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ABSTRACT 
MapReduce is an important tool in data-intensive computing to 
allow users to process large amounts of data easily.  Its data 
locality aware scheduling strategy exploits the locality of data 
accessing to minimize data movement and thus reduce network 
traffic.  In this paper, we firstly analyze the state-of-the-art 
MapReduce scheduling algorithms and demonstrate that optimal 
scheduling is not guaranteed.  After that, we mathematically 
reformulate the scheduling problem by using a cost matrix to 
capture the cost of data staging and propose an algorithm lsap-
sched that yields optimal task scheduling.  In addition, we 
integrate fairness and data locality into a unified algorithm lsap-
fair-sched in which users can easily specify the tradeoffs between 
data locality and fairness.  At last, extensive simulation 
experiments are conducted to show that our algorithms can 
improve the ratio of data local tasks by up to 14%, reduce data 
movement cost by up to 90%, and balance fairness and data 
locality effectively.   

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed Applications; D.4.1 [Operating Systems]: 
Process Management – Scheduling. 

General Terms 
Algorithms, Management, Measurement, Performance, Design 

Keywords 
MapReduce, data locality, fairness, scheduling 

1. INTRODUCTION 
For many science domains, data are being produced and collected 
continuously in an unprecedented rate by advanced instruments 
such as Large Hadron Collider, next-generation genetic 
sequencers, and astronomical telescopes.  To process the huge 
amount of data requires powerful hardware and efficient 
distributed computing frameworks. For data parallel applications, 
MapReduce [1] has been proposed by Google and adopted in both 
industry [2] and academia [3,4].  Lin et al. experimented with text 

processing applications such as inverted indexing and page rank 
[3]. Qiu et al. utilized MapReduce to run biology applications 
such as sequence alignment and multidimensional scaling [4]. 

One of the most appealing features of MapReduce is data locality 
aware scheduling, which enables the scheduler to consider data 
affinity and bring compute to data.  That is different from 
traditional grid clusters where storage and computation are 
separated, shared file systems are mounted to facilitate data 
accessing, and input data are fetched implicitly on demand.  Data 
movement and cross-rack traffic are reduced in MapReduce, 
which is highly desirable in data-intensive computing.  Mostly we 
want to maximize the percent of tasks that achieve data locality to 
improve the overall performance.  The default scheduling strategy 
in Hadoop is not optimal. In this paper we propose a new 
algorithm lsap-sched that takes into consideration all tasks and 
available resources at once and yields optimal data locality.  The 
reduction of job execution time is not always proportional to the 
improvement of data locality.  Consider two jobs A and B that run 
the same application with different input data of the same size.  
90% of the tasks in A achieve data locality while 80% of the tasks 
in B achieve data locality.  Although A has better data locality 
than B, we cannot conclude that the data transfer time of A is 
shorter than that of B because non data local tasks of B may be 
closer to their data sources and thus able to fetch data much faster 
than that of A. In environments with network heterogeneity, the 
bandwidth of different pairs of nodes may be drastically disparate 
and the data movement costs of non data local tasks should not be 
assimilated.   

In addition to data locality, fairness is also important in shared 
clusters.  We want to avoid the scenario that a small number of 
users overwhelm the whole system and thus render other users 
unable to run any useful job.  Traditional batch schedulers adopt a 
reservation-based resource allocation mechanism.  For each job, a 
requested number of nodes are reserved for a specific period of 
time.  Although the whole cluster is shared, the use of individual 
nodes is usually exclusive among users.  MapReduce adopts a 
more dynamic and aggressive approach to allow tasks owned by 
different users to run on the same node.  Capacity scheduler [5] 
and fair scheduler [6] are two typical Hadoop schedulers that 
support multi-tenancy and fair sharing.  System administrators 
manually specify rations for job groups that are enforced by the 
scheduler.  Fairness and data locality do not always work in 
symphony and sometimes they conflict.  Strict fairness may result 
in degradation of data locality, and purely data locality driven 
scheduling strategy may result in substantial unfairness of 
resource usage.  In our work, we investigate the tradeoffs between 
data locality and fairness, and propose an algorithm lsap-fair-
sched allowing users to adjust the tradeoffs easily. 
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The rest of this paper is organized as follows.  Related work is 
given in section 2.  Our proposed scheduling algorithms that yield 
optimal data locality and integrate fairness are discussed in 
section 3.  The experiments we conducted and their results are 
elaborated in section 4.  Finally we concluded in section 5. 

2. RELATED WORK 
The importance of data locality has drawn some attention in grid 
computing communities.  To incorporate data location into job 
scheduling and automatically create new replicas for hot data is 
shown to be beneficial in grid systems and outperforms traditional 
HPC approaches [7].  Close-to-Files strategy for processor and 
data co-allocation is shown to be effective with the assumption 
that a single data file needs to be transferred to all tasks before 
execution [8]. To support fast data access in data grids, 
Hierarchical Cluster Scheduling and Hierarchical Replication 
Strategy are proposed which reduce the amount of transferred 
data and generate multiple copies of existing data across multiple 
sites [9].  Different dynamic replication strategies, which increase 
the possibility of local data accessing, are proposed and evaluated 
to show that the best strategies can significantly reduce network 
consumption and access latency if the access patterns exhibit a 
small degree of geographical locality [10].   

