/axis/.
6. Microsoft Web Service Enhancements (WSE),
http://www.microsoft.com/downloads/details.aspx?FamilyId=FC5
F06C5-821F-41D3-A4FE-6C7B56423841&displaylang=en.

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl
http://www.uddi.org/
http://ws.apache.org/axis/
http://www.microsoft.com/downloads/details.aspx?FamilyId=FC5F06C5-821F-41D3-A4FE-6C7B56423841&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=FC5F06C5-821F-41D3-A4FE-6C7B56423841&displaylang=en

7. IBM WebSphere, http://www-
306.ibm.com/software/websphere/.
8. Web Service Specifications, http://www-
128.ibm.com/developerworks/webservices/library/ws-spec.html.
9. Hoare, C.A.R., The emperor's old clothes. 1981, ACM Press
New York, NY, USA. p. 75-83.
10. Perera, S., C.Herath, J. Ekanayake, E. Chinthaka, A.
Ranabahu, D. Jayasinghe, S. Weerawarana, G. Daniels, Axis2,
Middleware for Next Generation Web Services. . in IEEE
International Conference on Web Services (ICWS'06). 2006.
11. Web Service Addressing(WS-Addressing),
http://www.w3.org/Submission/ws-addressing/.
12. Shrideep Pallickara, et al., On the Costs for Reliable
Messaging in Web/Grid Service Environments. Proceedings of the
2005 IEEE International Conference on e-Science & Grid
Computing. Melbourne, Australia.pp 344-351.
13. Shirasuna, S., et al., Performance comparison of security
mechanisms for grid services. p. 360-364.
14. Slominski, A., et al., Asynchronous Peer-to-Peer Web
Services and Firewalls, In 7th International Workshop on Java for
Parallel and Distributed Programming (IPDPS 2005), April 2005.
15. Fang, L., A. Slominski, and D. Gannon, Web Services
Security and Load Balancing in Grid Environment.
16. Beytullah Yildiz, Geoffrey Fox, Shrideep Pallickara An
Orchestration for Distributed Web Service Handlers The Third
International Conference on Internet and Web Applications and
Services ICIW 2008 June 8-13, 2008 - Athens, Greece
17. Fox, G., Pallickara, S., and Parastatidis, S, Toward Flexible
Messaging for SOAP-Based Services. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing (November 06 - 12,
2004). Conference on High Performance Networking and
Computing.
18. Arulanthu, A.B., et al., The Design and Performance of a
Scalable ORB Architecture for CORBA Asynchronous Messaging
in Proceedings of the Middleware 2000 Conference, ACM/IFIP,
Apr. 2000.
19. L. Bellissard, et al., An Agent Platform for Reliable
Asynchronous Distributed Programming In Proceedings of the
18th IEEE Symposium on Reliable Distributed Systems (October
18 - 21, 1999).
20. Langendoen K., R. Bhoedjang, and H. Bal, Models for
Asynchronous Message Handling IEEE Parallel Distrib. Technol.
5, 2 (Apr. 1997), 28-38.
21. Buchmann, S.K.A., Improving Data Access of J2EE
Applications by Exploiting Asynchronous Messaging and Caching
Services. in Proceeding of the 28th International Conference on
Very Large Data Bases; 2002
22. Thakur R., W. Gropp, and E. Lusk, On implementing MPI-IO
portably and with high performance. In Proceedings of the Sixth
Workshop on I/O in Parallel and Distributed Systems (Atlanta,
Georgia, United States, May 05 - 05, 1999). IOPADS '99. ACM
Press, New York, NY.
23. Amir Y., et al., A cost-benefit flow control for reliable
multicast and unicast in overlay networks. IEEE/ACM Trans.
Netw. 13, 5 (Oct. 2005), 1094-1106.
24. Shenker, S., A theoretical analysis of feedback flow control.
In Proceedings of the ACM Symposium on Communications
Architectures &Amp; Protocols (Philadelphia, Pennsylvania,
United States, September 26 - 28, 1990). SIGCOMM '90. ACM
Press, New York, NY.
25. Shivers, O., Control flow analysis in scheme. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation (Atlanta, Georgia, United
States, June 20 - 24, 1988). R. L. Wexelblat, Ed. PLDI '88. ACM
Press, New York, NY.
26. Qiu D. and N.B. Shroff, A new predictive flow control
scheme for efficient network utilization and QoS. In Proceedings of
the 2001 ACM SIGMETRICS international Conference on
Measurement and Modeling of Computer Systems (Cambridge,

