
Data Intensive Computing for
Bioinformatics

Judy Qiu1, Jaliya Ekanayake 1,2, Thilina Gunarathne1,2, Jong Youl Choi1,2, Seung-Hee Bae1,2,
Yang Ruan1,2, Saliya Ekanayake1,2, Scott Beason1, Geoffrey Fox1,2, Mina Rho2, Haixu Tang2

1Pervasive Technology Institute, 2School of Informatics and Computing,
Indiana University

Bloomington IN, U.S.A.
{xqiu, jekanaya, tgunarat, jychoi, sebae, yangruan, sekanaya, smbeason, gcf,mrho, hatang@indiana.edu}

1 Introduction 2

1.1 Overview 2

1.2 Architecture for Data Intensive Biology Sequence Studies 3

2 Innovations in algorithms for data intensive computing 4

2.1 Visualization analysis by using parallel MDS and GTM 4

2.1.1 Parallel MDS and GTM 5

2.1.2 Experimental Results 6

2.2 Metagenomics Studies with Clustering 8

2.3 Metagenomics Studies with Hierarchical MDS 11

3 Innovations in programming models using cloud technologies 13

3.1 Runtimes and Programming Models 13

3.1.1 Parallel frameworks 13

3.1.2 Science in clouds ─ dynamic virtual clusters 15

3.2 Pairwise sequence alignment using Smith-Waterman-Gotoh 16

3.2.1 Introduction to Smith-Waterman-Gotoh (SWG) 16

3.2.2 Implementations 17

3.2.3 Performance comparison 19

3.3 Sequence assembly using Cap3 22

3.3.1 Introduction to Cap3 22

3.3.2 Implementations 22

3.3.3 Performance 22

4 Iterative MapReduce with i-MapReduce 24

4.1 MapReduce Extensions 24

4.2 Performance of i-MapReduce for Iterative Computations 26

4.3 Related Work 28

4.4 Future Work on i-MapReduce 29

Acknowledgements 29

Appendix A Different Clusters used in this Analysis 29

1 INTRODUCTION
1.1 Overview
Data intensive computing, cloud computing and multicore computing are converging as frontiers to
address massive data problems with hybrid programming models and/or runtimes including MapReduce,
MPI and parallel threading on multicore platforms. A major challenge is to utilize these technologies and
large scale computing resources effectively to advance fundamental science discoveries such as those in
life sciences. The recently developed next-generation sequencers have enabled large-scale genome
sequencing in areas such as environmental sample sequencing leading to metagenomic studies of
collections of genes. Metagenomic research is just one of the areas that present a significant
computational challenge because of the amount and complexity of data to be processed.
 This chapter builds on research we have performed (Ekanayake, et al., 2009)(Ekanayake, Pallickara,
& Fox, 2008)(Ekanayake, Qiu, Gunarathne, Beason, & Fox, 2010) (Fox, et al., 2009) (Fox, Bae,
Ekanayake, Qiu, & Yuan, 2008) (Qiu, et al., 2009) (Qiu & Fox, Data Mining on Multicore Clusters,
2008) (Qiu X. , Fox, Yuan, Bae, Chrysanthakopoulos, & Nielsen, 2008) (i-MapReduce, 2009) on the use
of Dryad (Microsoft’s MapReduce) (Isard, Budiu, Yu, Birrell, & Fetterly, 2007) and Hadoop (open
source) (Apache Hadoop, 2009) for several applications areas including particle physics and several
biology problems. The latter often have the striking all pairs (or doubly data parallel) structure highlighted
by Thain(Moretti, Bui, Hollingsworth, Rich, Flynn, & Thain, 2009). We chose to focus on the
MapReduce frameworks as these stem from the commercial information retrieval field which is perhaps
currently the world’s most demanding data analysis problem. Exploiting commercial approaches offers a
good chance that one can achieve high-quality, robust environments and MapReduce has a mixture of
commercial and open source implementations. In particular, we have looked at MapReduce and MPI and
shown how to analyze metagenomics samples with modest numbers of genes on a modern 768 core 32
node cluster. We have learnt that current MapReduce cannot efficiently perform perform clustering and
MDS (Multidimensional Scaling) steps even though the corresponding MPI implementation only needs
reduction and broadcast operations and so fit architecturally functions supported in MapReduce. In
addition, we need to support iterative operations and propose i-MapReduce to support this. An early
prototype described in section 4 has been run on kernels but as yet not on complete bioinformatics
applications. Research issues include fault tolerance, performance and support of existing MPI programs
with the i-MapReduce run time invoked by the subset of MPI calls supported by i-MapReduce.

We have robust parallel Dimension Reduction and Deterministic Annealing clustering and a matching
visualization package. We have parallel implementations of two major dimension reduction approaches –
the SMACOF approach to MDS and Generative Topographic Mapping (GTM) described in section 2.
MDS is O(N2) and GTM O(N) but only MDS can be applied to most sequences samples as GTM requires
that the points have (high dimensional) vectors associated with them. As simultaneous multiple sequence
alignment MSA is impractical for interesting datasets, MDS is best approach to dimension reduction for
sequence samples as it only requires sequences to be independently aligned in pairs to calculate a
dissimilarity. On the other hand GTM is attractive for analyzing high dimension data base records where
well defined vectors are associated with each point – here each database record.

Hierarchical operations are not supported for MDS and clustering except in a clumsy manual fashion.
Distance calculations (Smith-Waterman-Gotoh) MDS and clustering are all O(N2) and will not properly
scale to multi-million sequence problems. In the final part of section 2, we propose a new multiscale
(hierarchical) approach to MDS that could reduce complexity from O(N2) to O(NlogN) using ideas
related to approaches already well understood for O(N2) particle dynamics problems.

Section 3 describes our work on MapReduce where we take “all-pairs” or “doubly data parallel”
computations in two bioinformatics applications and compare two implementations of MapReduce
(Dryad and Hadoop) with MPI. We describe interesting technology developed to support rapid changes of
operating environment of our clusters and also look at overhead of virtual machines for Hadoop. We
focus on effect of inhomogeneous data and set the scene for discussion of i-MapReduce in section 4. One
of the biology applications – sequence assembly by Cap3 – is purely “Map” and has no reduction
operation. The other – calculation of Smith-Waterman dissimilarities for metagenomics – has a significant
reduction phase to concentrate data for later MDS and Clustering.

1.2 Architecture for Data Intensive Biology Sequence Studies
The data deluge continues throughout science and all areas need analysis pipelines or workflows to propel
the data from the instrument through various stages to scientific discovery often aided by visualization. It
is well known that these pipelines typically offer natural data parallelism that can be implemented within
many different frameworks.

Figure 1. Pipeline for analysis of metagenomics Data

Figure 1 shows the data analysis pipeline shared by many gene sequence studies and in particular by

our early work on metagenomics. Apart from simple data manipulation, there are three major steps –
calculation of the pairwise distances between sequences followed by MDS and Clustering. We focus on
the former here as it can use current MapReduce technologies and exhibits a doubly data parallel structure
as dissimilarities can be calculated independently for the N distinct labels of sequences i and j. Note
that currently one cannot reliably use multiple sequence analysis (MSA) on large samples and so one
must use techniques that only use pairwise distances between sequences (that can be reliably calculated)
and not methods relying on vector representations of the sequences. The lack of vector representation of
sequences implies that many approaches to dimension reduction (such as GTM (Bishop & Svensén,
GTM: A principled alternative to the self-organizing map, 1997)) and clustering (such as original vector-
based Deterministic annealing clustering (Rose K. , Deterministic Annealing for Clustering,
Compression, Classification, Regression, and Related Optimization Problems, 1998) cannot be used. We
have published several earlier papers (Fox, et al., 2009)(Fox, Bae, Ekanayake, Qiu, & Yuan, 2008)(Qiu,

Visualization
PlotvizBlocking

Sequence
alignment

FASTA File
N Sequences

Form
block

Pairings

Internet Read
Alignment

Instruments

MDS

Pairwise
clustering

Dissimilarity
Matrix

N(N-1)/2
values

et al., 2009) describing our work on this pipeline and related problems. The pairwise distances for
metagenomics and other gene family problems are calculated using the algorithm developed by Smith-
Waterman (Smith & Waterman, 1981) and Gotoh (Gotoh, 1982) (SW-G) and the process is complicated
by the need to exploit the symmetry and to arrange results in a form suitable for the next steps
in the pipeline. We have performed detailed performance measurements on MPI, Hadoop and Dryad with
results summarized in section 3. This section also describes work on CAP3 which only involves the initial
doubly data parallel read alignment stage.

In section 2, we use data from the NIH database PubChem that records properties of chemical
compounds. Currently there are 26 million compounds but in our initial studies we use random subsets of
up to 100,000 compounds. For each we use 166 binary properties to define 166 dimensional vectors
associated with each compound. In follow up work we are using interpolation and other methods to
extend analysis to full NIH dataset.

2 INNOVATIONS IN ALGORITHMS FOR DATA INTENSIVE COMPUTING
2.1 Visualization analysis by using parallel MDS and GTM
Dimension reduction and follow-up visualization of large and high-dimensional data in low dimensions is
a task of growing importance in many fields of data mining and information retrieval to understand data
structures, verify the results of data mining approaches, or browse them in a way that distance between
points in visualization space (typically 2D or 3D) tracks that in original high dimensional space. There are
several well understood approaches to dimension reduction for this purpose but they can be very time and
memory intensive for large problems. Here we discuss parallel algorithms for Scaling by MAjorizing a
COmplicated Function (SMACOF) to solve Multidimensional Scaling (MDS) problem and Generative
Topographic Mapping (GTM). The former is particularly time consuming with complexity that grows as
square of data set size but has advantage that it does not require explicit vectors for dataset points but just
measurement of inter-point dissimilarities. We also present a comparison between MDS and GTM by
using Canonical Correlation Analysis (CCA).

