
Investigation of Data Locality and Fairness in MapReduce
1st Author

1st author's affiliation
1st line of address
2nd line of address

Telephone number, incl. country code

1st author's E-mail address

2nd Author
2nd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

2nd E-mail

3rd Author
3rd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

3rd E-mail

ABSTRACT
MapReduce is an important tool in data-intensive computing to
allow users to process large amounts of data easily. Its data
locality aware scheduling strategy exploits data locality to
minimize data movement and thus reduce network traffic. In this
paper, we firstly analyze the state-of-the-art MapReduce
scheduling algorithms and demonstrate that optimal scheduling is
not guaranteed. After that, we mathematically reformulate the
scheduling problem by using a cost matrix to capture the cost of
data staging and propose an algorithm that yields optimal task
scheduling. In addition, we integrate fairness and data locality
into a unified algorithm lsap-fair-sched in which users can easily
specify the tradeoffs between data locality and fairness. At last,
extensive experiments are conducted to show that our algorithms
can improve the ratio of data local tasks by up to 14%, reduce
data movement cost by up to 90%, and balance fairness and data
locality effectively.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed Applications; D.2.11 [Software
Engineering]: Software Architectures – Domain-specific
architectures.

General Terms
Algorithms, Management, Measurement, Performance, Design

Keywords
MapReduce, data locality, fairness, scheduling

1. INTRODUCTION
For many science domains, data are being produced and collected
continuously in an unprecedented rate by advanced instruments
such as Large Hadron Collider, next-generation genetic
sequencers, and astronomical telescopes. To process the huge
amount of data requires powerful hardware and efficient job
execution frameworks. For data parallel applications,
MapReduce[1] has been proposed by Google and adopted in both
industry [2] and academia [3,4]. Lin et al. experimented with text

processing applications such as inverted indexing and page rank
[3]. Qiu et al. utilized MapReduce to run biology applications
such as sequence alignment and multidimensional scaling [4].

One of the most appealing features of MapReduce is data locality
aware scheduling, which enables the scheduler to consider data
affinity and bring compute to data. That is different from
traditional grid clusters where storage and computation are
separated, shared file systems are mounted to facilitate data
access, and input data are fetched implicitly on demand. Data
movement and cross-rack traffic are reduced in MapReduce,
which is highly desirable in data-intensive computing. Mostly we
want to maximize the percent of tasks that achieve data locality to
improve the overall performance. The default scheduling strategy
in Hadoop is not optimal. In this paper we propose a new
algorithm lsap-sched that takes into consideration all tasks and
available resources at once and yields optimal data locality.
However, the reduction of job execution time is not always
proportional to the improvement of data locality. Consider two
jobs A and B that run the same application with different input
data of the same size. 90% of the tasks in A achieve data locality
while 80% of the tasks in B achieve data locality. Although A has
a better data locality than B, we cannot conclude that the data
transfer time of A is shorter than that of B because non data local
tasks of B may be closer to their data sources and thus able to
fetch data much faster than that of A. In environments with
network heterogeneity, the bandwidth of different pairs of nodes
may be drastically disparate and the data movement cost of non
data local tasks should be differentiated.

In addition to data locality, fairness is also important in shared
clusters. We want to avoid the scenario that a small number of
users overwhelm the whole system and thus render other users
unable to run any useful job. Traditional batch schedulers adopt a
reservation-based resource allocation mechanism. For each job, a
requested number of nodes are reserved for a specific period of
time. Although the whole cluster is shared, the use of individual
nodes is usually exclusive among users. MapReduce adopts a
more dynamic and aggressive approach to allow tasks owned by
different users to run on the same node. Capacity scheduler [5]
and fair scheduler [6] are two typical Hadoop schedulers that
support multi-tenancy and fair sharing. System administrators
manually specify rations for job groups that are enforced by the
scheduler. Fairness and data locality do not always work in
symphony and sometimes they conflict. Strict fairness may result
in degradation of data locality, and purely data locality driven
scheduling strategy may result in substantial unfairness of
resource usage. In our work, we investigate the tradeoffs between
data locality and fairness, and propose an algorithm allowing
users to adjust the tradeoffs easily.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Node A Node B

Task

Idle slot

Data block

Node A Node B

T1 T2

Node A Node B

T1 T2

(a) Initial state

(b) Scheduling with dl-sched (c) Optimal scheduling

T1 T2

Occupied
slot

Figure 1. Demonstrate non-optimality of dl-sched

The rest of this paper is organized as follows. Related work is
given in section 2. Our proposed scheduling algorithms that yield
optimal data locality and integrate fairness are discussed in
section 3. The experiments we conducted and their results are
elaborated in section 4. Finally we concluded in section 5.

2. RELATED WORK
The importance of data locality has drawn some attention in grid
computing communities. To incorporate data location into job
scheduling and automatically create new replicas for hot data is
shown to be beneficial in grid systems and outperforms traditional
HPC approaches [7]. Close-to-Files strategy for processor and
data co-allocation is shown to be effective with the assumption
that a single data file needs to be transferred to all tasks before
execution [8]. To support fast data access in data grids,
Hierarchical Cluster Scheduling and Hierarchical Replication
Strategy are proposed which reduce the amount of transferred
data and generate multiple copies of existing data across multiple
sites [9]. Different dynamic replication strategies, which increase
the possibility of local data accessing, are proposed and evaluated
to show that the best strategies can significantly reduce network
consumption and access latency if the access patterns exhibit a
small degree of geographical locality [10].

