
Dynamic Resource-Critical Workflow Scheduling in
Heterogeneous Environments

Yili Gong
Computer School
Wuhan University

Wuhan, Hubei, P.R.China 430072
Email: yiligong@whu.edu.cn

Marlon E. Pierce
Community Grids Lab

Indiana University
Bloomington, IN 47404

Email: mpierce@cs.indiana.edu

Geoffrey C. Fox
Community Grids Lab

Department of Computer Science
School of Informatics

Indiana University
Bloomington, IN 47404
Email:gcf@indiana.edu

Abstract—Effective workflow scheduling is a key but challeng-
ing issue in heterogeneous environments due to the heterogeneity
and dynamism. Based on the observations that not all tasks
can run on all resources and data transferring and waiting
in a resource queue can be concurrent, we propose a dynamic
resource-critical workflow scheduling algorithm which take into
consideration the environmental heterogeneity and dynamism.
We evaluate its performance by simulations and prove that it
outperforms other algorithms.

Index Terms—Dynamic Scheduling, Resource-Critical
Scheduling, Workflow, Heterogeneous Environments

I. INTRODUCTION

Heterogeneous distributed systems are widely deployed for
executing computation and/or data intensive parallel applica-
tions, especially scientific workflows [1]. A workflow is a set of
ordered tasks that are linked by logic or data dependencies and a
workflow management system is employed to define, manage and
execute these workflow applications [2]. The efficient execution
of workflows in this kind of environments requires an effective
scheduling strategy which decides when and which resources the
tasks in a workflow should be submitted to and run on.

The environment includes both heterogeneous resource and
policy. The software installation and configuration on resources
are different as well as their physical computing capabilities. On
the other side, the administration policies, such as access control
policies, are autonomous and diverse. The dynamism means
that the resource status, e.g. load, waiting time in the queue,
availability, etc., changes over time and often uncontrollable.
Thus the environment requires that the workflow scheduling take
into consideration both heterogeneity and dynamism, which make
the problem very unique and challenging.

Concerning heterogeneity, we find that in practice due to
access control policy, software version incompatibility or special
hardware requirement, it is common that some tasks can not run
on certain resources. With this observation, the tasks which can
run on every resource are more flexible for scheduling than the
resource-critical ones which can only run on just a few resources.
For a resource-critical task, considering the more resource-
flexible tasks before and after it as a group when scheduling
should be better than scheduling them individually. This is the
key idea of our resource-critical algorithms.

In terms of the timing of scheduling, there are two categories of
workflow scheduling approaches: static scheduling and dynamic
scheduling. A static scheduling system makes a schedule before
the workflow starts to run based on available resource and
environment information; while a dynamic scheduling approach
schedule a workflow realtime. The static approach is compara-
tively simpler and easier to implement. However, its performance

heavily relies on the accuracy of the resource and environment
information. Unfortunately it is difficult to precisely predict
this information due to resource autonomy and free will user
behavior. To make full advantage of the known and predicted
information as well as to adapt to dynamics of environment,
dynamic scheduling is introduced. After initially scheduling, the
schedule can be re-assigned according to the hitherto workflow
execution progress and resource status at runtime. Thus we use
the resource-critical mapping algorithm as a base, when resource
status changes, we using the base algorithm to reschedule the
unfinished part of a workflow.

With respect to the architecture of a scheduling system,
it could be either centralized or distributed. In a centralized
workflow scheduling system, all the scheduling is fulfilled by a
central scheduler. While in a decentralized scheduling system,
there are many distributed brokers. The cooperation among the
brokers is a tough problem and makes the system complicated.
Since generally speaking, the calculation overhead of a dynamic
scheduling algorithm is far less than the execution cost of a
workflow, we still prefer a centralized approach.