Multidimensional Scaling (MDS): MDS (Kruskal & Wish, 1978),(de Leeuw, Applications of
convex analysis to multidimensional scaling, 1977),(de Leeuw, Convergence of the majorization method
for multidimensional scaling, 1988), (Borg & Groenen, 2005) is a technique for mapping generally high-
dimensional data into a target dimension (typically a low dimension L), such that each distance between a
pair of points in the mapped configuration is an approximation to the corresponding given pairwise
proximity value as measured by a weighted least squares sum. The given proximity information is
represented as an dissimilarity matrix , where is the number of points
(objects) and is the dissimilarity between point and . The output of MDS algorithms can be
represented as an configuration matrix , whose rows represent each data points
in -dimensional space. We are able to evaluate how well the given points are configured in the -
dimensional space by using a least squares style objective functions for MDS, called STRESS (Kruskal J.
, 1964) or SSTRESS (Takane, Young, & de Leeuw, 1977). Definitions of STRESS (2.1) and SSTRESS
(2.2) are given in the following equations:

 (2.1)

 (2.2)

where , in the L-dimensional target space, and is a weight
value, with .

Generative Topographic Mapping (GTM): GTM is an unsupervised learning algorithm for
modeling the probability density of data and finding a non-linear mapping of high-dimensional data in a
low-dimension space. GTM is also known as a principled alternative to Self-Organizing Map
(SOM)(Kohonen, 1998) which does not have any density model, GTM defines an explicit probability
density model based on Gaussian distribution(Bishop & Svensén, GTM: A principled alternative to the
self-organizing map, 1997) and seeks the best set of parameters associated with Gaussian mixtures by
using an optimization method, notably the Expectation-Maximization (EM) algorithm(Dempster, Laird,
& Rubin, 1977).

Canonical Correlation Analysis (CCA): CCA is a classical statistical method to measure correlations

between two sets of variables in their linear relationships (Hotelling, 1936). In distinction from ordinary
correlation measurement methods, CCA has the ability to measure correlations of multidimensional
datasets by finding an optimal projection to maximize the correlation in the subspace spanned by features.
The projected values, also known as canonical correlation variables, can show how two input sets are
correlated. In our experiments, we have measured similarity of MDS and GTM results by measuring
correlation in CCA. More details of CCA can be found in (Hardoon, Szedmak, & Shawe-Taylor,
2004)(Campbell & Atchley, 1981)(Thompson, 1984).

2.1.1 Parallel MDS and GTM
Running MDS or GTM with large dataset such as PubChem requires memory-bounded computation, not
necessarily CPU-bounded. For example, GTM may need a matrix for 8,000 latent points, corresponding
to a 20x20x20 3D grid, with 100,000 data points, which requires at least 6.4 GB memory space for
holding 8-byte double precision numbers and this single requirement easily prevents us from processing
GTM by using a single process. Also, memory requirement of SMACOF algorithm increases
quadratically as increases. For example, if , then one matrix consumes 80 GB of
memory for holding 8-byte double precision numbers. To make matters worse, the SMACOF algorithm
generally needs six matrices, so at least 480 GB of memory is required to run SMACOF with
100,000 data points excluding other memory requirement. To overcome this problem, we have developed
parallel MDS(SMACOF) and GTM algorithms by using MPI Message Passing Interface (MPI, 2009),
which we discuss in more detail.

Parallel SMACOF: Scaling by MAjorizing a COmplicated Function (SMACOF) (de Leeuw,
Applications of convex analysis to multidimensional scaling, 1977), is an algorithm to solve MDS
problem with STRESS criterion based on an iterative majorization approach, and one iteration consists of
two matrix multiplications. For the mathematical details of SMACOF algorithm, please refer to (Borg &
Groenen, 2005). To parallelize SMACOF, we decompose each matrix with a block
decomposition, where is the number of block rows and is the number of block columns, to make use
of a total of processes. Thus, each process requires only approximately a of the
sequential memory requirement of SMACOF algorithm. Figure 2 illustrates how a matrix multiplication
between an matrix and an matrix is done in parallel using MPI primitives when
each matrix is decomposed with , , and each arrow represents a message
passing. For simplicity, we assume in Figure 2.

Figure 2. Parallel matrix multiplication of
matrix and matrix based on the block
decomposition with 6 processes.

Figure 3. Data decomposition of parallel GTM for
computing responsibility matrix by using
mesh of 6 processes.

Parallel GTM: To develop parallel GTM algorithm, we have analyzed the original GTM algorithm. The
GTM algorithm is to seek a non-linear manifold embedding of user-defined latent discrete variables ,
mapped from a low -dimension space called latent space, which can optimally represent the given
data points in the high -dimension space, called data space (usually). To
define optimality, GTM uses the following log-likelihood function using Gaussian noise model:

 (2.3)

where represents variance in Gaussian distribution. Since the detailed derivations of GTM algorithm
is out of this paper's scope, we recommend readers to refer to the original GTM papers (Bishop &
Svensén, GTM: A principled alternative to the self-organizing map, 1997)(Bishop, Svensén, & Williams,
GTM: The generative topographic mapping, 1998).

 In GTM, the most memory consuming step for optimization is a process to compute the posterior
probabilities, known as responsibilities, between K latent points and N data points, which is represented
by a matrix. The core of parallel GTM algorithm is to decompose the responsibility matrix into

 sub-blocks (Figure 3) and each sub-block holds responsibilities for only approximately
mapped point ’s and data point ’s. Then, each compute node of mesh compute grids can
process one sub-block which requires only of the memory spaces for the original full responsibility
matrix.

2.1.2 Experimental Results
We have performed performance analysis of parallel MDS (SMACOF) and parallel GTM discussed
above by using 20K PubChem dataset having 166 dimensions and measured correlation of MDS and
GTM results for a 100K PubChem dataset. For this performance measurement, we have used our modern
cluster systems (Cluster-C, Cluster-E, and Cluster-F) as shown in Appendix.

Parallel MDS: Figure 4 shows the performance comparisons for 20K PubChem data with respect to
decomposition methods for the matrices with 32, 64, and 128 cores in Cluster-E and Cluster-C. A
significant characteristic of those plots in Figure 4 is that skewed data decompositions, such as or

, which decompose by row-base or column-base, are always worse in performance than balanced
data decompositions, such as block decomposition which and are as similar as possible.
There might be several reasons of the performance results in Figure 4. First, one of the reasons might be

cache line effect that affects cache reusability, and generally balanced block decomposition shows better
cache reusability so that it occurs less cache misses than the skewed decompositions (Bae, 2008)(Qiu &
Fox, Data Mining on Multicore Clusters, 2008). The difference of overhead in message passing
mechanism for different data decompositions, specially for computing , is another reason for the
results in the Figure 4.

Figure 4. Performance of Parallel SMACOF for 20K PubChem data with 32,64, and 128 cores in
Cluster-E and Cluster-C w.r.t. data decomposition of matrices.

Parallel GTM: We have measured performance of parallel GTM with respect to each possible
decomposition of the responsibility matrix to use at most cores for (Cluster-F), plus

 and cores in Cluster-E and using the 20k PubChem dataset.

 (a) 16 cores on Linux (Cluster-F) (b) 32 cores on Windows (Cluster-E) (c) 64 cores on Windows (Cluster-E)
Figure 5. Performance of Parallel GTM for 20K PubChem data with 16, 32 and 64 cores running on
Cluster-E (32 and 64 cores) and Cluster-F (16 cores) plotted with absicca defining the the data
decomposition running on compute grids.

As shown in 0, the performance of parallel GTM is very sensitive on the choice of decomposition of
responsible matrix and, especially, the size of affects greatly to the performance. This is because the
large value increases the number of row-communications for exchanging sub-matrix of , while the
submatrices of doesn’t need to re-distribute after starting processing since they are not changed
throughout the whole process. Also, the results show that the worst case performance is not changed as
much as we increase the number of cores. This implies that the worst performance is mainly due to the
overheads caused by the use of MPI and their communications, not the process computing time in each

core. The outperformance on Linux (0(a)) is because our parallel GTM implementation is using the
statistics package R which is better optimized in Linux than Windows. In Windows (0(b) and (c)), we
have obtained overall performance gains of about 16.89 (%) ~ 24.41 (%) by doubling the number of
cores. Further current algorithm has an inherently sequential component. So we have succeeded in
distributing the memory but we need further study of compute performance.

Correlation measurement by CCA: We have processed 100,000 PubChem data points by using our

parallel MDS and GTM and measured similarity between MDS and GTM outputs by using CCA. As
shown in Figure 6 as a result, the correlation measured by CCA shows a strong linear relationship
between MDS and GTM outputs.

(a) MDS for 100K PubChem (b) GTM for 100K PubChem (c) Canonical correlation variable plot
for 100K PubChem MDS and GTM

Figure 6. SMACOF and GTM outputs of 100K PubChem dataset are shown in (a) and (b). SMACOF and
GTM correlation computed by CCA is shown in (c) as a plot with canonical correlation variables. In this
result, the optimal correlation, so-called canonical correlation coefficient, is 0.90 (maximum is 1.00)
which shows strong correlation between SMACOF and GTM.

In this section, we have tried to deal with large data sets using parallelism in two different data mining

algorithms, called SMACOF and GTM. However, there are important problems for which the data set
size is too large for even our parallel algorithms to be practical. Because of this, we are now developing
interpolation approaches for both algorithms. Here we run MDS or GTMs with a (random) subset of the
dataset and the dimension reduction of the remaining points are interpolated, so that we can deal with
much more data points to visualize without using the infeasible amount of memory.

2.2 Metagenomics Studies with Clustering
Our initial work on Metagenomics has exploited our earlier work on clustering (Rose K. , Deterministic
Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems,
1998)(Rose, Gurewitz, & Fox, A deterministic annealing approach to clustering, 1990)(Rose, Gurewitz,
& Fox, 1990)(Hofmann & Buhmann, 1997) for determining families and dimension reduction using MDS
for visualization(Klock & Buhmann, 2000)(Kearsley, Tapia, & Trosset, 1995)(Kruskal J. , 1964)(Takane,
Young, & de Leeuw, 1977)(Kruskal & Wish, 1978)(Borg & Groenen, 2005)(de Leeuw, Applications of
convex analysis to multidimensional scaling, 1977). We will propose in section 2.3 to research the use of

MDS to reliably divide the sequence space into regions and support fast hierarchical algorithms. Typical
results are shown in Figure 7 from an initial sample of 30,000 sequences.