For MapReduce, several enhancements have been proposed to
improve data locality. In an environment where most jobs are
small, delay scheduling can improve data locality by delaying the
scheduling of tasks that cannot achieve data locality by a short
period of time [11]. Purlieus categorizes MapReduce jobs into
three classes: map-input heavy, map-and-reduce-input heavy and
reduce-input heavy, and proposes data and VM placement
strategies accordingly to minimize the cost of data shuffling
between map tasks and reduce tasks [12]. LATE shortens the job
response time by prioritizing the tasks to speculate and choosing
fast nodes to run speculative tasks on in heterogeneous
environments [13]. Data locality is theoretically analyzed in [14]
which builds a mathematical model and deduces the relationship
between significant system factors and data locality. In addition,
the impact of data locality on job execution time is evaluated for
single-cluster and cross-cluster deployments. Shared scans of
large popular files among multiple jobs have been demonstrated
to be able to improve the performance of Hadoop significantly
[15]. It relies on the accurate prediction of future job arrival rates.

Some schedulers have been developed for MapReduce that
support fair resource sharing. Facebook’s fairness scheduler aims
to provide fast response time for small jobs and guaranteed
service levels for production jobs by maintaining job “pools” each
of which is assigned a guaranteed minimum share and dividing
excess capacity among all jobs or pools [6]. Yahoo’s capacity
scheduler supports multi-tenancy by assigning capacity to job
queues [5]. However, the tradeoff between data locality and
fairness is not considered. For Dominant Resource Fairness, the
fairness of multiple resources is supported and a user’s allocation
is determined by his/her dominant share [16]. Quincy is a Dryad
scheduler that tackles the conflict between data locality and
fairness by converting the scheduling problem to a graph that
encodes both network structure and waiting tasks and solving it
using a min-cost flow solver [17]. In our work a different
approach is taken. In [18], load unbalancing policy is proposed to
balance fairness and performance and minimize mean response
time and mean slowdown when scheduling parallel jobs.

3. OUR APPROACHES
3.1 Scheduling in MapReduce
MapReduce uses Google File System [19] as its storage system.
Google File System splits files into blocks distributed among
nodes, maintains replication and exposes location information to
facilitate data locality aware scheduling in MapReduce. In
Hadoop implementation, each node has a configurable number of
map and reduce slots to which map and reduce tasks are assigned
respectively. They can be tuned to maximize the resource
utilization of modern servers equipped with multi-core processors
without incurring substantial contention. Hadoop adopts a master-
slave architecture. Slave nodes periodically communicate with
the master node via heartbeat messages which include the
availability of task slots. When a slave node reports that it has
idle slots, the master node scans the tasks in wait queue to find the
one that can achieve the best data locality. Firstly it searches for
a task whose input data are located on that slave node. If the
search fails, it subsequently searches for a task whose input data
are located on the same rack as the slave node. If the search fails
again, it randomly assigns a task. We use dl-sched to denote this
strategy which apparently only favors data locality and does not
consider workload and the fairness of resource usage. We adopt
the concept goodness of data locality which is defined as the
percent of map tasks that achieve node-level data locality [14].

Even if there exist multiple idle slots simultaneously, dl-sched
considers them one by one. For each idle slot, local optimum is
achieved because the “best” task is scheduled. However, global
optimum requires all idle slots and tasks be considered at once.
Figure 1 gives an example. Initially, there are two tasks T1 and
T2, and two nodes A and B. There is one idle slot on each node.
Data block Bi is the input data of task Tj, if Bi and Tj are marked
with the same pattern. Obviously the input data of T1 are stored
on both A and B while the input data of T2 are stored on B. Figure
1(a) shows how dl-sched assigns tasks. Assume node A is
considered first, the scheduler tries to find the best node for A.
Because node A stores the input data of T1, T1 is assigned to A.
Then node B is considered and task T2 is assigned to it (because
that is the only available slot). As a result, only T1 achieves data
locality. However, there exists an optimal scheduling that makes
both tasks achieve data locality, which is shown in Figure 1(c).
The cause of non-optimality is that each task is scheduled without
considering its impact on other tasks.

3.2 Optimal Data Locality
Given a set of map tasks to run and a set of idle slots, we want to
find the task assignment that yields the best data locality. If a
scheduling algorithm maximizes data locality, we say it is
optimal. Obviously, dl-sched is not optimal. We use function φ
to denote the assignment of map tasks to idle slots. Each task-to-
slot assignment has an associated assignment cost that ideally
should reflect the cost of data movement. The sets of tasks and
idle slots are represented by T and S respectively.