Analyzing the makespan of a workflow, it can be seen that it
is composed of tasks’ execution time, data transferring time and
waiting time in resource queues. To reduce any of these three
items is beyond the reach of a workflow management system, but
it is possible that the data transferring time and the waiting time
can be concurrent. This is also a principal distinction between
our work and other existing work.

In this paper, our main contributions include that we propose
a dynamic resource-critical workflow scheduling approach and
prove that it outperforms other approaches by simulations.

The rest of the paper is organized as follows. The related work
is discussed in Section II. In Section III, the proposed dynamic
resource-critical workflow scheduling algorithm is described. We
elaborate the design of experiments and evaluate the performance
of our algorithm in Section IV. The conclusion is shown in Section
V.

II. RELATED WORK

Extensive work has been done in the field of workflow
scheduling in distributed environments. The key differentiators
of our work in this paper from the related work lies in that (1)
we do not assume that a task can run on all resources, which
greatly extends the meaning of heterogeneity; (2) we assume that
the data transferring and the waiting time for resources can be
concurrent.

HEFT(Heterogeneous Earlier Finish Time) [3] is one of the
most popular static heuristic and proven to be superior to other
alternatives. Thus we select it as a base algorithm for comparison.
In [4], Yu et al. proposes a HEFT-based adaptive rescheduling

Unmapped

Mapped Submitted

Running

Finished

Submit

Re-map

Map

Re-map

Ready to run

Finish

Fig. 1. A task’s possible statuses and their transitions.

algorithm, AHEFT. It assumes the accuracy of estimation, i.e.
communication and computation cost is estimated accurate and
task starts and finishes punctually as predicted. In contrast, our
proposed algorithm, DRCS, does not assume this. On the other
side, in the AHEFT algorithm, a task can not start without all
required inputs available on the resource on which the task
is to execute; while we take advantage of the fact that data
transferring and waiting in a queue for a resource can be
concurrent. In AHEFT, if a task has not finished by clock, it
will be rescheduled; while in DRCS, the unfinished tasks will be
rescheduled when the resource’s waiting time changes. [5] is a
HEFT-based algorithm for dynamically created DAG scheduling.

The authors of [6] present a decentralized workflow scheduling
algorithm which utilizes a P2P coordination space to coordinate
the scheduling among the workflow brokers. It is a static
scheduling approach and focuses on the scheduling coordination.

In [7] a distributed dynamic scheduling is proposed and it
needs to collect resource information from local resource monitor
services. Since the calculation overhead of a scheduling algorithm
is far less than the execution duration of a workflow and resource
information is available from existed third party sercies, we
still adopt a centralized approach to avoid additional resource
information propagation and synchronization.

Besides using makespan as the single criteria, there are some
work on multi-criteria workflow scheduling. [8] proposes a bi-
criteria scheduling heuristic based on dynamic programming. [9]
presents a bi-criteria approach to minimize the latency given a
fixed number of failures or the other way

III. DYNAMIC RESOURCE-CRITICAL WORKFLOW
SCHEDULING ALGORITHM

In this section, we give the details of our dynamic resource-
critical workflow scheduling algorithm.

A. Task Status

During the execution of a workflow, a task is in one of the
five possible statuses: unmapped, mapped, submit, running and
finished, shown in Figure 1.

• Unmapped: The task has not been mapped yet.
• Mapped: The task is assigned with a resource but has not

been submitted.
• Submitted: The task has been submitted to the resource and

is in the waiting queue.
• Running: The task is running.
• Finished: The task has finished and the result is ready for

use or transfer.

If it is unmapped, mapped or submitted, a task is called
unfixed, we consider it could be rescheduled; if it has started
to run or is finished, it should not.

B. Revised Resource-Critical Mapping
In [10], we proposed a static resource-critical Workflow map-

ping heuristic, referred as SRCM here. Its key idea is that it is
better to map neighboring resource-critical tasks as a group than
to map them individually. In this paper, we adapt the resource-
critical approach to dynamic scheduling.