Figure 7. Results of Smith-Waterman distance Computation, Deterministic Annealing Clustering and
MDS visualization pipeline for 30,000 Metagenomics sequences. (a) shows 17 clusters for full sample
using Sammon’s version of MDS for visualization. (b) shows 10 sub-clusters with a total of 9793
sequences found from purple and green clusters in (a) using Sammon’s version of MDS for visualization.
Sub clustering of light brown cluster in Figure 7(a) with 2163 sequences decomposed further into 6 sub-
clusters. In (c) Sammon’s ansatz is used in MDS and in (d) SMACOF with less emphasis on small
distances: weight(i,j) = 1 in equation (2.4).

This figure illustrates clustering of a Metagenomics sample using the robust deterministic annealing
approach described in (Rose, Gurewitz, & Fox, A deterministic annealing approach to clustering,
1990)(Rose K. , Deterministic Annealing for Clustering, Compression, Classification, Regression, and
Related Optimization Problems, 1998)(Hofmann & Buhmann, 1997)(Klock & Buhmann, 2000)(Klock &
Buhmann, 2000)(Qiu X. , Fox, Yuan, Bae, Chrysanthakopoulos, & Nielsen, 2008). This is implemented

(c)

(d)

(a)

(b)

in MPI and runs in 30 minutes for 10 clusters and over 2 hours for 17 clusters on the 768 core cluster for
the full 30,000 sequences. This processing time is proportional to the square of both the number of
sequences and number of clusters and so we need hierarchical methods to process large data samples
and/or large number of clusters. This is illustrated for clusters in figures Figure 7 (b, c, d). We will
develop more automatic approaches to this as discussed in section 2.3.

We can generalize equations (2.1) and (2.2) to state that MDS finds the best set of vectors xi in any
chosen dimension d (d=3 in our case) minimizing:

 (2.4)

The form of the weights weight(is chosen to reflect importance of a point or perhaps a desire

(Sammon’s method with = 1/ as opposed to SMACOF with weight weight(=1) to fit smaller
distance more precisely than larger ones. The index n is typically 1 (Euclidean distance) but 2 also useful.
The index m is 1 in Figure 7 but m=0.5 is also interesting. Figure 7(c and d) show the sensitivity to MDS
heuristic with SMACOF producing better results than Sammon for the sub-clustering of the smallish 2163
sequence sample. Generally we use Sammon as giving best results.

We have MDS implementations with three different methods – the classic expectation maximization
approach(Kruskal & Wish, 1978)(Borg & Groenen, 2005) described in section 2.1, a deterministic
annealing version(Klock & Buhmann, 2000)(Klock & Buhmann, 2000) and a distinct version that uses
nonlinear χ2 solution methods (Kearsley, Tapia, & Trosset, 1995) which was used in figure 7. All have
efficient parallel implementations (Fox, Bae, Ekanayake, Qiu, & Yuan, 2008) and we will describe the
second and third approaches in detail elsewhere.

Deterministic annealing(Rose K. , Deterministic Annealing for Clustering, Compression,
Classification, Regression, and Related Optimization Problems, 1998) is a powerful idea to avoid local
minima in optimization methods (and both clustering and MDS can be considered this way) by
simplifying the notoriously slow simulated annealing by calculating averages explicitly using mean field
theory. For clustering, Hofmann and Buhmann (Hofmann & Buhmann, 1997) first showed how to do this
in a formulation that only uses pairwise distances. Define an energy function

 (2.5)

and C(k) = ∑i=1

N Mi(k) is the expected number of points in the k’th cluster. D(i,j) is as before the
pairwise distance or dissimilarity between points i and j. One minimizes equation (2.5) for the cluster
probabilities Mi(k) that point i belong to cluster k. One can derive deterministic annealing from an
informatics theoretic (Rose K. , Deterministic Annealing for Clustering, Compression, Classification,
Regression, and Related Optimization Problems, 1998) or a physics formalism(Hofmann & Buhmann,
1997). In latter case one smoothes out the cost function (2) by integrating it with the Gibbs distribution
exp(-H/T) over all degrees of freedom. This implies in a physics language that one is minimizing not H
but the free energy F at temperature T and entropy S

 (2.6)

As explained in detail in (Rose K. , Deterministic Annealing for Clustering, Compression,
Classification, Regression, and Related Optimization Problems, 1998), the temperature T can be
interpreted as a distance scale so that gradually reducing the temperature T in equations (2.5) and (2.6)
corresponds to increasing resolution with which one considers distance structure.

Our parallel implementations of equations (2.5) and (2.6) are quite mature and have been used
extensively although there is ongoing activity in improving the overall infrastructure to support the many
linked runs needed. There are also some sophisticated options in these methods that are still being
implemented. Figure 7 illustrates that we perform manual hierarchical analyses already but as explained
in the next subsection, we propose to build on current technology to dramatically improve the scaling to
large numbers of sequences which is currently limited by O(N2) complexity of all stages of the processing
pipeline in Figure 1.

2.3 Metagenomics Studies with Hierarchical MDS

Figure 8. Barnes-Hut Oct tree generated from MDS dimension reduced Metagenomics data

Even though the annealing algorithm is looking at genes with a decreasing distance scale, the current
clustering algorithm is of O(N2) complexity and its behavior as distance scale is lowered tracks the "worst
region" because the criteria for success are global. We can develop new algorithms and dissociate
convergence criteria in different regions by a fully hierarchical algorithm using ideas developed for
making particle dynamics simulations O(NlogN). The essential idea is to run MDS on a subset of data
(say 20,000 to 100,000 sequences) to map sequences to a 3D Euclidean space. This would take hours to
days on our 768 core cluster. Then use orthogonal recursive bisection to divide 3D mapped space into
geometrically compact regions. This allows both MDS mapping of full dataset and a proper

decomposition to allow efficient hierarchical clustering to find detailed sequence families. The best way
to define regions is a research issue with both visual interface and automatic methods possible,

We want to find a way of converting O(N2) algorithms like MDS to O(NlogN) in same way that
“Barnes-Hut trees” and “Fast Multipole” methods convert O(N2) particle dynamics to O(NlogN). The
latter is described on many places (Barnes-Hut Simulation, 2009) including PhD thesis of John Salmon
(Salmon, 1991). The idea is illustrated in figure 8 which shows a 2D projection of the data of fig. 7(a)
with a hierarchical quad tree superimposed. This was generated by an open source Barnes Hut Tree
code(Berg, 2009).

The essential idea can be stated as follows: consider a collection of points, which are MDS mapped
points in our case, and would be galaxies or stars in astrophysics. Divide them up by “orthogonal
recursive bisection” to produce quad-trees in 2D or oct-trees in 3D (as in Figure 7). This is impractical in
high dimensional space (as it generates 2D children at each node) but quite feasible in two or three
dimensions. Thus in our case of sequences, we need to use MDS to map the original sequences which are
both high dimensional and without defined universal vector representations (until we solve Multiple
Sequence Alignment MSA problem). Note that the orthogonal recursive bisection divides space into
regions where all points in a region are near each other. Given the nature of MDS, “near each other” in
3D implies “near each other” in original space. Note this approach builds a tree and each internal or
terminal node is a cubic region. User-defined criteria (such as number of points in region) establish if this
region should be further split into 8 (in 3D) other regions. These criteria need to be designed for MDS but
is naturally the number of points as this determines performance of part d) of algorithm below.

So our proposed algorithm proceeds as follows:
a) Perform a full O(Nsubset

2) MDS for a subset Nsubset of points.
b) Find centers or representative (consensus) points for each region in oct-tree. The centers could be

found in at least two ways. First one can use heuristic algorithms to find the center by a heuristic
algorithm in the original space. A simple heuristic that has been successful for us is to find the point
in the region with the minimum value for maximum distance from all other points in that region. A
second approach is to find the geometric center in the mapped 3D MDS space (or a set of
representative points around a 3D region), then find the nearest sequences to the center – these
become representative points for the region. One does this for all nodes of the tree – not just the final
nodes. Note that representative points are defined both in original space and in MDS mapped 3D
space.

c) We now have a tree with regions and consensus points (centers) associated with all nodes. The next
step is performed for remaining N – Nsubset points – call a typical point p. Take each of the points p
and start at the top of the tree. Calculate distance of p to each tree node at a given level. Assign p to
the node with the minimum distance from its center to p and continue down the tree looking at 8 sub-
nodes below this node. Continue until you have reached bottom of tree.

d) Now we have assigned each N – Nsubset points p to a region of 3D space – let the assigned region have
Nregion points. Now one performs MDS within this region using 1+ Nregion points (p plus points in
region) to define the MDS mapping of point p with the mapping of original Nregion points fixed. Note
our criterion for dividing nodes probably includes Nregion < a cutoff value so we can control
computational complexity of this step d). The criterion appropriate for dividing nodes is as mentioned
above, an important research issue.

There are many refinements that can be evaluated. Maybe our point p is at boundary of a region. This

could be addressed by either looking at quality of fit in step d) or the discrimination of distance test in
step c). One would choose if necessary not a terminal node at step c) but the larger region corresponding
to an internal node. There are tradeoffs between performance (which scales like the number of points in
chosen region) and accuracy of method, which need to be researched. Finally all steps of the pipeline in

figure 1 have choices of heuristic parameters that can be significant and need study. In particular there is
the optimal choice for weight functions and distance measures to use in equations (2.4) and (2.5).

Step a) of the above algorithm has time complexity of O(Nsubset
2). MDS interpolation to get the full

dataset mapped to 3D (steps c) and d)) has a complexity that depends on implementation -- simplest is
O((N – Nsubset) (logNsubset + Nregion)). Clustering and MDS can use the same tree decomposition but
clustering will likely use different size (larger) regions. The complexity for clustering is O(N2/# regions)
for the simplest algorithm. We call this approach “stage 1” and it will be our initial focus as it can reuse a
lot of our existing software base.

Later we will attempt to derive a properly O(NlogN) clustering approach that is based not on
clustering sequences but rather on clustering "regions" and sequences. Here we will modify the double
sum over sequences in equation (2.5). One preserves the form of sum if sequences are nearby but replaces
sequence-sequence interaction by sequence-region or region-region terms if sequences are far away. Here,
a region can be represented by its consensus (mean in particle dynamics analogue) sequence for regions
with a weight equal to number of sequences in region. The further sequences are apart, the larger regions
can be (i.e. one chooses representation nearer the root of the tree formed by orthogonal recursive
bisection). We call this speculative approach “stage 2”. It is a natural generalization of the O(N) or
O(NlogN) particle dynamics algorithms (Fox, Williams, & Messina, 1994)(Barnes-Hut Simulation,
2009).