Firstly, we reformulate the problem to facilitate the benefit
measurement of data locality. We use a cost matrix to represent
the assignment costs of all possible task assignments. C(i,j) is the
assignment cost of scheduling task Ti to idle slot Sj. If the input
data of task Ti are stored on the node where idle slot Sj is located,
task Ti achieves data locality and accesses data locally, and thus
C(i,j) is set to 0. Otherwise, task Ti needs to fetch its input data
from a remote node, and is called a non data local task. In [14],
the assignment costs of non data local tasks are set to 1 uniformly.
It assumes that the data movement of different tasks incurs an
identical cost, which is not reasonable for typical hierarchical
network topology where switches are increasingly oversubscribed
when walking up the hierarchy. The cost of data fetching
depends upon where the source node and destination node are
located. In our work, the assignment costs of non-data local tasks
are computed based on network information. N(Sj) is the node
where slot Sj resides. The input data of a non data local task may
be stored on multiple nodes redundantly. If a task is assigned to
Sj, the storage node with the best connectivity to N(Sj) is chosen
as data source. The calculation of C(i,j) is summarized in (1)
where DS(Ti) is the size of the input data of task Ti, Ri is the
replication factor of the input data of task Ti, ND(Ti,c) is the node
where c-th replica of task Ti is stored, and BW(N1,N2) is the real-
time available bandwidth between nodes N1 and N2. Given an
assignment function φ, the sum of assignment costs is calculated
using (2). With a constructed cost matrix C(i,j), we want to find
the task assignment that yields the smallest sum of assignment
cost. Mathematically, we want to find a solution to (3).

1

0 if task can get data locality

()(,) otherwise
max{ ((,), ())}

i

i

i

i j
c R

T

DS TC i j
BW ND T c N S

≤ ≤


= 



 (1)

1 | |

() (, ())sum i T
C C i iφ φ

≤ ≤
= (2)

 arg min ()sumg Cϕ φ= (3)

 s1 … sIS-1 sIS

t1 1 2 0 0

… … … … …

tT 0 7 2 0

tT+1 0 0 0 0

… 0 0 0 0

tIS 0 0 0 0

 s1 ... sIS sIS+1 ... sT

t1 2 … 1 0 0 0

t2 0 … 0 0 0 0

t3 5 … 2 0 0 0

t4 3 … 5 0 0 0

… 1 … 3 0 0 0

tT 0 … 2 0 0 0

(a) |T| < |IS| (b) |T| > |IS|

Figure 2. Expand cost matrix to make it square.
For (a), last |IS|-|T| rows are for dummy tasks we make up and all filled with 1.
For (b), last |T|-|IS| columns are for dummy slots we make up and filled with 1.

It turns out this problem can be converted to the well-known
Linear Sum Assignment Problem (LSAP) [20] for which a couple

of algorithms with polynomial-time complexity (e.g. Hungarian
algorithm) have been proposed. A brief description of LSAP is
included below. From the description, we can see LSAP requires
the cost matrix be square, which implies LSAP can be directly
applied to our problem only when the numbers of tasks and idle
slots are equal. For the cases where they are not equal, we
expand the cost matrix to a square one by adding extra rows or
columns. If |T| is less than |IS|, we create |IS|-|T| dummy tasks
whose assignment costs are 0 no matter where they are assigned.
Figure 2 shows an example in which ti and sj represent tasks and
idle slots respectively. The first |T| rows are from the original
matrix and the last |IS|-|T| rows are for dummy tasks and all filled
with 0. After this transformation, the original |T| x |IS| matrix
becomes a |IS| x |IS| square matrix and existing LSAP algorithms
can be applied to find the optimal assignment of all |IS| tasks.
After filtering out the dummy tasks in the solution given by
LSAP, we obtain a valid assignment φ (termed φ-lsap). Given the
fact that LSAP algorithms yield the optimal solution for the
expanded square matrix, we need to prove that φ-lsap is a solution
to (3).

Proof: We assume φ-lsap is not optimal and the optimal
assignment is φ-opt. Apparently Csum(φ-opt) is less than Csum(φ-
lsap). We expand the matrix to a square one and extend φ-lsap
and φ-opt to include the newly added dummy tasks. The key
point is that the sum of the assignment cost of dummy tasks is 0
regardless of where they are assigned. So the total assignment
costs of φ-opt and φ-lsap do not change. As Csum(φ-opt) is less
than Csum(φ-lsap), we find an assignment that yields lower cost
sum than the solution given by LSAP algorithms. This
contradicts with the assumption that LSAP algorithms yield
optimal solutions. □

From the proof above, we can see that any constant can be used to
fill the extra rows without impacting the correctness. The
intuitive explanation is that the assignment of dummy tasks adds a
constant value to the overall cost and does not influence the (non-
)optimality of each potential solution. Only the assignment of
original tasks determines the optimal solutions. For the case
where |T| is larger than |IS|, the original matrix can be expanded to
a |T| x |T| square matrix by adding |T|-|IS| extra columns that are
filled with constant 0. In other words, we create |T|-|IS| dummy
slots. After applying a LSAP algorithm, we get the assignment of
all |T| tasks. However, some tasks are actually assigned to
dummy slots that do not exist. After filtering out those invalid
assignments, we obtain the final task assignment. The optimality
of this approach can be proved ditto.

The accuracy of pairwise bandwidth information impacts how.
Ideally real-time network throughput information should be used.
Network Weather Service [19] can be used to monitor and predict
network usage without injecting an overwhelming number of
probing packets.

Generally, the more idle slots and tasks there are, the more lsap-
sched outperforms dl-sched. The real cluster traces show the
maximum utilization is seldom reached. CPU utilization was
only 10% for Yahoo’s M45 cluster [22] and below 50% mostly
for a Google cluster [23]. So on average a significant portion of

Linear Sum Assignment Problem: Given n items and n workers,
the assignment of an item to a worker incurs a known cost. Each
item is assigned to one worker and each worker has one item
assigned. Find the assignment that minimizes the sum of cost.