Given a DAG (Directed Acyclic Graph) of a workflow appli-
cation, G = (V, E), V = {v1, . . . , vN} is the set of nodes in the
DAG, i.e. tasks in the workflow, N is the total number of nodes.
Hereafter, we use the two terms – node and task interchangeably.
volij denotes the volume of data generated by node i and required
by node j, i, j ∈ V and ij ∈ E.

Let the set of resources be R = {r1, . . . , rm} and M be the
number of resources. cij is the computation cost of task i on
resource j. If task i can not run on resource j, cij is infinity.

In a batch system, after submitted, a task typically has to wait
for some time in a queue before actually get started. Due to the
load on the resource, the waiting time varies with time. wij(t) is
the waiting time for task i on resource j at time t. Since in most
heterogeneous environments, resources are shared among a lot
of autonomous users, it’s impossible to know the exact waiting
time in future. So far we use QBETS [11] to predict the waiting
times, represented as w′

ij(t).
trij is the transfer rate from resource i to j, i, j ∈ R. tkl

ij is
the communication cost between task i and j when i is executed
on resource k and j on l, and tkl

ij =
volij

trkl
, i, j ∈ V , k, l ∈

R. When task i and j are executed on the same resource, the
communication cost is zero, i.e. tkk

ij = 0.
Let parent(v) be the parent(s) of task v and child(v) be the

child(ren) of task v, v ∈ V . These functions can be inferred from
the DAG. We assume that the DAG has a single start node v0

which has no parent, i.e. parent(v0) = φ and a single end node
vN−1 which has no child, i.e. child(vN−1) = φ; any of the other
nodes has at least one parent and one child.

The function map(v) : V → R is the mapping from tasks to
resources.

The main revision of the dynamic scheduling from the original
static mapping is that map() might be changed during the
workflow execution, thus a variable, time, is introduced. The
current scheduling is only related to the last time scheduling. t
represents the current time and t′ is the last scheduling time.
map() is the current mapping and map′() is the last time
mapping.

Let EST (v, r, t) and EFT (v, r, t) be the earliest start time
and the earliest finish time of task v on resource r at time t
respectively. AST (v) is the actual start time and AFT (v) is the
actual finish time of task v.

To calculate the makespan of a workflow, we set
EST (v0, r, 0) = 0, r ∈ R, which means that the entry task
v0 can run on any satisfactory resource at time 0. For a task
v, EST (v, r, t) means calculated at time t, the earliest time at
which all v’s parent tasks have finished, the data that it requires
have been transferred to resource r and it is ready to run. An
important assumption we make is that data transferring and task
waiting for resource be concurrent. Thus EST (v, r, t) is defined
as

EST (v, r, t) =

{
max (drt(v, r, t), rat(v, r, t)), v is unfixed,

AST (v), otherwise.

Wherein drt(v, r, t) is task v’s data ready time and rat(v, r, t) is
its resource available time, which are described in detail later.

EFT (v, r, t) is the earliest finish time of task v on resource r
and

EFT (v, r, t) =

EST (v, r, t) + cvr, case 1,

AFT (v), case 2,

Infinity, otherwise,

Wherein,
case 1: task v has not started running, or has started running
but is not finished and map(v) = r.
case 2: v is finished and map(v) = r.

When a task finishes, its output will be transferred to its
child(ren)’s assigned resource(s) immediately. Thus when calcu-
lating the data ready time for a parent-child pair, if the previously
arranged data transfer is no longer valid, we should change it
or arrange a new transfer. The data ready time for data from
parent u to child v on resource r at time t, edrt(u, v, r, t), is as
follows:

edrt(u, v, r, t) =

{
t + t

map(u),r
uv , case 1,

EFT (u) + t
map(u),r
uv , otherwise,

Wherein,
case 1: task u is finished and either map′(u) 6= map(u) or
map′(v) 6= r or both.