This approach needs totally new software and significant algorithm work -- in particular to develop an
error estimate to decide which level in tree (region size) to use -- this is done by multipole expansion in
particle case. It can possibly provide not just scalable O(NlogN + Nsubset

2) clustering but also a viable
approach to Multiple Sequence Alignment for large numbers of sequences.

3 INNOVATIONS IN PROGRAMMING MODELS USING CLOUD TECHNOLOGIES
3.1 Runtimes and Programming Models
This section presents a brief introduction to a set of parallel runtimes we use our evaluations.

3.1.1 Parallel frameworks

3.1.1.1 Hadoop
Apache Hadoop (Apache Hadoop, 2009) has a similar architecture to Google’s MapReduce runtime(Dean
& Ghemawat, 2008), where it accesses data via HDFS, which maps all the local disks of the compute
nodes to a single file system hierarchy, allowing the data to be dispersed across all the data/computing
nodes. HDFS also replicates the data on multiple nodes so that failures of any nodes containing a portion
of the data will not affect the computations which use that data. Hadoop schedules the MapReduce
computation tasks depending on the data locality, improving the overall I/O bandwidth. The outputs of
the map tasks are first stored in local disks until later, when the reduce tasks access them (pull) via HTTP
connections. Although this approach simplifies the fault handling mechanism in Hadoop, it adds a
significant communication overhead to the intermediate data transfers, especially for applications that
produce small intermediate results frequently.

3.1.1.2 Dryad
Dryad (Isard, Budiu, Yu, Birrell, & Fetterly, 2007) is a distributed execution engine for coarse grain data
parallel applications. Dryad considers computation tasks as directed acyclic graphs (DAG) where the

vertices represent computation tasks and while the edges acting as communication channels over which
the data flow from one vertex to another. In the HPC version of DryadLINQ the data is stored in (or
partitioned to) Windows shared directories in local compute nodes and a meta-data file is use to produce a
description of the data distribution and replication. Dryad schedules the execution of vertices depending
on the data locality. (Note: The academic release of Dryad only exposes the DryadLINQ(Yu, et al., 2008)
API for programmers. Therefore, all our implementations are written using DryadLINQ although it uses
Dryad as the underlying runtime). Dryad also stores the output of vertices in local disks, and the other
vertices which depend on these results, access them via the shared directories. This enables Dryad to re-
execute failed vertices, a step which improves the fault tolerance in the programming model.

3.1.1.3 i-MapReduce
i-MapReduce(Ekanayake, Pallickara, & Fox, 2008) (Fox, Bae, Ekanayake, Qiu, & Yuan, 2008) is a light-
weight MapReduce runtime (an early version was called CGL-MapReduce) that incorporates several
improvements to the MapReduce programming model such as (i) faster intermediate data transfer via a
pub/sub broker network; (ii) support for long running map/reduce tasks; and (iii) efficient support for
iterative MapReduce computations. The use of streaming enables i-MapReduce to send the intermediate
results directly from its producers to its consumers, and eliminates the overhead of the file based
communication mechanisms adopted by both Hadoop and DryadLINQ. The support for long running
map/reduce tasks enables configuring and re-using of map/reduce tasks in the case of iterative
MapReduce computations, and eliminates the need for the re-configuring or the re-loading of static data
in each iteration.

3.1.1.4 MPI Message Passing Interface
MPI(MPI, 2009), the de-facto standard for parallel programming, is a language-independent
communications protocol that uses a message-passing paradigm to share the data and state among a set of
cooperative processes running on a distributed memory system. The MPI specification defines a set of
routines to support various parallel programming models such as point-to-point communication,
collective communication, derived data types, and parallel I/O operations. Most MPI runtimes are
deployed in computation clusters where a set of compute nodes are connected via a high-speed network
connection yielding very low communication latencies (typically in microseconds). MPI processes
typically have a direct mapping to the available processors in a compute cluster or to the processor cores
in the case of multi-core systems. We use MPI as the baseline performance measure for the various
algorithms that are used to evaluate the different parallel programming runtimes. Table 1 summarizes the
different characteristics of Hadoop, Dryad, i-MapReduce, and MPI.

Table 1. Comparison of features supported by different parallel programming runtimes.
Feature Hadoop DryadLINQ i-MapReduce MPI

Programming
Model

MapReduce DAG based execution
flows

MapReduce with a
Combine phase

Variety of
topologies
constructed using
the rich set of
parallel
constructs

Data Handling HDFS Shared directories/
Local disks

Shared file system /
Local disks

Shared file
systems

Intermediate
Data
Communication

HDFS/
Point-to-point via
HTTP

Files/TCP pipes/
Shared memory FIFO

Content Distribution
Network
(NaradaBrokering

Low latency
communication
channels

(Pallickara and Fox
2003))

Scheduling Data locality/
Rack aware

Data locality/ Network
topology based run
time graph
optimizations

Data locality Available
processing
capabilities

Failure
Handling

Persistence via HDFS
Re-execution of map
and reduce tasks

Re-execution of
vertices

Currently not
implemented
(Re-executing map tasks,
redundant reduce tasks)

Program level
Check pointing
OpenMPI ,
FT MPI

Monitoring Monitoring support of
HDFS, Monitoring
MapReduce
computations

Monitoring support for
execution graphs

Programming interface
to monitor the progress
of jobs

Minimal support
for task level
monitoring

Language
Support

Implemented using
Java. Other languages
are supported via
Hadoop Streaming

Programmable via C#
DryadLINQ provides
LINQ programming
API for Dryad

Implemented using Java
Other languages are
supported via Java
wrappers

C, C++, Fortran,
Java, C#

3.1.2 Science in clouds ─ dynamic virtual clusters

Figure 9. Software and hardware configuration of dynamic virtual cluster demonstration. Features
include virtual cluster provisioning via xCAT and support of both stateful and stateless OS images.

Deploying virtual or bare-system clusters on demand is an emerging requirement in many HPC centers.
The tools such as xCAT(xCAT, 2009) and MOAB (Moab Cluster Tools Suite, 2009) can be used to
provide these capabilities on top of physical hardware infrastructures. In this section we discuss our
experience in demonstrating the possibility of provisioning clusters with parallel runtimes and use them
for scientific analyses.

We selected Hadoop and DryadLINQ to demonstrate the applicability of our idea. The SW-G
application described in section 3.2 is implemented using both Hadoop and DryadLINQ and therefore we
could use that as the application for demonstration. With bare-system and XEN (Barham, et al., 2003)
virtualization and Hadoop running on Linux and DryadLINQ running on Windows Server 2008 operating
systems produced four operating system configurations; namely (i) Linux Bare System, (ii) Linux on
XEN, (iii) Windows Bare System, and (iv) Windows on XEN. Out of these four configurations, the fourth
configuration did not work well due to the unavailability of the appropriate para-virtualization drivers.
Therefore we selected the first three operating system configurations for this demonstration.

Applications

Runtimes

Infrastructure
Software

Hardware iDataplex Bare-metal Nodes

xCAT Infrastructure

Linux
Bare-system

Linux Virtual Machines

Xen Virtualization

Windows Server HPC
2008

Bare-system

Apache Hadoop / i-MapReduce / MPI Microsoft DryadLINQ / MPI

Smith-Waterman Dissimilarities, CAP-3 Gene Assembly, PhyloD using DryadLINQ, High Energy Physics,
Clustering, Multi Dimensional Scaling, Generative Topological Mapping

Xen Virtualization

Linux Virtual Machines

http://xcat.sourceforge.net/�

We selected xCAT infrastructure as our dynamic provisioning framework and set it up on top of bare
hardware of a compute cluster. Figure 9 shows the various software/hardware components in our
architecture. To implement the dynamic provisioning of clusters, we developed a software service that
accept user inputs via a pub-sub messaging infrastructure and issue xCAT commands to switch a compute
cluster to a given configuration. We installed Hadoop and DryadLINQ in the appropriate operation
system configurations and developed initialization scripts to initialize the runtime with the start of the
compute clusters. These developments enable us to provide a fully configured computation infrastructure
deployed dynamically at the requests of the users.

We setup the initialization scripts to run SW-G pairwise distance calculation application after the
initialization steps. This allows us to run a parallel application on the freshly deployed cluster
automatically.

We developed a performance monitoring infrastructure to monitor the utilization (CPU, memory etc..)
of the compute clusters using a pub-sub messaging infrastructure. The architecture of the monitoring
infrastructure and the monitoring GUI are shown in Figure 10.

Figure 10. Architecture of the performance monitoring infrastructure and the monitoring GUI.

In the monitoring architecture, a daemon is placed in each computer node of the cluster which will be
started with the initial boot sequence. All the monitor daemons send the monitored performances to a
summarizer service via the pub-sub infrastructure. The summarizer service produces a global view of the
performance of a given cluster and sends this information to a GUI that visualizes the results in real-time.
The GUI is specifically developed to show the CPU and the memory utilization of the bare-system/virtual
clusters when they are deployed dynamically.

With all the components in place, we implemented SW-G application running on dynamically
deployed bare-system/virtual clusters with Hadoop and DryadLINQ parallel frameworks. This will be
extended in the FutureGrid project (FutureGrid Homepage, 2009)

3.2 Pairwise sequence alignment using Smith-Waterman-Gotoh

3.2.1 Introduction to Smith-Waterman-Gotoh (SWG)

Pub/Sub
Broker

Network

Virtual/Physical Clusters

XCAT Infrastructure

iDataplex Bare-metal
nodes (32 nodes)

Monitoring
Interface

Switcher

Summarize

Smith-Waterman (Smith & Waterman, 1981) is a widely used local sequence alignment algorithm for
determining similar regions between two DNA or protein sequences. In our studies we use Smith-
Waterman algorithm with Gotoh’s (Gotoh, 1982) improvement for Alu sequencing. The Alu clustering
problem (Price, Eskin, & Pevzner, 2004) is one of the most challenging problems for sequencing
clustering because Alus represent the largest repeat families in human genome. As in metagenomics, this
problem scales like O(N2) as given a set of sequences we need to compute the similarity between all
possible pairs of sequences.