Table 1. Examples of How Tradeoffs are Made

Fairness-favored Data Locality-favored Both-favored

FC* DLC* FC DLC FC DLC

[0, 100] [0, 20] [0,100] [0,150] [0,100] [0,100]

* FC: fairness cost; DLC: data locality cost

slots is unutilized when a new job is submitted and lsap-sched is
expected to perform substantially better than dl-sched. For the
extreme case where a cluster operates near its maximum
utilization, the performance advantage of lsap-sched is attenuated
if new tasks are scheduled immediately. Instead, scheduling can
be delayed by a short period to accumulate a sufficient number of
idle slots before lsap-sched is applied. As our experiments below
illustrate, the ratio of idle slots does not need to be high for lsap-
sched to yield significant performance improvement. For typical
MapReduce clusters where most jobs are small, scheduling delay
of several seconds is sufficient to generate performance boost.

3.3 Integration of Fairness
We also investigate the integration of fairness into lsap-sched.
Both fair scheduler [6] and capacity scheduler [5] take the same
approach that jobs are organized into different groups by
appropriate criteria (e.g. user-based, domain-based, pool-based).
This approach is adopted by us as well.

We do not enforce strict fairness which constrains each group
cannot use more than its ration strictly, because it results in the
waste of resources. We loosen the constraints. If there are
enough idle slots to run all tasks, we just schedule them
immediately to make full use of all available slots even if some of
the groups have used up their rations. If idle slots are insufficient,
we need to selectively run tasks aiming to comply with ration
specifications.

lsap-sched can be enhanced to support fairness by carefully
tuning the cost matrix. The assignment cost of a task can be
positively related to the resource usage of the group the task
belongs to. In other words, for groups that use up or overuse the
allocated capacity, their tasks have high assignment cost so that
the scheduler does not favor them. Oppositely, the assignment
cost of tasks from groups, which underuse their allocated
capacity, should be low so that they get higher priority.

Let G represent the set of groups that a system administrator
configures for a cluster, and i-th group is Gi. Each group contains
some number of tasks and each task can only belong to exactly
one group. Given a task T, function group(T) returns the group
which T belongs to. Each group is assigned a weight/ration w
which is the proportion of map slots allocated to it. The sum of
the weights of all groups is 1.0, which is formulated in (4). At
time t, rti(t) is the number of running tasks belonging to group Gi.
Formula (5) calculates the ratio of map slots si used by group Gi
among all occupied map slots, which measures the real resource
usage ratio of each group. For group Gi, the desired case is that si
and wi are equal, which implies real resource usage exactly
matches the configured share. If si is less than wi, group Gi can
have more tasks scheduled immediately. Otherwise, if group Gi
has used its entire ration, to schedule more tasks, it needs to wait
until some of its tasks complete or there are enough slots to run all
tasks. A Group Fairness Cost GFC is associated with each group
to measure its “priority” of scheduling and calculated via (6).
Groups with low GFC have high priority so that their tasks are
considered before the tasks from groups with high GFC.

Data locality sometimes conflicts with fairness. For example, it is
possible that the unscheduled tasks that can gain data locality are
mostly from groups that have already used up their rations. And
thus we get into the dilemma that tradeoffs between fairness and
data locality must be made. To integrate data locality and fairness,
we divide assignment cost into two parts: Fairness Cost (FC) and

Data Locality Cost (DLC) (shown in (7)). FC implies the order of
tasks to be scheduled according to fairness constraints. Tasks
with low FC should be scheduled before tasks with high FC. The
range of FC is denoted by [FCmin, FCmax]. DLC reflects the
overhead of data movement and has the same meaning as the cost
definition described in section 3.2 above. The weights of FC and
DLC can be implicitly adjusted by carefully choosing the value
ranges. Table 1 gives examples to show how fairness-favored
scheduling, data locality-favored scheduling and both-favored
scheduling can be achieved. The range of FC is [0, 100] for all
the examples, while DLC varies. DLC with range [0, 20] makes
the scheduler favor fairness because FC has larger impact on the
total assignment cost. DLC with range [0, 150] makes the
scheduler favor data locality because the loss of data locality
bumps up the total assignment cost significantly. DLC with range
[0, 100] makes the scheduler favor both fairness and data locality,
because the loss of data locality and fairness impacts overall
assignment costs to the same extent.

Above example shows how data locality and fairness can be
balanced. We need to qualitatively determine FC and DLC of
tasks dynamically. Formula (8) shows how to calculate DLC, in
which α is a configuration parameter fed by system administrators
and implicitly controls the relative weight of FC. If α is small, FC
stands out and the scheduler favors fairness. If α is large, DLC
stands out and the scheduler favors data locality. If α is medium,
FC and DLC stand out under different circumstances. The
calculation of FC is trickier and more subtle. As we mentioned, a
GFC is associated with each group. One simple and intuitive
strategy is for each group FC of all its unscheduled tasks is set to
its GFC. This implies all unscheduled tasks of a group have
identical FC, and therefore the scheduler is inclined to schedule
all or none of them. For instance, initially a group Gi underuses
its ration just a little and has many unscheduled tasks. If it has the
lowest GFC, all its tasks naturally have the lowest FC and are
scheduled to run so that group Gi uses significantly more
resources. After scheduling, the resource usage of group Gi
changes from slight underuse to heavy overuse. The reason why
resource usage oscillates between underuse and overuse is the
tasks in each group, no matter how many there are, are assigned
to the same FC. Instead, we calculate for each group how many
of its unscheduled tasks should be scheduled based on the number
of idle map slots and its current resource usage. It is shown in (9)
where AS is the total number of all slots. AS·wi gives the number
of map slots that should be used by group Gi. Group Gi already
has rti tasks running so we have AS·wi-rti slots at disposal (termed
sto – Slots To Occupy). Because we only can use stoi more slots,
accordingly the FC of at most stoi tasks is set to GFCi and that of
other tasks is set to a larger value wi·β (β is fed by system
administrators). So the tasks of each group do not have the same
FC. The number of unscheduled tasks for group Gi is denoted by
uti. If uti is greater than stoi, we need to decide how to select stoi
tasks out of uti tasks. Now, data locality comes into play, and the
tasks that can potentially achieve data locality are chosen. Details
are given in the proposed algorithm below.