The data ready time for all data that task v requires,
drt(v, r, t), is the maximum of the data ready times for all
parents, i.e. drt(v, r, t) = max∀u∈parent(v) edrt(u, v, r, t).

The resource available time for task v on resource r at time
t is the time that v can get r and start to run. Here, we assume
that resources are FIFO batch systems and jobs submitted earlier
should get resources no later than those submitted later. If the
task was mapped to this resource and is still in the queue, and
if the task’s data can arrive before it finishes waiting and get
the resource, the submission is still valid. Otherwise, we need to
resubmit the task at time t.

rat(v, r, t) =

{
rat(v, r, t′), case 1,

t + w′
vr(t), otherwise,

Wherein,
case 1: map′(v) = r and rat(v, r, t′) > t and drt(v, r, t) <
rat(v, r, t′).

The makespan, the overall execution time of the workflow, is
the actual finish time of the end node, vN−1, i.e. AFT (vN−1).

In Algorithm 1, we show the revised resource-critical mapping
(RRCM) algorithm. Here, MR(v) is the match ratio of the
number of the resources on which task v can run on and the
number of all resources, v ∈ V . α is a valve to group nodes.

The key difference between RRCM and SRCM lies in:
• Grouping condition: on line 9, RRCM requires that if a

node is fixed, it does not need to be grouped.
• EFT calculation: on line 21 and 22, RRCM’s method to

calculate EFT is different as described above.

C. Dynamic Resource-Critical Scheduling

In this section, we will introduce the dynamic resource-critical
scheduling algorithm, which is based on RRCM. Specifically we
use RRCM to schedule the unfinished workflow tasks, shown in
Algorithm 2.

When a workflow is first submitted for execution, an initial
resource schedule is generated. When some triggering events
happen, such as the resource waiting time changing, the tasks
would be rescheduled.

Algorithm 1 The revised resource-critical mapping (RRCM)
algorithm.

1: // ranking
2: Set weights of nodes and edges with mean values.
3: Compute the rank of nodes by traversing the DAG upward, starting from

the end node.
4: Sort the nodes in a non-ascending order of the rank values.
5: // grouping
6: G0 ← φ; i← 0.
7: repeat
8: Get a node v in the order of nodes’ rank values.
9: if v’s mapping is unfixed and it is ungrouped then

10: Gi ← Gi + {v}.
11: for all u such that u is v’s descendants do
12: if all ancestors of u have been grouped, all nodes on the path

from v to u is in Gi and MR(u) ≤ α then
13: Gi ← Gi + {u}.
14: end if
15: end for
16: i← i + 1; Gi ← φ.
17: end if
18: until there are no more nodes.
19: // mapping
20: for all group Gi, in ascending order of i. do
21: Schedule the jobs in Gi.
22: Choose the schedule with the smallest EFTs for the end nodes.
23: end for

Algorithm 2 The dynamic resource-critical scheduling
(DRCS) algorithm.

1: S ← φ
2: while (((S == φ) OR (triggering event happens)) AND (vN−1 is not

finished)) do
3: update the resource statuses
4: update the task statuses
5: call the revised resource-critical mapping (RRCM) algorithm
6: update mapping() and schedule submit and/or data transfer events
7: end while

IV. EXPERIMENTS

In this section, we evaluate the performance of our dynamic
resource-critical workflow scheduling algorithm. First, we in-
troduce the experimental environment, followed by the metrics
that we select. Then, we compare our DRCS with three other
algorithms: AHEFT [4], HEFT [3] and SRCM [10].

A. Simulation Setup
1) DAG Generator

We generate parameter sweep DAGs, whose structure is
shown in [10]. Every DAG has one start node and one end
node. Tasks on the same level in different branches have
same resource requirements and similar execution time. We
vary the branch number and the depth respectively from
4 to 12 and from 8 to 24, correspondingly the number of
nodes varies from 34 to 290.