Massachusetts, United States). SIGMETRICS '01. ACM Press,
New York, NY, 143-153.
27. Fox, G., 2004. A Scheme for Reliable Delivery of Events in
Distributed Middleware Systems. In Proceedings of the First
international Conference on Autonomic Computing (Icac'04) -
Volume 00 (May 17 - 18, 2004). ICAC. IEEE Computer Society,
Washington, DC, 328-329.
28. Tai, S., Thomas A. Mikalsen, and Isabelle Rouvellou, Using
Message-oriented Middleware for Reliable Web Services
Messaging. Lecture notes in computer science (Lect. notes
comput. sci.) ISSN 0302-9743 , 2003.
29. S Maffeis and D.C. Schmidt, Constructing Reliable
Distributed Communication Systems with CORBA. IEEE Comm.,
Feb. 1997.
30. Web Service Reliable Messaging (WS-ReliableMessaging),
ftp://www6.software.ibm.com/software/developer/library/ws-
reliablemessaging200502.pdf.
31. Apache WSRF, An implementation of WS-Resource
Framework, http://ws.apache.org/wsrf/.
32. Web Service Recource Framework (WS-Recource
Framework), http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-
primer-cd-02.pdf.
33. Web Services Reliability (WS-Reliability)
http://www.oracle.com/technology/tech/webservices/htdocs/spec/
WS-ReliabilityV1.0.pdf.
34. van Emde Boas, P., R. Kaas, and E. Zijlstra, Design and
implementation of an efficient priority queue. 1976, Springer. p.
99-127.
35. Handley, M., et al., RFC3448: TCP Friendly Rate Control
(TFRC): Protocol Specification. 2003, RFC Editor United States.
36. Transmission Control Protocol (TCP)
http://www.ietf.org/rfc/rfc793.txt.
37. Avid Karger , A.S., Andy Berkheimer , Bill Bogstad ,
Rizwan Dhanidina , Ken Iwamoto , Brian Kim , Luke Matkins ,
Yoav Yerushalmi, Web caching with consistent hashing.
Proceeding of the eighth international conference on World Wide
Web, p.1203-1213, May 1999, Toronto, Canada
38. Aggarwal , B.A., A. Chandra , M. Snir, A model for
hierarchical vmemory, Proceedings of the nineteenth annual ACM
conference on Theory of computing, p.305-314, January 1987,
New York, New York, United States
39. Abraham Silberschatz, G.G., Peter Baer Galvin, Operating
system concepts. 2002: Addison-Wesley Reading, Mass.
40. Voelter, M., M. Kircher, and U. Zdun, Patterns for
asynchronous invocations in distributed object frameworks,
EuroPLoP 2003, http://www.kircher-
schwanninger.de/michael/publications/AsynchronyEuroPLoP2003.
pdf.
41. Laprie, J.C.C., A. Avizienis, and H. Kopetz, Dependability:
Basic Concepts and Terminology. 1992, Springer-Verlag New
York, Inc. Secaucus, NJ, USA.
42. Leymann, F. and W. Altenhuber, Managing Business
Processes an an Information Resource. 1994. p. 326-348.
43. Hagen, C. and G. Alonso, Exception handling in workflow
management systems. 2000. p. 943-958.
44. Gray, J., Notes on Data Base Operating Systems. 1978:
Springer-Verlag London, UK.
45. Johnson, C.a.W., J Future processors: flexible and modular.
In Proceedings of the 3rd IEEE/ACM/IFIP international
Conference on Hardware/Software Codesign and System Synthesis
(Jersey City, NJ, USA, September 19 - 21, 2005). CODES+ISSS
'05. ACM Press, New York, NY, 4-6. 2005
46. Majumdar, S., Eager, D. L., and Bunt, R. B. , Scheduling in
multiprogrammed parallel systems. SIGMETRICS Perform. Eval.
Rev. 16, 1 (May. 1988), 104-113. 1988.
47. Web Service Eventing (WS-Eventing),
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf.
48. FINS, An Implementation of WS-Eventing,
http://www.naradabrokering.org/FINS-Docs/.

http://www-306.ibm.com/software/websphere/
http://www-306.ibm.com/software/websphere/
http://www-128.ibm.com/developerworks/webservices/library/ws-spec.html
http://www-128.ibm.com/developerworks/webservices/library/ws-spec.html
http://www.w3.org/Submission/ws-addressing/
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200502.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200502.pdf
http://ws.apache.org/wsrf/
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://www.oracle.com/technology/tech/webservices/htdocs/spec/WS-ReliabilityV1.0.pdf
http://www.oracle.com/technology/tech/webservices/htdocs/spec/WS-ReliabilityV1.0.pdf
http://www.ietf.org/rfc/rfc793.txt
http://www.kircher-schwanninger.de/michael/publications/AsynchronyEuroPLoP2003.pdf
http://www.kircher-schwanninger.de/michael/publications/AsynchronyEuroPLoP2003.pdf
http://www.kircher-schwanninger.de/michael/publications/AsynchronyEuroPLoP2003.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://www.naradabrokering.org/FINS-Docs/