| |

1
1 (0 1)

G

i ii
w w

=
= < ≤ (4)

| |

1

()
() (1)

()

i
i G

jj

rt t
s t i G

rt t
=

= ≤ ≤


 (5)

 100i
i

i

s
GFC

w
= ⋅ (6)

(,) (,)ijC FC i j DLC i j= + (7)

1

0 if data locality is gained

()(,) otherwise
max { ((,), ())}

i

i

i j
c R

DS TDLC i j
BW ND T c N S

α
≤ ≤


=  ∗



 (8)

 max(0,)i i isto AS w rt= ⋅ − (9)

Based on above discussion, scheduling algorithm lsap-fair-
sched is proposed and shown below. The main difference
from lsap-sched is how assignment cost is calculated. Lines
7-8 find the set of nodes with idle slots. Lines 10-12 find
the set of tasks whose input data are stored on nodes with
idle slots. So these tasks have the potential to gain data
locality while all other tasks will lose data locality definitely
for next scheduling. Lines 13-16 calculate sto of all groups.
Lines 18-27 calculate task FC. Lines 29-33 calculate DLC.
Line 35 adds FC matrix and DLC matrix to form the final
cost matrix, which is expanded to a square matrix shown by
line 36. After that, a LSAP algorithm is used to find the
optimal assignment which is filtered and returned.

Algorithm skeleton of lsap-fair-sched

Input:
 α: DLC for tasks that lose data locality
 β: FC for tasks that are beyond its group ration
Output: assignment of tasks to idle map slots
Functions:
rt(g): return a set of running tasks that belong
 to group g.
node(s): return the node where slot s resides
reside(T): returns a set of nodes that host
 input the data of task T

Algorithm:
1 TS ← the set of unscheduled tasks
2 ISS ← the set of idle map slots
3 w ← rations/weights of all groups
4 ut ← the number of unshed. tasks for all groups
5 gfc ← GFC of all groups calculated via (10)
6 INS  ∅ # the set of nodes with idle slots
7 for slot in ISS:
8 INS  INS ⋃ node(slot)
9 # tasks that can potentially gain data locality
 DLT[1:|G|] = ∅
10 for T in TS:
11 if reside(T) ∩ INS ≠ ∅:
12 DLT[group(T)] = DLT[group(T)] ⋃ T
13 for i = 1; i ≤ |G|; ++i:
14 diff = w[i] · AS - rt[i]
15 if diff > 0: sto[i] = min(diff, ut[i])
16 else: sto[i] = 0
17
18 fc[1:|TS|][1:|ISS|] = 0 #fill with deft value
19 for i = 1; i ≤ |G|; ++i:
20 tasks = G[i] #a list of tasks in group i
21 NDLT = tasks - DLT[i] #non-local tasks
22 fc[tasks] = β·w[i] #default value
23 if |DLT[i]| ≥ sto[i]:
24 tasks = DLT[i][1:sto[i]] #choose a subset

25 else if ut[i] > sto[i]:
26 tasks = DLT[i] ⋃ NDLT[1:(sto[i]-|DLT[i]|]]
27 fc[tasks] = gfc[i] #assign GFC to some tasks
28
29 dlc[1:|TS|][1:|ISS|]=α #fill with default value
30 for T in ⋃DLT :
31 for j = 0; j < |ISS|; ++j :
32 if collocate(T, ISS[j]) :
33 dlc[T][j] = 0
34
35 C = fc + dlc
36 if C is not square: expandToSquare(C, 1)
37 R = lsap(C)
38 R = filterDummy(R)
39 return R

In above strategy, some tasks may get started although the
possibility is remote. FC and DLC can be reduced for the tasks
that have been waiting in queue for long time, so that they tend to
be scheduled in the subsequent scheduling iterations.

4. EXPERIMENTS
In the experiments below, the main considered system factors
include the number of nodes, the number of slots per node, the
ratio of idle slots, and replication factor. One factor is varied
while others are fixed in each test. We conduct simulation
experiments to evaluate the effectiveness of our proposed
scheduling algorithms.

4.1 Overhead of LSAP Solver
We measured the time taken by lsap-sched to compute optimal
task assignment in order to understand the overhead of solving
LSAP. We varied the number of tasks from 100 to 3000 with step
size 400, and the number of idle slots is equal to the number of
tasks for each test. They represent small-sized to moderate-sized
clusters. The corresponding cost matrices are constructed and fed
into LSAP solver. It takes 7ms, 130ms, 450ms, and 1s for the
LSAP solver to find optimal solutions given the matrices of sizes
100x100, 500x500, 1700x1700 and 2900x2900. So the overhead
is acceptable in small-sized to medium-sized clusters. Note in our
tests, values in the matrices were randomly generated, which
eliminates the possibility to mine and explore useful patterns of
cost distribution. In reality, the cost of data movement exhibits
locality for typical hierarchical network topologies, which can be
used to speed up the execution potentially.