2) Heterogeneity Model
The heterogeneity model we adopt is based on the loosely
consistent heterogeneity model, also called the proportional
computation cost model in [12]. Instead of generating the
resource computing power randomly, we use the practical
numbers from TeraGrid.
The baseline execution time of a task is chosen by using
a random uniform distribution over the interval [10, 100].
The computing cost of a task on a resource is a random
between 95% and 105% of the quotient of its baseline time
divided by the resource’s computing power number.

3) Match Ratio
This is a factor used in SRCM and DRCS introduced by
the factor that some tasks can never run on certain kinds
of resources. The match ratio for a task is the ratio of
the matching and total resource numbers. The ratios are
generated randomly among (0, 1] and a task can run on at
least one resource.

4) Communication Bandwidth
The communication bandwidth between any two resources
is a random number between 5M/s and 300M/s, which are
the bandwidth range we measured on TeraGrid.

5) Communication-to-Computation-Ratio (CCR)
CCR of a workflow is defined as its average communication
cost divided by its average computation cost for all re-
sources. If a workflow’s CCR is low, it would be considered
as a computation intensive application; while if the CCR is
high, it is data intensive.

6) Waiting-to-Computation Ratio (WCR)
WCR is the ratio of the average resource waiting time to
the workflow computation time.

7) Match Ratio Threshold (MRT)
This value is used by SRCM and DRCS to decide what
kind of nodes should be grouped together for mapping. If
MRT is so small that no node’s match ratio below it and
every node is an individual group, the SRCM and DRCS
will degenerate to HEFT and AHEFT respectively. If MRT
is large, the group size grows, it is time-consuming to find
the best solution for a big group. In our experiments, we
set MRT between 0.1 to 0.5.

8) Parameters for Dynamic Changing of Resources
We use two parameters to represent the changing of
resources:
• Resource Change Period (RCP) – the interval of the

resource waiting time change;
• Resource Fluctuation Indicator (RFI) – the waiting time

fluctuation percentage from the initial value.

B. Metrics
To compare the performance of the four algorithms, the

main metric we use is average makespan difference ratio, which
is based on two metrics: makespan and average makespan
difference ratio.

1) Makespan
Makespan is the complete time needed to finish a workflow
under a certain workflow scheduling algorithm.

2) Makespan Difference Ratio
We use the makespan of HEFT algorithm as a base, and the
performance of other algorithms is compared with HEFT’s.
Thus the average makespan difference ratio of HEFT is
always 0.

3) Average Makespan Difference Ratio
For any given branch number and depth, we generate 200
DAGs with their own task computation costs, communi-
cation cost, resource matchings and resource bandwidths,
each of which is called a case. With each combination
of the branch number, depth, CCR and MRT, these four
algorithms will run on the 200 cases.
The average makespan difference ratio is the average of the
makespan difference ratios for the 200 cases under the same
environmental setting.

C. Results
In our simulation, we vary the factors introduced above

to evaluate their influence on the four workflow scheduling
approaches.

Except in the experiment 3, which deals with how the DAG
shape of the parameter sweep applications affects the scheduling,
the DAG branch number and depth are fixed at 8 and 16
respectively.