3.2.2 Implementations

3.2.2.1 Dryad Implementation

Figure 11. Task decomposition (left) and the DryadLINQ vertex hierarchy (right) of the DryadLINQ
implementation of SW-G pairwise distance calculation application.

We developed a DryadLINQ application to perform the calculation of pairwise SW-G distances for a
given set of genes by adopting a coarse grain task decomposition approach which requires minimum
inter-process communication requirements to ameliorate the higher communication and synchronization
costs of the parallel runtime. To clarify our algorithm, let’s consider an example where N gene sequences
produces a pairwise distance matrix of size NxN. We decompose the computation task by considering the
resultant matrix and group the overall computation into a block matrix of size DxD where D is a multiple
(>2) of the available computation nodes. Due to the symmetry of the distances and= we only
calculate the distances in the blocks of the upper triangle of the block matrix as shown in Error!
Reference source not found.(left). The blocks in the upper triangle are partitioned (assigned) to the
available compute nodes and an “Dryad Apply” operation is used to execute a function to calculate
(N/D)x(N/D) distances in each block. After computing the distances in each block, the function calculates
the transpose matrix of the result matrix which corresponds to a block in the lower triangle, and writes
both these matrices into two output files in the local file system. The names of these files and their block
numbers are communicated back to the main program. The main program sort the files based on their
block number s and perform another “Apply” operation to combine the files corresponding to a row of
blocks in a single large row block as shown in the Error! Reference source not found. (right).

3.2.2.2 MPI Implementation

The MPI version of SW-G calculates pairwise distances using a set of either single or multi-threaded
processes. For N gene sequences, we need to compute half of the values (in the lower triangular matrix),
which is a total of M = N x (N-1) /2 distances. At a high level, computation tasks are evenly divided
among P processes and execute in parallel. Namely, computation workload per process is M/P. At a low
level, each computation task can be further divided into subgroups and run in T concurrent threads. Our
implementation is designed for flexible use of shared memory multicore system and distributed memory
clusters (tight to medium tight coupled communication technologies such threading and MPI).

3.2.2.3 Apache Hadoop Implementation
We developed an Apache Hadoop version of the pairwise distance calculation program based on the
JAligner(JAligner, 2009) program, the java implementation of the NAligner code used in Dryad version.
Similar to the other implementations, the computation is partitioned in to blocks based on the resultant
matrix. Each of the blocks would get computed as a map task. The block size (D) can be specified via an
argument to the program. The block size needs to specified in such a way that there will be much more
map tasks than the map task capacity of the system, so that the Apache Hadoop scheduling will happen as
a pipeline of map tasks resulting in global load balancing of the application. The input data is distributed
to the worker nodes through the Hadoop distributed cache, which makes them available in the local disk
of each compute node.

A load balanced task partitioning strategy according to the following rules is used to identify the
blocks that need to be computed (green) through map tasks as shown in the Figure 12(a). In addition all
the blocks in the diagonal (blue) are computed. Even though the task partitioning mechanisms are
different, both Dryad-SWG and Hadoop-SWG ends up with essentially identical computation blocks, if
the same block size is given to both the programs.

When β >= α, we calculate D(α,β) only if α+β is even,

 When β < α, we calculate D(α,β) only if α+β is odd.

The Figure 12 (b) depicts the run time behavior of the Hadoop-swg program. In the given example the

map task capacity of the system is “k” and the number of blocks is “N”. The solid black lines represent
the starting state, where “k” map tasks (blocks) will get scheduled in the compute nodes. The solid red
lines represent the state at t1 , when 2 map tasks, m2 & m6, get completed and two map tasks from the
pipeline gets scheduled for the placeholders emptied by the completed map tasks. The gray dotted lines
represent the future.

 1
(1-

100)

2
(101-
200)

3
(201-
300)

4
(301-
400)

 N

1
(1-100)

M1 M2
from
M6

M3 …. M#
Reduce 1

hdfs://.../rowblock_1.out

2
(101-200)

from
M2

M4 M5
from
M9

….
Reduce 2

hdfs://.../rowblock_2.out

3
(201-300)

M6
from
M5

M7 M8 ….
Reduce 3

hdfs://.../rowblock_3.out

4
(301-400)

from
M3

M9
from
M8

M10 ….
Reduce 4

hdfs://.../rowblock_4.out

 .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

….
….
….
….

.

.

.

.

N

From
M#

 M(N*
(N+1)/2)

Reduce N
hdfs://.../rowblock_N.out

Figure 12. (a)Task (Map) decomposition and the reduce task data collection (b) Application run time

Map tasks use custom Hadoop writable objects as the map task output values to store the calculated
pairwise distance matrices for the respective blocks. In addition, non-diagonal map tasks output the
inverse distances matrix as a separate output value. Hadoop uses local files and http transfers to transfer
the map task output key value pairs to the reduce tasks.

The outputs of the map tasks are collected by the reduce tasks. Since the reduce tasks start collecting
the outputs as soon as the first map task finishes and continue to do so while other map tasks are
executing, the data transfers from the map tasks to reduce tasks do not present a significant performance
overhead to the program. The program currently creates a single reduce task per each row block resulting
in total of (no. of sequences/block size) Reduce tasks. Each reduce task to accumulate the output distances
for a row block and writes the collected output to a single file in Hadoop Distributed File System (HDFS).
This results in N number of output files corresponding to each row block, similar to the output we
produce in the Dryad version.

3.2.3 Performance comparison
We compared the Dryad, Hadoop and MPI implementations of ALU SW-G distance calculations using a
replicated data set and obtained the following results. The data sets were generated by taking a 10000
sequence random sample from a real data set and replicating it 2-5 times. Dryad and MPI tests were
performed in cluster ref D (Table 2) and the Hadoop tests were performed in cluster ref A (Table 2) which
is identical to cluster ref D, which are two identical Windows HPC and Linux clusters. The Dryad & MPI
results were adjusted to counter the performance difference of the kernel programs, NAligner and the
JAligner in their respective environments, for fair comparison with the Hadoop implementation.

Figure 13. Comparison of Dryad, MPI and Hadoop technologies on ALU sequencing application with
SW-G algorithm

Figure 13 indicates that all three implementations perform and scale well for this application with

Hadoop implementation showing the best scaling. As expected, the times scaled proportionally to the
square of the number of distances. On 256 cores the average time of 0.017 milliseconds per pair for 10k
data set corresponds to roughly 4.5 milliseconds per pair calculated per core used. The coarse grained
Hadoop & Dryad applications perform and scale competitively with the tightly synchronized MPI
application.

We can notice that the Hadoop implementation showing improved performance with the increase of
the data set size, while Dryad performance degrades a bit. Hadoop improvements can be attributed to the
diminishing of the framework overheads, while the Dryad degradation can be attributed to the memory
management in the Windows and Dryad environment.

3.2.3.1 Inhomogeneous data study
Most of the data sets we encounter in the real world are inhomogeneous in nature, making it hard for the
data analyzing programs to efficiently break down the problems. The same goes true for the gene
sequence sets, where individual sequence lengths and the contents vary among each other. In this section
we study the effect of inhomogeneous gene sequence lengths for the performance of our pairwise distance
calculation applications.

 The time complexity to align and obtain distances for two genome sequences A, B with lengths m and

n respectively using Smith-Waterman-Gotoh algorithm is approximately proportional to the product of
the lengths of two sequences (O(mn)). All the above described distributed implementations of Smith-
Waterman similarity calculation mechanisms rely on block decomposition to break down the larger
problem space in to sub-problems that can be solved using the distributed components. Each block is
assigned two sub-sets of sequences, where Smith-Waterman pairwise distance similarity calculation needs
to be performed for all the possible sequence pairs among the two sub sets. According to the above
mentioned time complexity of the Smith-Waterman kernel used by these distributed components, the
execution time for a particular execution block depends on the lengths of the sequences assigned to the
particular block.

0.010

0.012

0.014

0.016

0.018

0.020

0 10000 20000 30000 40000 50000

Ti
m

e
pe

r
A

ct
ua

l C
al

cu
la

tio
n

(m
s)

No. of Sequences

Dryad SWG
Hadoop SWG
MPI SWG

Parallel execution frameworks like Dryad and Hadoop work optimally when the work is equally
partitioned among the tasks. Depending on the scheduling strategy of the framework, blocks with
different execution times can have an adverse effect on the performance of the applications, unless proper
load balancing measures have been taken in the task partitioning steps. For an example, in Dryad vertices
are scheduled at the node level, making it possible for a node to have blocks with varying execution
times. In this case if a single block inside a vertex takes a larger amount of time than other blocks to
execute, then the whole node have to wait till the large task completes, which utilizes only a fraction of
the node resources.

Since the time taken for the Smith-Waterman pairwise distance calculation depends mainly on the
lengths of the sequences and not on the actual contents of the sequences, we decided to use randomly
generated gene sequence sets for this experiment. The gene sequence sets were randomly generated for a
given mean sequence length (400) with varying standard deviations following a normal distribution of the
sequence lengths. Each sequence set contained 10000 sequences leading to 100 million pairwise distance
calculations to perform. We performed two studies using such inhomogeneous data sets. In the first study
the sequences with varying lengths were randomly distributed in the data sets. In the second study the
sequences with varying lengths were distributed using a skewed distribution, where the sequences in a set
were arranged in the ascending order of sequence length.