4.2 Improvement of Data Locality
In this test, we evaluate how lsap-sched influences the percent of
data local tasks. In the simulated system, the number of nodes
varied from 100 to 500 with step size 50, and each node has 4
slots. Replication factor is 3. The ratio of idle slots was fixed to
0.5 and enough tasks were generated to utilize all idle slots. The
results are shown in Figure 3. Figure 3(a) shows the goodness of
data locality for dl-shed and lsap-sched. Obviously, the goodness
of data locality is pretty stable for both algorithms: dl-sched
achieves 83% while lsap-sched achieves 97%. Their differences
are shown in Figure 3(b), which implies lsap-sched increases the
goodness of data locality by 12% - 14%. This indicates that lsap-
sched consistently outperforms dl-sched significantly when the
system is scaled out. In addition, we observe that the
improvement oscillates in Figure 3(b). Our conjecture of the
cause is that the number of all possible data and slot distribution
is gigantic and only a portion of all possible cases are covered in
our tests.

Then we varied replication factor from 1 to 19 and fixed the
number of nodes to 100. The goodness of data locality was
measured and is shown in Figure 4(a). The increase of replication
factor yields substantial improvement of data locality for both
lsap-sched and dl-sched; and lsap-sched can more efficiently
explore the increasing data redundancy and thus achieve better
data locality. For lsap-sched, common replication factors 3 and 5
yield surprisingly high data locality 72% and 88% respectively.

Finally, we set the total number of idle slots to 100 and increased
the number of tasks from 5 to 100 that occupy more and more idle
slots. Results are shown in Figure 5 (b). Data locality degrades
slowly as more tasks are injected into the system, and the
degradation of lsap-sched is much less severe than that of dl-
sched. When the number of tasks is much smaller than that of
idle slots, the scheduler has the great freedom of picking the best
slots to assign tasks. As their numbers become close, more tasks
need to be scheduled in one “wave” and the cherry-picking
freedom is gradually attenuated. This explains why the increase
of the number of tasks has negative impact on data locality.

4.3 Reduction of Data Locality Cost
In above tests, we measured the percent of data local tasks. In
reality, performance depends upon not only the goodness of data
locality, but also the incurred data movement penalty of non-data
local tasks. In this test, we measure the overall data locality cost
(DLC) to quantify the performance degradation brought by non
data local tasks. The assignment cost of any non data local task is
set to 1 regardless of the proximity between the location of
compute and input data, which assumes that the cluster is
homogeneous. The same test environment as above is used.
Figure 5(a) shows the absolute DLC. As the number of nodes is
increased, the DLC of dl-sched increases much faster than that of
lsap-sched. So lsap-sched is more resilient to system scale-out
than dl-sched. We also computed the DLC reduction of lsap-
sched against dl-sched, and show results in Figure 5(b). We
observe that lsap-sched eliminates 70% - 90% of the DLC of dl-
sched.

Previously, constant value 1 was used as the assignment cost of
non-data local tasks, which does not reflect the fact that pairwise
network bandwidth is not uniform (e.g. intra-rack throughput is
usually higher than cross-rack throughput). In this test, we
complicate the tests by setting non-constant costs. We simulated
a cluster where each rack has 20 nodes. Again the assignment
cost of data local tasks is 0. The assignment cost of rack local
tasks (i.e. computation and input data are co-located on the same
rack) follows a Gaussian distribution with mean and standard
deviation being 1.0 and 0.5 respectively. The assignment cost of
remote tasks follows another Gaussian distribution with mean and
standard deviation being 4.0 and 2.0 respectively. This setting
matches the reality that cross-rack data fetching incurs higher cost
than intra-rack data fetching. We varied the total number of nodes
from 100 to 500 and measured DLC. Firstly the ratio of idle slots
was set to 50% and DLC are shown in Figure 6. Lsap-sched still
outperforms dl-sched significantly by up to 95%. By comparing
Figure 5 and Figure 6, we observe that rack topology does not
result in performance degradation. Dl-sched is rack aware in the
sense that rack local tasks are preferred over remote tasks if there
are no node local tasks. So it avoids assigning tasks to the nodes
where they need to fetch input data from other racks with best
efforts. Lsap-sched is naturally rack aware because the high
cross-rack data movement cost prohibits non-optimal task
assignments. So both dl-sched and lsap-sched can effectively
utilize the network topology information. Then we decreased the
ratio of idle slots from 50% to 20%, which implies there was a
fewer number of idle slots. Results are show in Figure 7.
Compared with Figure 6, the DLC of dl-sched is decreased and
the DLC of lsap-sched is increased, so that the performance
superiority of lsap-sched over dl-sched becomes less significant
which is between 60% and 70%. When there are only a small
number of idle slots, the room of improvement brought by lsap-
sched is smaller. For the extreme case where there is only one
idle slot, dl-sched and lsap-sched becomes equivalent
approximately. The more available resources and tasks there are,
the more lsap-sched reduces DLC. The utilization of typical
production clusters rarely reaches up to 80% [22, 23]. So we
believe lsap-sched can offer substantial benefit in moderately-
loaded clusters.