1) Communication-Computation-Ratio (CCR)
To analyze the influence of CCR on the scheduling perfor-
mance, we set WCR = 1.0, RCP = 5000, RFI = 0.2,
and MRT = 0.3 for the two resource-critical algorithms.
The makespans and the average makespan difference ratios
under various CCR values are shown in Figure 2 and
Figure 3 respectively. Since we set computation cost fixed,
bigger CCR means bigger communication cost, thus for all
the algorithms, the overall makespan gets longer.
When CCR is small, the two static approaches, HEFT
and SRCM, and the two dynamic approaches, AHEFT
and DRCS, perform almost the same. As CCR grows, the
performance of SRCM and DRCS get better and when CCR
is over 3, the static approach SRCM even outperforms the
dynamic approach AHEFT. This surpassing depends on the
fact that most benefit of the resource-critical algorithms
comes from the communication time saving. As the weight
of the communication time in the makespan gets higher, the
benefit gets bigger. Therefore, SRCM and DRCS are more
suitable for the data intensive applications.
Figure 3 presents the improvement of AHEFT, SRCM and
DRCS over HEFT, from which we can notice more clearly
the tendency that AHEFT approaches HEFT and SRCM
approaches DRCS. In further on simulation, when CCR =
100, the difference between HEFT and AHEFT is about
0.69% and the difference between SRCM and DRCS is
about 1.19%. This is because as CCR increases, the dynamic
scheduling algorithms have less opportunity to re-assign the
tasks, since the cost of moving data gets bigger.

2) Waiting-Computation-Ratio (WCR)
Here CCR = 1.0, RCP = 5000, RFI = 0.2, and MRT =
0.3. Figure 4 and Figure 5 present the results. For all four
algorithms, the WCR increasing causes the increasing of
the waiting time cost, correspondingly the increasing of the
makespan.
When WCR is small (= 0.1), the two resource-critical
algorithms performs almost the same and better than HEFT
and AHEFT. While as WCR grows, the two dynamic
algorithms are much less affected than the static ones. It
shows that dynamic scheduling can adjust the schedule when
the waiting time changes to shorten the overall execution
time and the longer the waiting time, the more obvious the
advantage. It can be seen that DRCS is always performs
better than the other three, including AHEFT.
From Figure 5, it can been seen that the performance
of HEFT and AHEFT tends to close to that of SRCM
and DRCS respectively. When WCR = 10, the average
makespan difference ratio of SRCM over HEFT is only
0.65%, and the difference between AHEFT and DRCS is
0.92%. This shows again that the benefit of SRCM and
DRCS are from the communication cost reduction, once
the waiting time gets longer, the weight of the communi-
cation cost decreases, thus the performance improvement
decreases.

3) DAG branch number and depth
In this set of experiments, CCR = 1.0, WCR = 1.0,
RCP = 5000, RFI = 0.2, MRT = 0.3. When the branch
number varies, the depth is fixed at 16; while when the
depth varies, the branch number is 8.
As the branch number varies from 4 to 12, the makespan of
four algorithms increases (refer to Figure 6). This happens
due to the reason that the branch number growth causes

more tasks are ready to run at approximately the same time,
since the capacity of resources is limited, some of the tasks
have to wait longer to actually acquire the resources.
Figure 7 presents the performance improvement of the two
dynamic algorithms decreases with the branch number. For
instance, when the branch number is 4, the makespan
difference ratios of AHEFT and DRCS are 22.69% and
30.96 respectively; while when the branch number is 12,
the ratios are 18.96% and 23.59%.It shows that when the
resource competition is fierce, there is little room for the
dynamic approaches to reschedule the tasks to get better
waiting time. In contrast, the difference ratio of SRCM
over HEFT does not change much with the different branch
numbers.
It is evident that the makespan increases approximately
linearly as the depth varies from 8 to 24 (see Figure 8 and
Figure 9), since more tasks should be executed sequentially.
The deeper the depth, the bigger the improvement ratio of
the two resource-critical algorithms than the corresponding
HEFT or AHEFT algorithms. The improvement ratio of
SRCM over HEFT increases from 4.00% to 8.69% and that
of DRCS over AHEFT increases from 5.26% to 10.82%.
This shows that deeper depth allows the resource-critical
algorithms group more nodes together to achieve better
schedule.