Figure 14. Performance of SW-G pairwise distance calculation application for randomly and skewed
distibuted inhomogeneous data with ‘400’ mean sequence length

Figure 14 presents the execution time taken for the randomly distributed and skewed distributed
inhomogeneous data sets with the same mean length, by the two different implementations. The Dryad
results depict the Dryad performance adjusted for the performance difference of the NAligner and
JAligner kernel programs. As we notice from the Figure 14, both Dryad implementation as well as the
Hadoop implementation performed satisfactorily for the randomly distributed inhomogeneous data,
without showing significant performance degradations with the increase of the standard deviation. This
behavior can be attributed to the fact that the sequences with varying lengths are randomly distributed
across a data set, effectively providing a natural load balancing to the execution times of the sequence
blocks. In fact Hadoop implementation showed minor improvements in the execution times, which can be

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 50 100 150 200 250

To
ta

l T
im

e
(s

)

Standard Deviation

Dryad - Skewed Distributed

Dryad - Random Distributed

Hadoop - Skewed Distributed

Hadoop - Random Distributed

attributed to the fact that the actual workload gets reduced (effect of O(mn)) with the increase of the
standard deviation even though the mean and the number of sequences stay the same.
 For the skewed distributed inhomogeneous data, we notice clear performance degradation in the
Dryad implementation. Once again the Hadoop implementation performs consistently without showing
significant performance degradation, even though it does not perform as well as its randomly distributed
counterpart. The Hadoop implementations’ consistent performance can be attributed to the global pipeline
scheduling of the map tasks. In the Hadoop Smith-Waterman implementation, each block decomposition
gets assigned to a single map task. Hadoop framework allows the administrator to specify the number of
map tasks that can be run on a particular compute node. The Hadoop global scheduler schedules the map
tasks directly on to those placeholders in a much finer granularity than in Dryad, as and when the
individual map tasks finish. This allows the Hadoop implementation to perform natural global level load
balancing. In this case it might even be advantageous to have varying task execution times to iron out the
effect of any trailing map tasks towards the end of the computation. Dryad implementation pre allocates
all the tasks to the compute nodes and does not perform any dynamic scheduling across the nodes. This
makes a node which gets a larger work chunk to take considerable longer time than a node which gets a
smaller work chunk, making the node with a smaller work chuck to idle while the other nodes finish.

3.3 Sequence assembly using Cap3
3.3.1 Introduction to Cap3
Cap3(Huang & Madan, 1999) is a sequence assembly program which assembles DNA sequences by
aligning and merging sequence fragments. Cap3 algorithm works in several steps after reading a
collection of gene sequences from an input file in the FASTA format. In the first two steps the poor
regions of the fragments are removed and the overlaps between the fragments are calculated. Third step
takes care of identifying and removing the false overlaps. In the next step, the fragments are joined to
form contigs, while the last step constructs multiple sequence alignments and generates consensus
sequences. This program outputs several files as well as standard output.

3.3.2 Implementations
Cap3 is often used with lots of input files making it an embarrassingly parallel application requiring no
inter-process communications. We implemented parallel applications for Cap3 using Microsoft
DryadLINQ (Yu, et al., 2008) (Isard, Budiu, Yu, Birrell, & Fetterly, 2007) and Apache Hadoop (Apache
Hadoop, 2009). This fits as a “map only” application for the MapReduce model. The Hadoop application
is implemented by creating map tasks which execute the Cap3 program as a separate process on the given
input FASTA file. Since the Cap3 application is implemented in C, we do not have the luxury of using the
Hadoop file system (HDFS) directly. Hence the data needs to be stored in a shared file system across the
nodes. However we are actively investigating the possibility of using Hadoop streaming and mountable
HDFS for this purpose.

For the DryadLINQ application, the set of input files are best effort equally partitioned across the
compute nodes and stored in the local disks of the compute nodes. A data partition file is created for each
node containing the list of data files that resides in that particular node. We used the DryadLINQ “Select”
operation to apply a function on the input files. The function will execute Cap3 program passing the input
file name together with other parameters and will save the standard output from the program. All the
outputs will get moved to a predefined location by both the implementations.

3.3.3 Performance

First we performed a scalability test on out Cap3 implementations using a homogeneous data set. This
data set is created by replicating a single file for a given number of times. The file we chose contained
458 sequences.

Figure 15. Cap3 scalability test with homogeneous data

As we can see from the above figure, the Hadoop implementation shows good scaling for the Cap3
application, with even slightly increased performance with the increase of data size. The increase must be
happening due to the overheads of the framework getting diminished over the larger workload. On 256
cores the average time 0.4 seconds on the Hadoop implementation to execute Cap3 program on a single
data set corresponds to approximately 102 seconds per file executed per core. The Dryad implementation
shows linear performance up to 2048 files and then from the 3072 files. We are still investigating the
possible reason behind the performance increase that happens from 2048 files to 3072 files.

3.3.3.1 Inhomogeneous Data Study
Unlike in Smith-Waterman Gotoh implementations, Cap3 program execution time does not directly
depend on the file size or the size of the sequences, as it depend mainly on the content of the sequences.
This made is hard for us to artificially generate inhomogeneous data sets for the Cap3 program, forcing us
to use real data. When generating the data sets, first we calculated the standalone Cap3 execution time for
each of the files in our data set. Then based on those timings, we created data sets that have
approximately similar mean times while the standard deviation of the standalone running times is
different in each data set. We performed the performance testing for randomly distributed as well as
skewed distributed (sorted according to individual file running time) data sets similar to the SWG
inhomogeneous study. The speedup is taken by dividing the sum of sequential running times of the files
in the data set by the parallel implementation running time.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 500000 1000000 1500000 2000000 2500000

Ti
m

e
Pe

r
Si

ng
le

 S
et

 -
45

8
se

qu
en

ce
s

(s
)

Number of Sequences

Dryad Cap3
Hadoop Cap3

Figure 16. Cap3 inhomogeneous data performance

Above figure depicts the Cap3 inhomogeneous performance results for Hadoop & Dryad
implementations. Hadoop implementation shows satisfactory scaling for both random as well as sorted
data sets, while the Dryad implementation shows satisfactory scaling in the randomly distributed data set.
Once again we notice that the Dryad implementation does not perform well for the skewed distributed
inhomogeneous data due to its’ static non-global scheduling.

4 ITERATIVE MAPREDUCE WITH I-MAPREDUCE
MapReduce is a programming model introduced by Google to support large scale data processing
applications(Ghemawat, January, 2008). The simplicity of the programming model and the ease of
supporting quality of services make it more suitable for large scale data processing applications. Our
experience in applying MapReduce for scientific analyses reveals that the programming model is suitable
for many scientific analyses as well. However, we noticed that the current MapReduce programming
model and its implementations such as Apache Hadoop do not support iterative MapReduce computations
efficiently. Iterative computations are common in many fields such as data clustering, machine learning,
and computer vision and many of these applications can be implemented as MapReduce computations. In
i-MapReduce (an early version was known as CGL-MapReduce) (Ekanayake, Pallickara, & Fox,
2008)(Fox, Bae, Ekanayake, Qiu, & Yuan, 2008)(i-MapReduce, 2009), we present an extended
MapReduce programming model and a prototype implementation to support iterative MapReduce
computations efficiently. Note (Chu, 2006) emphasized that the MapReduce approach is applicable to
many data mining applications but the performance will often be poor without the extra capabilities of i-
MapReduce.

4.1 MapReduce Extensions
Many iterative applications we analyzed show a common characteristic of operating on two types of data
products called static and variable data. Static data is used in each iteration and remain fixed throughout
the computation whereas the variable data is the computed results in each iteration and typically
consumed in the next iteration in many expectation maximization (EM) type algorithms. For example, if
we consider K-means clustering algorithm(MacQueen), during the nth iteration the program uses the input
data set and the cluster centers computed during the (n-1)th iteration to compute the next set of cluster
centers.

0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000 70000 80000

Sp
ee

du
p

Standard Deviation of Standalone Running Times

Hadoop Random Speedup
Hadoop Sorted Speedup
Dryad Random Speedup
Dryad Sorted Speedup

Although some of the typical MapReduce computations such as distributed sorting, information
retrieval and word histogramming consume very large data sets, many iterative applications we encounter
operate on moderately sized data sets which can fit into the distributed memory of the computation
clusters. This observation leads us to explore the idea of using long running map/reduce tasks similar to
the long running parallel processes in many MPI applications which last throughout the life of the
computation. The long running (cacheable) map/reduce tasks allow map/reduce tasks to be configured
with static data and use them without loading again and again in each iteration. Current MapReduce
implementations such as Hadoop(Apache Hadoop, 2009) and DryadLINQ(Yu, et al., 2008) do not
support this behavior and hence they initiate new map/reduce tasks and load static data in each iteration
incurring considerable performance overheads. This distinction is shown in Figure 17. By supporting long
running map/reduce tasks we do not encourage users to store state information in the map/reduce tasks
violating the “side-effect-free” nature of the map/reduce computations rather achieving considerable
performance gains by caching the static data across map/reduce tasks. The framework does not guarantee
the use of same set of map/reduce tasks throughout the life of the iterative computation.

In addition, we also add an optional reduction phase named “combine” to the MapReduce computation
to allow programs to access the outputs of the reduce phase as a single value. Combine phase is another
reduction phase which can be used to combine the results of the reduce phase into a single value. The user
program and the combine operation run on a single process space allowing its output directly accessible to
the user program. This enables the user to check conditions based on the output of the MapReduce
computations.

Figure 17. Long running and short running processes in various parallel programming runtimes.

i-MapReduce uses streaming for all the communication/data transfer requirements which eliminates
the overhead in transferring data via file systems as in Hadoop or DryadLINQ. The output <Key,Value>
pairs produced during the map stage get transferred directly to the reduce stage and the output of the
reduce stage get transferred directly to the combined stage via the pub-sub broker network. Currently i-
MapReduce use the publish-subscribe messaging capabilities of NaradaBrokering (Pallickara & Fox,
2003) messaging infrastructure, but the framework is extensible to support any other publish-subscribe
messaging infrastructure such as Active MQ (ActiveMQ, 2009).

We provide two mechanisms to access data in i-MapReduce; (i) from the local disk of the computer
nodes, (ii) directly from the pub-sub infrastructure. For the simplicity of the implementation, we provide a
file based data access mechanism for the map/reduce tasks. The data distribution is left for the users to
manage and we plan to provide tools to perform such operations. Once distributed, i-MapReduce provides
a mechanism to generate a meta-data file that can be used in the framework to run MapReduce
computations. Apart from the above the use of streaming enables i-MapReduce to support features such as
directly sending input <Key,Value> pairs for the map stage from the user program and configuring
map/reduce stages using the data sent from the user program. Figure 18 shows the programming model of
i-MapReduce and how iterative MapReduce computations are executed using it.

Figure 18. Iterative MapReduce programming model using i-MapReduce.