Then we fixed the number of nodes to 100 and increased
replication factor from 1 to 13 with step size 2. The other settings
were identical to that of the above test except each node has 1 idle
slot. As replication factor is increased, we expect positive impact
on DLC because the possibility of achieving better data locality
increases theoretically. Test results are shown in Figure 8.
Firstly, DLC drastically decreases as replication factor is
increased initially from small values, and the decrement of DLC
becomes less significant as replication factor gets larger and
larger. Secondly, when replication factor is 1, lsap-sched and dl-
sched perform comparably. Lsap-sched yields much faster DLC

 (a) Varied replication factor (b) Varied the number of tasks

Figure 4. Comparison of data locality (varied rep. factor and # of tasks)

(a)Overall DLC of dl-sched and lsap-sched(b)Reduction of DLC(in percent)

Figure 5. Comparison of data locality cost (with equal net. bw.)

(a) Data locality of dl-sched and lsap-sched (b) Percent of improvement

Figure 3. Comparison of data locality (varied # of nodes)

reduction than dl-sched as replication factor grows, and it almost
thoroughly eliminates DLC when replication factor is larger than
7. Figure 8(b) shows a low replication factor (e.g. 3) is sufficient
for lsap-sched to outperform dl-sched by over 50%. Note the
number of slots per node was set to 1 in this test, and increasing it
can bring larger improvement.

4.4 Evaluation of lsap-fair-shed
We have shown that theoretically fairness and data locality can be
integrated together by carefully setting Fairness Cost and Data
Locality Cost. In this experiment, we conducted a series of
simulations to demonstrate the effectiveness of our proposed
algorithm lsap-fair-sched. For each group, formula (10) calculates
the “fairness distance” between the actual resource allocation si
and the desired allocation specified via weights wi. Value 0
indicates that the group uses exactly its ration. If its value is
greater than 0, the resource usage of the group either exceeds or is
less than its ration. So its value indicates the compliance with
administrator-provided allocation policies, and smaller is better
usually. Formula (11) calculates the mean of fairness distance of
all groups and serves as a metric to measure the fairness of
resource allocation. At initial time instant 0 the fairness distance
is denoted by d(0). Then submitted tasks are scheduled, and at
time t the fairness distance becomes d(t). If the scheduler is
fairness-aware, usually d(t) should be smaller than d(0) which
implies fairness is improved. Given an initial state, we use d(0)-
d(t) to measure to what extent lsap-fair-sched improves fairness,
and larger is better.

 () | () | /i i i id t s t w w= − (10)

| |

1
()

()

G

ii
d t

d t
G
==


 (11)

In our tests, there were 60 nodes; each node had 1 slot; half of all
slots were idle; replication factor was 1; and there were 30
running tasks and 90 tasks to be scheduled. In addition, there
were 5 groups to which tasks belong. Weights for groups were
{20, 21, 22, 23, 24} and normalized to {20/31, 21/31, 22/31, 23/31,
24/31} so that they add up to 1.0. The groups to which running
tasks belong were randomly assigned. The DLC of non-local
tasks was varied and results are shown in Figure 9. Initially, DLC
is small compared with FC so that FC dominates the total
assignment cost and lsap-fair-sched improves fairness most.
Gradually, as the DLC of non-local tasks increases, data locality
gains larger weight so that data locality improves and fairness
deteriorates. After the DLC of non-local tasks gets large enough,
data locality becomes the dominant factor so that scheduling
favors data locality mainly. Another observation is that
improvement/deterioration of data locality/fairness is not smooth,
and the curves are staircase shaped. During the continuous
increase of DLC, not every small increment makes DLC become
dominant. There are some critical steps that cause “phase”
transition and make the assignment costs of some tasks become
larger than that of other tasks that had larger cost before, so that
data locality becomes dominant in scheduling. Oppositely, the
non-critical increase is not sufficient to influence scheduling
decisions.

5. CONCLUSIONS
In this paper, we conducted an in-depth investigation of data
locality and fairness in MapReduce. We illustrated the default
Hadoop scheduling strategy dl-sched takes a slot-by-slot approach
and does not guarantee optimal data locality. Then we used a cost
matrix to represent the associated data movement costs of all
{task, slot} pairs, and reformulated the scheduling problem into a
new problem that tries to find an assignment that minimizes the
sum of cost. We proposed lsap-sched that gives optimal data
locality by utilizing the well-known problem LSAP. The
conducted simulation shows lsap-sched can improve the goodness
of data locality and reduce the overall DLC substantially. In
addition, we investigated fairness and noticed the conflict
between fairness and data locality. The assignment cost is split
into two parts: fairness cost and data locality cost. We enhanced
lsap-sched to balance fairness and data locality based on the user-
provided weights. Corresponding experiments show that the
relative importance of fairness and data locality can be tuned
effectively and conveniently. The desired setting is system

(a)Overall DLC of dl-sched and lsap-sched(b)Reduction of DLC(in percent)

Figure 8. Comparison of DLC w/ rep. factor varied (rack aware)

(a)Overall DLC of dl-sched and lsap-sched(b)Reduction of DLC(in percent)

Figure 6. Comparison of DLC with 50% idle slots (rack aware)

(a)Overall DLC of dl-sched and lsap-sched(b)Reduction of DLC(in percent)

Figure 7. Comparison of DLC with 20% idle slots (rack aware)

Figure 9. Tradeoffs between fairness and data locality

specific and depends upon fairness requirements and the typical
workload of submitted MapReduce jobs.