4) Resource Change Period (RCP) and Resource Fluctuation
Indicator (RFI)
To measure how the resource changing affect the algorithms,
we introduce two factors: Resource Change Period and
Resource Fluctuation Indicator, which depict when and by
what degree resources change.
In Figure 10, the setting is CCR = 1.0, WCR = 1.0,
RFI = 0.2, and MRT = 0.3. We can see that the resource
change period has no influence on the performance of the
dynamic approaches. In contrast, as the period grows, the
makespan of the static ones decreases. The static approaches
decide the schedule of the workflow before it starts, and
will not change during the its execution duration. Thus
when the resources change, i.e. the waiting times change, the
initial schedule will become unsuitable and the performance
suffers. If the resource change period is long, it would
change less times during the workflow execution and the
suffering would be less, correspondingly the makespan
improves. As a result, the dynamic scheduling methods are
adapted to the dynamic resource environment. In Figure 11,
CCR = 1.0, WCR = 1.0, RCP = 5000, and MRT = 0.3.
It shows that the resource fluctuation percentage does not
affect the performance of workflow scheduling much.

5) Match Ratio Threshold (MRT)
Match ratio threshold is only used in the resource-critical
algorithms. Here, we set CCR = 1.0, WCR = 1.0, RCP =
5000, and RFI = 0.2.
As the MRT increases from 0.1 to 0.5, the makespan of
SRCM and DRCS decreases from 56404.30s to 55122.44s
and from 44122.46s to 42841.48s respectively. This is because
with a bigger MRT, the algorithms could group more nodes
together and try all the combinations to select the best out
them.

V. CONCLUSION

In this paper we have presented DRCS, an efficient workflow
scheduling approach for heterogeneous and dynamic systems
based on the resource-critical algorithm. Aiming at heterogeneity,
the algorithm combines the resource-critical tasks with their
ancestors and/or descendants together and finds the best schedule
for them as a group. For dynamism, it reschedules the unfinished
tasks according to the current resource status. To evaluate the

performance of DRCS, simulation studies were conducted to com-
pare it with other competitors in the literature, HEFT, AHEFT
and SRCM. It is shown that DRCS outperforms HEFT, AHEFT
and SRCM in almost all environments in terms of makespan.
Especially, the two resource-critical idea based algorithms, DRCS
and SRCM are suited for data-intensive applications. The two
dynamic scheduling algorithm, DRCS and AHEFT are superior
in the long waiting time systems.

To further on adapt to the unreliable, dynamic and heteroge-
neous environment, we plan to investigate the effect of resource
liability and task failure on the scheduling performance.

REFERENCES

[1] (2008) The quakesim project website. [Online]. Available:
Http://quakesim.jpl.nasa.gov/

[2] J. Yu and R. Buyya, “Taxonomy of workflow management systems
for grid computing,” Journal of Grid Computing, vol. 3, no. 3-4, pp.
171–200, 2005.

[3] H. Topcuouglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3,
pp. 260–274, Mar. 2002.

[4] Z. Yu and W. Shi, “An adaptive rescheduling strategy for grid
workflow applications,” in Proc. 21st IEEE International Parallel
& Distributed Processing Symposium (IPDPS’07), Long Beach, CA,
Mar. 2007.

[5] S. Hunold, T. Rauber, and F. Suter, “Scheduling dynamicworkflows
onto clusters of clusters using postponing,” in Proc. Eighth IEEE
International Symposium on Cluster Computing and the Grid (CC-
Grid’08), Lyon, France, May 2008.

[6] R. Ranjan, M. Rahman, and R. Buyya, “A decentralized and
cooperative workflow scheduling algorithm,” in Proc. Eighth IEEE
International Symposium on Cluster Computing and the Grid (CC-
Grid’08), Lyon, France, May 2008.

[7] F. Dong and S. G. Akl, “A mobile agent based workflow rescheduling
approach for grids,” in Proc. 20th IASTED International Conference
on Parallel and Distributed Computing and Systems (PDCS’07),
Cambridge, MA, Nov. 2007.

[8] M. Wieczorek, S. Podlipnig, R. Prodan, and T. Fahringer, “Bi-
criteria scheduling of scientigc workflows for the grid,” in Proc.
Eighth IEEE International Symposium on Cluster Computing and
the Grid (CCGrid’08), Lyon, France, May 2008.