4.2 Performance of i-MapReduce for Iterative Computations
We have used the i-MapReduce framework to implement a series of scientific data analyses applications
ranging from simple Map-only type operations to applications with multiple iterative computations. Here
we are presenting the results of four such applications, namely (i) CAP3 (Huang & Madan, 1999) gene
sequence assembly, (ii) High Energy Physics data analysis, (iii) K-means clustering, and (iv) Matrix
multiplication. We have also implemented the above applications using Apache Hadoop and DryadLINQ
and also some applications using MPI as well. The details of these applications and the parallel
implementations are explained in more details in our previous publications (Fox, Bae, Ekanayake, Qiu, &
Yuan, 2008). Figures Figure 19 through Figure 22 present the results of our evaluations. Note that to
obtain these results we have used two computation clusters from those shown in table 2. All the

configureMaps()

Two configuration options
1. Using local disks
2. Using pub-sub bus

configureReduce()

runMapReduce()

while(condition){

} //end while

updateCondition()

close()

User program’s process space

Combine() operation
Reduce()

Map()

Worker Nodes

All communications/data transfers
happen via the pub-sub broker network

Iterations

Can send <Key,Value> pairs directly

Cacheable map/reduce tasks

DryadLINQ applications were run on cluster ref. B while Hadoop, i-MapReduce and MPI applications
were run on cluster ref. A. The overhead calculation is based on the formula (4.1) presented below.

Overhead f(p) = [p *T(p) –T(1)] / T(1) (4.1)

In the above formula p denotes the number of parallel processes used and T(p) denotes the time when p
processes were used. T(1) gives the sequential time for the program.

Figure 19. Performance of CAP3 gene assembly
programs under varying input sizes.

Figure 20. Performance of High Energy Physics
programs under varying input sizes.

Figure 21. Overhead of K-means clustering
implementations under varying input sizes.

Figure 22. Overhead of matrix multiplication
implementations under varying input sizes.

The CAP3 application is a map-only (or typically named as pleasingly parallel) application in which

the parallel processes require no inter process communications. The High Energy Physics (HEP)
application is a typical MapReduce application aiming to produce a histogram of identified features from
a large volume of data obtained during fusion experiments. The above results indicate that all the
runtimes, Hadoop, DryadLINQ and i-MapReduce perform equally well for these two types of
applications. Note: The higher running time observed in Hadoop in the case of HEP data analysis was due
to the placement of data in a different parallel file system than the Hadoop’s built in distributed file
system named HDFS(Apache Hadoop, 2009). This is because the ROOT(ROOT, Data Analysis
Framework, 2009) data analysis framework used for HEP analysis could only read input files from local

disks. Apart from above, these two analysis show that the i-MapReduce has not introduced any additional
overheads for the typical MapReduce applications.

K-means clustering and matrix multiplication applications resemble typical iterative application
characteristics. The graphs in Figure 21 and Figure 22 highlight the applicability of i-MapReduce to the
iterative applications. The performance of i-MapReduce in the case of K-means clustering and the parallel
overhead in the case of matrix multiplication are close to the values of MPI where as both Hadoop and
DryadLINQ shows relatively higher parallel overheads. Our approach of using long running map/reduce
tasks and the use of streaming for the data transfers have eliminated many overheads present in other
runtimes and enabled i-MapReduce to perform iterative MapReduce applications efficiently.

4.3 Related Work
MapReduce was first introduced in the Lisp programming language in which the programmer is allowed
to use a function to map a data set into another data set, and then use a function to reduce (combine) the
results (G. L. Steel, 1995). J. Dean and S. Ghemawat introduce Google MapReduce and the associated
programming model for large scale data intensive applications. Their framework supports fault tolerance
and is able to run on a large clusters built using commodity hardware. Swazall is an interpreted
programming language for developing MapReduce programs based on Google's MapReduce
implementation. R. Pike et al. present its semantics and its usability in their paper(Pike, Dorward,
Griesemer, & Quinlan, 2005). The language is geared towards processing large document collections,
which are typical operations for Google.

Sector/Sphere (Gu, 2009) is a parallel runtime developed by Y. Gu, and R. L. Grossman that can be
used to implement MapReduce style applications. Sphere adopts a streaming based computation model
used in GPUs which can be used to develop applications with parallel topologies as a collection of
MapReduce style applications. Sphere stores intermediate data on files, and hence is susceptible to higher
overheads for iterative applications.

 Disco (Disco project, 2009) is an open source MapReduce runtime developed using a functional
programming language named Erlang(Erlang programming language, 2009). Disco architecture shares
clear similarities to the Google and Hadoop MapReduce architectures where it stores the intermediate
results in local files and access them later using HTTP from the appropriate reduce tasks. However, Disco
does not support a distributed file system as HDFS but expects the files to be distributed initially over the
multiple disks of the cluster.

All the above runtimes focus on computations that can fit into a single cycle of MapReduce
programming model. In i-MapReduce our focus is on iterative map reduce computations and hence we
introduce optimizations to the programming model and to the implementation to support these
computations efficiently.

All-Pairs (Moretti, Bui, Hollingsworth, Rich, Flynn, & Thain, 2009) is an abstraction that can be used
to solve a common problem of comparing all the elements in a data set with all the elements in another
data set by applying a given function. This problem can be implemented using typical MapReduce
frameworks such as Hadoop. We have shown a similar application in section 3.2.

M. Isard et al. present Dryad - a distributed execution engine for coarse grain data parallel applications
(Isard, Budiu, Yu, Birrell, & Fetterly, 2007). It combines the MapReduce programming style with
dataflow graphs to solve the computation tasks. DryadLINQ exposes a LINQ (LINQ Language-Integrated
Query, 2009) based programming API for Dryad. The Directed Acyclic Graph (DAG) based
programming model of Dryad can support more classes of applications than pure MapReduce
programming model. DryadLINQ also provides a “loop unrolling” feature that can be used to create
aggregated execution graphs combing a few iterations of iterative computations. However, as we have

shown in Figure 21 it could not reduce the overhead of the programming model for large (in number of
iterations) iterative applications.

4.4 Future Work on i-MapReduce
In our current research we are focusing on adding fault tolerance support for the i-MapReduce runtime as
this is a key feature of Hadoop and Dryad. Saving system state at every iteration will add considerable
overheads for iterative applications and therefore we are trying to add features to i-MapReduce so that it
can save system state after a given number of iterations(Gropp & Lusk, 2004) (Fagg & Dongarra,
2000)(Hursey, Mattox, & Lumsdaine, 2009). Apart from the above we are researching further
MapReduce extensions which expand its use into more classes of parallel applications. We intend to
support all applications that can be implemented using MPI Reduce, Broadcast and Synchronization
primitives. We will present our findings under the umbrella project MapReduce++.

In this section we have discussed our experience in developing an extended MapReduce programming
model and a prototype implementation named i-MapReduce. We have shown that with i-MapReduce one
can apply MapReduce to iterative applications and obtain considerable performance gains comparable to
MPI implementations of the same applications.

ACKNOWLEDGEMENTS
We would like to thank Microsoft for their collaboration and support. Tony Hey, Roger Barga, Dennis
Gannon and Christophe Poulain played key roles.

APPENDIX A DIFFERENT CLUSTERS USED IN THIS ANALYSIS

Table 2. Different computation clusters used for this analysis.
Feature Linux Cluster

(Ref A)
Windows

Cluster (Ref B)
Windows

Cluster (Ref C)
Windows

Cluster (Ref D)
Windows

Cluster (Ref E)
Linux Cluster

(Ref F)
CPU Intel(R)

Xeon(R) L5420
2.50GHz

Intel(R)
Xeon(R) L5420
2.50GHz

Intel(R)
Xeon(R) E7450
2.40GHz

Intel(R)
Xeon(R) L5420
2.50GHz

AMD Opteron
8356
2.3 GHz

Intel(R)
Xeon(R) E5345
2.33 GHz

CPU
Cores

2
8

2
8

4
6

2
8

4
16

2
4

Memory 32 GB 16 GB 48 GB 32 GB 16 GB 20 GB
Disk 1 2 1 1 1 1
Network Giga bit Ethernet Giga bit

Ethernet
20 Gbps
Infiniband or 1
Gbps

Giga bit
Ethernet

Giga bit
Ethernet

Giga bit
Ethernet

Operating
System

Red Hat
Enterprise Linux
Server release
5.3 -64 bit

Microsoft
Window HPC
Server 2008
(Service Pack 1)
- 64 bit

Microsoft
Window HPC
Server 2008
(Service Pack 1)
- 64 bit

Microsoft
Window HPC
Server 2008
(Service Pack 1)
- 64 bit

Microsoft
Window HPC
Server 2008
(Service Pack 1)
- 64 bit

GNU/Linux
x86_64

Cores 256 256 768 256 128 64

REFERENCES
ActiveMQ. (2009). Retrieved December 2009, from http://activemq.apache.org/
Apache Hadoop. (2009). Retrieved December 2009, from http://hadoop.apache.org/
Bae, S.-H. (2008). Parallel Multidimensional Scaling Performance on Multicore Systems. Proceedings

of the Advances in High-Performance E-Science Middleware and Applications workshop (AHEMA) of
Fourth IEEE International Conference on eScience (pp. 695-702). Indianapolis: IEEE Computer Society.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., et al. (2003). Xen and the art of
virtualization. Proceedings of the nineteenth ACM symposium on Operating systems principles, Bolton
Landing (pp. 164-177). NY, USA: ACM Press.

Barnes-Hut Simulation. (2009). Retrieved December 2009, from http://en.wikipedia.org/wiki/Barnes-
Hut_simulation

Berg, I. (2009). Simulation of N-body problems with the Barnes-Hut algorithm. Retrieved December
2009, from http://www.beltoforion.de/barnes_hut/barnes_hut_de.html

Bishop, C. M., & Svensén, M. (1997). GTM: A principled alternative to the self-organizing map.
Advances in neural information processing systems , 354--360.

Bishop, C. M., Svensén, M., & Williams, C. K. (1998). GTM: The generative topographic mapping.
Neural computation , 10, 215--234.

Borg, I., & Groenen, P. J. (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Campbell, N., & Atchley, W. R. (1981). The geometry of canonical variate analysis. Systematic
Zoology , 268--280.

Chu, C. T. (2006). Map-Reduce for Machine Learning on Multicore. NIPS (pp. 281--288). MIT Press.
de Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. Recent

Developments in Statistics , 133-145.
de Leeuw, J. (1988). Convergence of the majorization method for multidimensional scaling. Journal

of Classification , 5, 163-180.
Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Commun.