6. ACKNOWLEDGMENTS
This material is based upon work supported in part by the
National Science Foundation under Grant No. 0910812 to Indiana
University for "FutureGrid: An Experimental, High-Performance
Grid Test-bed." Partners in the FutureGrid project include U.
Chicago, U. Florida, San Diego Supercomputer Center - UC San
Diego, U. Southern California, U. Texas at Austin, U. Tennessee
at Knoxville, U. of Virginia, Purdue U., and T-U. Dresden.

7. REFERENCES
[1] J. Dean and S. Ghemawat. 2008. MapReduce: simplified

data processing on large clusters. Commun. ACM 51, 1
(January 2008), 107-113.

[2] Yahoo! Launches World’s Largest Hadoop Production
Application, Yahoo! Developer Network,
http://developer.yahoo.com/blogs/hadoop/2008/02/yahoo-
worlds-largest-production-hadoop.html

[3] J. Lin and C. Dyer. 2009. Data-intensive text processing with
MapReduce. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational
Linguistics, Companion Volume: Tutorial Abstracts
(NAACL-Tutorials '09). Association for Computational
Linguistics, Stroudsburg, PA, USA, 1-2.

[4] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R.
Barga, and D. Gannon. 2009. Cloud technologies for
bioinformatics applications. In Proceedings of the 2nd
Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS '09). ACM, New York, NY, USA

[5] Hadoop’s Capacity Scheduler
http://hadoop.apache.org/core/docs/current/capacity_schedul
er.html.

[6] Matei Zaharia, “The Hadoop Fair Scheduler”
http://developer.yahoo.net/blogs/hadoop/FairSharePres.ppt

[7] K. Ranganathan and I. Foster. 2002. Decoupling
Computation and Data Scheduling in Distributed Data-
Intensive Applications. In Proceedings of the 11th IEEE
International Symposium on High Performance Distributed
Computing (HPDC '02). IEEE Computer Society,
Washington, DC, USA, 352-.

[8] H. H. Mohamed and D. H. J. Epema. 2004. An evaluation of
the close-to-files processor and data co-allocation policy in
multiclusters. In Proceedings of CLUSTER '04. IEEE
Computer Society, Washington, DC, USA, 287-298.

[9] R. Chang, J. Chang, and S. Lin. 2007. Job scheduling and
data replication on data grids. Future Gener. Comput. Syst.
23, 7 (August 2007), 846-860.

[10] K. Ranganathan and I. T. Foster, "Identifying dynamic
replication strategies for a High-Performance data grid," in
Proceedings of the Second International Workshop on Grid
Computing, ser. GRID '01. London, UK: Springer-Verlag,
2001, pp. 75-86.

[11] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica. 2010. Delay scheduling: a simple

technique for achieving locality and fairness in cluster
scheduling. In Proceedings of the 5th European conference
on Computer systems (EuroSys '10). ACM, New York, NY,
USA, 265-278

[12] B. Palanisamy, A. Singh, L. Liu, and B. Jain. 2011. Purlieus:
locality-aware resource allocation for MapReduce in a cloud.
In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC '11). ACM, New York, NY, USA

[13] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I.
Stoica. 2008. Improving MapReduce performance in
heterogeneous environments. In Proceedings of the 8th
USENIX conference on Operating systems design and
implementation (OSDI'08). USENIX Association, Berkeley,
CA, USA, 29-42.

[14] Z. Guo, G. Fox, and M. Zhou. 2012. Investigation of Data
Locality in MapReduce. In Proceedings of the 12th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing(CCGrid’12). To appear.

[15] P. Agrawal, D. Kifer, and C. Olston. 2008. Scheduling
shared scans of large data files. In Proc. VLDB Endow.,
vol. 1, no. 1, pp. 958-969, Aug. 2008.

[16] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.
Shenker, and I. Stoica. 2011. Dominant resource fairness:
fair allocation of multiple resource types. In Proceedings of
the 8th USENIX conference on Networked systems design
and implementation (NSDI'11)

[17] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. 2009. Quincy: fair scheduling for
distributed computing clusters. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles
(SOSP '09)

[18] B. Schroeder and M. Harchol-Balter. 2000. Evaluation of
Task Assignment Policies for Supercomputing Servers: The
Case for Load Unbalancing and Fairness. In Proceedings of
the 9th IEEE International Symposium on High Performance
Distributed Computing (HPDC '00)

[19] S. Ghemawat, H. Gobioff, and S. Leung. 2003. The Google
file system. In Proceedings of the nineteenth ACM
symposium on Operating systems principles (SOSP '03).
ACM, New York, NY, USA, 29-43.

[20] R.E. Burkard, M. Dell'Amico, and S. Martello. 2009.
Assignment problems. SIAM, Society for Industrial and
Applied Mathematics

[21] R. Wolski, N. Spring, and J. Hayes. 1999. The network
weather service: a distributed resource performance
forecasting service for metacomputing. Future Gener.
Comput. Syst. 15, 5-6 (October 1999), 757-768

[22] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. 2010. An
Analysis of Traces from a Production MapReduce Cluster. In
Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing
(CCGRID '10).

[23] L. A. Barroso and U. H. Olzle. 2007. The case for energy-
proportional computing. Computer , vol.40, no.12, pp.33-37