[9] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling
of precedence task graphs on heterogeneous platforms,” in Proc.
22st IEEE International Parallel & Distributed Processing Symposium
(IPDPS’08), Miami, FL, Apr. 2008.

[10] Y. Gong, M. E. Pierce, and G. C. Fox, “Matchmaking scientific
workflows in grid environments,” in Proc. 20th IASTED Interna-
tional Conference on Parallel and Distributed Computing and Systems
(PDCS’07), Cambridge, MA, Nov. 2007.

[11] D. Nurmi, J. Brevik, and R. Wolski, “Qbets: Queue bounds estima-
tion from time series,” in Proc. 13th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP’07), Seattle, WA, June
2007.

[12] Y. Kwok and I. Ahmad, “Dynamic critical path scheduling: An
effective technique for allocating task graphs to multiprocessors,”
IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 5,
pp. 506–521, May 1996.

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0.1 1 2 3 4 5 6 7 8 9 10

M
a
k
e
s
p
a
n
 (

s
)

Communication-Computation-Ratio (CCR)

HEFT
AHEFT
SRCM
DRCS

Fig. 2. Makespans under various CCRs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 D

if
fe

re
n
c
e
 R

a
ti
o
 (

%
)

Communication-Computation-Ratio (CCR)

HEFT
AHEFT
SRCM
DRCS

Fig. 3. Average makespan difference ratios under various CCRs.

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

M
a
k
e
s
p
a
n
 (

s
)

Waiting-Compuation-Ratio (WCR)

HEFT
AHEFT
SRCM
DRCS

Fig. 4. Makespan under various WCRs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 D

if
fe

re
n
c
e
 R

a
ti
o
 (

%
)

Waiting-Compuation-Ratio (WCR)

HEFT
AHEFT
SRCM
DRCS

Fig. 5. Average makespan difference ratios under various
WCRs.

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 4 6 8 10 12

M
a
k
e
s
p
a
n
 (

s
)

Branch

HEFT
AHEFT
SRCM
DRCS

Fig. 6. Makespan under various branch numbers.

 0

 5

 10

 15

 20

 25

 30

 35

 4 8 12

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 D

if
fe

re
n
c
e
 R

a
ti
o
 (

%
)

Branch Number

HEFT
AHEFT
SRCM
DRCS

Fig. 7. Average makespan difference ratios under various branch
numbers.

 25000

 35000

 45000

 55000

 65000

 75000

 85000

 8 12 16 20 24

M
a
k
e
s
p
a
n
 (

s
)

Depth

HEFT
AHEFT
SRCM
DRCS

Fig. 8. Makespan under various depths.

 0

 5

 10

 15

 20

 25

 30

 35

 8 12 16 20 24

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 D

if
fe

re
n
c
e
 R

a
ti
o
 (

%
)

Depth

HEFT
AHEFT
SRCM
DRCS

Fig. 9. Average makespan difference ratios under various
depths.

 40000

 45000

 50000

 55000

 60000

 65000

 3000 4000 5000 6000 7000 8000

M
a
k
e
s
p
a
n
 (

s
)

Resource Change Period (s)

HEFT
AHEFT
SRCM
DRCS

Fig. 10. Makespan under various resource change periods.

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 10 15 20 25 30

M
a
k
e
s
p
a
n
 (

s
)

Resource Fluctuation Indicator (%)

HEFT
AHEFT
SRCM
DRCS

Fig. 11. Makespan under various resource fluctuation percent-
ages.

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 0.1 0.2 0.3 0.4 0.5

M
a
k
e
s
p
a
n
 (

s
)

Match Ratio Threshold (MRT)

HEFT
AHEFT
SRCM
DRCS

Fig. 12. Makespan under various match ratio thresholds.