ACM , 51 (1), 107-113.
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum Likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society. Series B , 1--38.
Disco project. (2009). Retrieved December 2009, from http://discoproject.org/
Ekanayake, J., Balkir, A., Gunarathne, T., Fox, G., Poulain, C., Araujo, N., et al. (2009). DryadLINQ

for Scientific Analyses. Fifth IEEE International Conference on eScience: 2009. Oxford: IEEE.
Ekanayake, J., Gunarathne, T., Qiu, J., Fox, G., Beason, S., Choi, J. Y., et al. (2009). Applicability of

DryadLINQ to Scientific Applications. Community Grids Laboratory, Indiana University.
Ekanayake, J., Pallickara, S., & Fox, G. (2008). MapReduce for Data Intensive Scientific Analyses.

Fourth IEEE International Conference on eScience (pp. 277-284). IEEE Press.
Ekanayake, J., Qiu, X., Gunarathne, T., Beason, S., & Fox, G. (2010). High Performance Parallel

Computing with Clouds and Cloud Technologies. In Cloud Computing and Software Services: Theory
and Techniques. CRC.

Erlang programming language. (2009). Retrieved December 2009, from http://www.erlang.org/
Fagg, G. E., & Dongarra, J. J. (2000). FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applications

in a Dynamic World. Lecture Notes in Computer Science 1908 (pp. 346-353). Springer Verlag.
Fox, G. C., Williams, R. D., & Messina, P. C. (1994). Parallel computing works! (section

http://www.old-npac.org/copywrite/pcw/node278.html#SECTION001440000000000000000). Morgan
Kaufmann Publishers, Inc.

Fox, G., Bae, S.-H., Ekanayake, J., Qiu, X., & Yuan, H. (2008). Parallel Data Mining from Multicore
to Cloudy Grids. High Performance Computing and Grids workshop.

Fox, G., Qiu, X., Beason, S., Choi, J. Y., Rho, M., Tang, H., et al. (2009). Biomedical Case Studies in
Data Intensive Computing. The 1st International Conference on Cloud Computing (CloudCom 2009).
Springer Verlag.

FutureGrid Homepage. (2009). Retrieved December 2009, from http://www.futuregrid.org

G. L. Steel, J. (1995). Parallelism in Lisp. SIGPLAN Lisp Pointers vol. VIII(2) , 1-14.
Ghemawat, J. D. (January, 2008). Mapreduce: Simplified data processing on large clusters. ACM

Commun. vol 51 , 107-113.
Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of Molecular

Biology , 162, 705-708.
Gropp, W., & Lusk, E. (2004). Fault Tolerance in Message Passing Interface Programs. International

Journal of High Performance Computing Applications , 18, 363-372.
Gu, Y. G. (2009). Sector and Sphere: The Design and Implementation of a High Performance Data

Cloud. Crossing boundaries: computational science, e-Science and global e-Infrastructure I. Selected
papers from the UK e-Science All Hands Meeting 2008 Phil. Trans. R. Soc. A , 367, 2429-2445.

Hadoop Distributed File System HDFS. (2009). Retrieved December 2009, from
http://hadoop.apache.org/hdfs/

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: an overview
with application to learning methods. Neural Computation , 16, 2639--2664.

Hofmann, T., & Buhmann, J. M. (1997). Pairwise data clustering by deterministic annealing. Pattern
Analysis and Machine Intelligence, IEEE Transactions on , 19, 1--14.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika , 28, 321--377.
Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Res. 9(9) ,

868-77.
Hursey, J., Mattox, T. I., & Lumsdaine, A. (2009). Interconnect agnostic checkpoint/restart in Open

MPI. Proceedings of the 18th ACM international symposium on High Performance Distributed
Computing HPDC , (pp. 49-58).

i-MapReduce. (2009). Retrieved December 2009, from www.iterativemapreduce.org
Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D. (2007). Dryad: Distributed data-parallel

programs from sequential building blocks. ACM SIGOPS Operating Systems Review. 41, pp. 59-72. ACM
Press.

JAligner. (2009). Retrieved December 2009, from Smith Waterman Software:
http://jaligner.sourceforge.net

Kearsley, A. J., Tapia, R. A., & Trosset, M. W. (1995). The Solution of the Metric STRESS and
SSTRESS Problems in Multidimensional Scaling Using Newton’s Method. Houston, Tx: Rice University.

Klock, H., & Buhmann, J. M. (2000). Data visualization by multidimensional scaling: a deterministic
annealing approach. Pattern Recognition , 33, 651-669.

Kohonen, T. (1998). The self-organizing map. Neurocomputing , 21, 1--6.
Kruskal, J. B., & Wish, M. (1978). Multidimensional Scaling. Sage Publications Inc.
Kruskal, J. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.

Psychometrika , 29, 1--27.
LINQ Language-Integrated Query. (2009). Retrieved December 2009, from

http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
MacQueen, J. B. Some Methods for classification and Analysis of Multivariate Observations. 5-th

Berkeley Symposium on Mathematical Statistics and Probability (pp. 281-297). University of California
Press.

Moab Cluster Tools Suite. (2009). Retrieved December 2009, from
http://www.clusterresources.com/products/moab-cluster-suite.php

Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., & Thain, D. (2009). All-Pairs: An
Abstraction for Data Intensive Computing on Campus Grids. IEEE Transactions on Parallel and
Distributed Systems , 21, 21-36.

MPI. (2009). Retrieved December 2009, from Message Passing Interface: http://www-
unix.mcs.anl.gov/mpi/

Pallickara, S., & Fox, G. (2003). NaradaBrokering: a distributed middleware framework and
architecture for enabling durable peer-to-peer grids. ACM/IFIP/USENIX 2003 International Conference
on Middleware. Rio de Janeiro, Brazil: Springer-Verlag New York, Inc.

Pike, R., Dorward, S., Griesemer, R., & Quinlan, S. (2005). Interpreting the data: Parallel analysis
with sawzall. Scientific Programming Journal Special Issue on Grids and Worldwide Computing
Programming Models and Infrastructure vol. 13, no. 4 , 227–298.

Price, A. L., Eskin, E., & Pevzner, P. A. (2004). Whole-genome analysis of Alu repeat elements
reveals complex evolutionary history. Genome Res , 14, 2245–2252.

Qiu, X., & Fox, G. C. (2008). Data Mining on Multicore Clusters. In Proceedings of 7th International
Conference on Grid and Cooperative Computing GCC2008 (pp. 41-49). Shenzhen, China: IEEE
Computer Society.

Qiu, X., Ekanayake, J., Beason, S., Gunarathne, T., Fox, G., Barga, R., et al. (2009). Cloud
Technologies for Bioinformatics Applications. 2nd ACM Workshop on Many-Task Computing on Grids
and Supercomputers (SuperComputing09). ACM Press.

Qiu, X., Fox, G. C., Yuan, H., Bae, S.-H., Chrysanthakopoulos, G., & Nielsen, H. F. (2008).
Performance of Multicore Systems on Parallel Data Clustering with Deterministic Annealing.
Computational Science – ICCS 2008 (pp. 407-416). Kraków, POLAND: Springer Berlin / Heidelberg.

ROOT, Data Analysis Framework. (2009). Retrieved December 2009, from http://root.cern.ch/
Rose, K. (1998). Deterministic Annealing for Clustering, Compression, Classification, Regression,

and Related Optimization Problems. Proceedings of the IEEE , 86, 2210--2239.
Rose, K., Gurewitz, E., & Fox, G. (1990). A deterministic annealing approach to clustering. Pattern

Recogn. Lett. , 11, 589--594.
Rose, K., Gurewitz, E., & Fox, G. C. (1990). Statistical mechanics and phase transitions in clustering.

Phys. Rev. Lett. , 65, 945--948.
Salmon, J. K. (1991). Parallel hierarchical N-body methods. PhD. California Institute of Technology.
Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal

of molecular biology , 147 (1), 195-197.
Takane, Y., Young, F. W., & de Leeuw, J. (1977). Nonmetric individual differences multidimensional

scaling: an alternating least squares method with optimal scaling features. Psychometrika , 42, 7-67.
Thompson, B. (1984). Canonical correlation analysis uses and interpretation. Sage.
xCAT. (2009). Extreme Cluster Administration Toolkit. Retrieved December 2009, from

http://xcat.sourceforge.net/
Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., et al. (2008). DryadLINQ: A

System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language.
Symposium on Operating System Design and Implementation (OSDI).

	1 INTRODUCTION
	1.1 Overview
	1.2 Architecture for Data Intensive Biology Sequence Studies

	2 INNOVATIONS IN ALGORITHMS FOR DATA INTENSIVE COMPUTING
	2.1 Visualization analysis by using parallel MDS and GTM
	2.1.1 Parallel MDS and GTM
	2.1.2 Experimental Results

	2.2 Metagenomics Studies with Clustering
	2.3 Metagenomics Studies with Hierarchical MDS

	3 INNOVATIONS IN PROGRAMMING MODELS USING CLOUD TECHNOLOGIES
	3.1 Runtimes and Programming Models
	3.1.1 Parallel frameworks
	3.1.1.1 Hadoop
	3.1.1.2 Dryad
	3.1.1.3 i-MapReduce
	3.1.1.4 MPI Message Passing Interface

	3.1.2 Science in clouds ─ dynamic virtual clusters

	3.2 Pairwise sequence alignment using Smith-Waterman-Gotoh
	3.2.1 Introduction to Smith-Waterman-Gotoh (SWG)
	3.2.2 Implementations
	3.2.2.1 Dryad Implementation
	3.2.2.2 MPI Implementation
	3.2.2.3 Apache Hadoop Implementation

	3.2.3 Performance comparison
	3.2.3.1 Inhomogeneous data study

	3.3 Sequence assembly using Cap3
	3.3.1 Introduction to Cap3
	3.3.2 Implementations
	3.3.3 Performance
	3.3.3.1 Inhomogeneous Data Study

	4 ITERATIVE MAPREDUCE WITH I-MAPREDUCE
	4.1 MapReduce Extensions
	4.2 Performance of i-MapReduce for Iterative Computations
	4.3 Related Work
	4.4 Future Work on i-MapReduce

	ACKNOWLEDGEMENTS
	APPENDIX A DIFFERENT CLUSTERS USED IN THIS ANALYSIS