For MapReduce, several enhancements have been proposed to 
improve data locality.  In an environment where most jobs are 
small, delay scheduling can improve data locality by delaying the 
scheduling of tasks that cannot achieve data locality by a short 
period of time [11].  Purlieus categorizes MapReduce jobs into 
three classes: map-input heavy, map-and-reduce-input heavy and 
reduce-input heavy, and proposes data and VM placement 
strategies accordingly to minimize the cost of data shuffling 
between map tasks and reduce tasks [12].  LATE shortens the job 
response time by prioritizing the tasks to speculate and choosing 
fast nodes to run speculative tasks on in heterogeneous 
environments [13].  Data locality is theoretically analyzed in [14] 
which builds a mathematical model and deduces the relationship 
between significant system factors and data locality.  In addition, 
the impact of data locality on job execution time is evaluated for 
single-cluster and cross-cluster scenarios.  Shared scans of large 
popular files among multiple jobs have been demonstrated to be 
able to improve the performance of Hadoop significantly [15].  It 
relies on the accurate prediction of future job arrival rates.   

Some schedulers have been developed for MapReduce that 
support fair resource sharing.  Facebook’s fairness scheduler aims 
to provide fast response time for small jobs and guaranteed 
service levels for production jobs by maintaining job “pools” each 
of which is assigned a guaranteed minimum share and dividing 
excess capacity among all jobs or pools [6].  Yahoo’s capacity 
scheduler supports multi-tenancy by assigning capacity to job 
queues [5].  However, the tradeoff between data locality and 
fairness is not considered.  The fairness of multiple resources is 
investigated in Dominant Resource Fairness and a user’s 
allocation is determined by his/her dominant share [16].  Quincy 
is a Dryad scheduler that tackles the conflict between data locality 
and fairness by converting the scheduling problem to a graph that 
encodes both network structure and waiting tasks and solving it 
using a min-cost flow solver [17].  In our work a different 
approach is taken.  In [18], load unbalancing policy is proposed to 
balance fairness and performance and minimize mean response 
time and mean slowdown when scheduling parallel jobs.   

3. OUR APPROACHES 
3.1 Scheduling in MapReduce 
MapReduce uses Google File System [19] as its storage system.  
Google File System splits files into blocks distributed among 
nodes, maintains replication and exposes location information to 
facilitate data locality aware scheduling in MapReduce.  In 
Hadoop implementation, each node has a configurable number of 
map and reduce slots to which map and reduce tasks are assigned 
respectively.  They can be tuned to maximize the resource 
utilization of modern servers equipped with multi-core processors 
without incurring substantial contention. Hadoop adopts a master-
slave architecture.  Slave nodes periodically communicate with 
the master node via heartbeat messages which include the 
availability of task slots.  When a slave node reports that it has 
idle slots, the master node scans the tasks in wait queue to find the 
one that can achieve the best data locality.  Firstly it searches for 
a task whose input data are located on that slave node. If the 
search fails, it subsequently searches for a task whose input data 
are located on the same rack as the slave node.  If the search fails 
again, it randomly assigns a task.  We use dl-sched to denote this 
strategy which apparently only favors data locality and does not 
consider workload and the fairness of resource usage.  We adopt 
the concept goodness of data locality which is defined as the 
percent of map tasks that achieve node-level data locality [14].     

Even if there exist multiple idle slots simultaneously, dl-sched 
considers them one by one.  For each idle slot, local optimum is 
achieved because the “best” task is picked and scheduled.  
However, global optimum requires all idle slots and tasks be 
considered at once.  Figure 1 gives an example.  Initially, there 
are two tasks T1 and T2, and two nodes A and B.  There is one idle 
slot on each node.  Data block Bi is the input data of task Tj, if Bi 
and Tj are marked with the same pattern.  Obviously the input 
data of T1 are stored on both A and B while the input data of T2 
are stored on B.  Figure 1(a) shows how dl-sched assigns tasks. 
Assume node A is considered first, the scheduler tries to find the 
best node for A.  Because node A stores the input data of T1, T1 is 
assigned to A. Then node B is considered and task T2 is assigned 
to it (because that is the only available slot).  As a result, only T1 
achieves data locality.  However, there exists an optimal 
scheduling that makes both tasks achieve data locality, which is 
shown in Figure 1(c).  The cause of non-optimality is that each 
task is scheduled without considering its impact on other tasks.   

 

Node A Node B

Task

Idle slot

Data block

Node A Node B

T1 T2

Node A Node B

T1 T2

(a) Initial state

(b) Scheduling with dl-sched (c) Optimal scheduling

T1 T2

Occupied 
slot

Figure 1. Demonstrate non-optimality of dl-sched 



3.2 Optimal Data Locality 
Given a set of map tasks to run and a set of idle slots, we want to 
find the task assignment that yields the best data locality.  If a 
scheduling algorithm maximizes data locality, we say it is 
optimal.  Obviously, dl-sched is not optimal.  We use function φ 
to denote the assignment of map tasks to idle slots.  Each task-to-
slot assignment has an associated assignment cost that ideally 
should reflect the cost of data movement.  The sets of tasks and 
idle slots are represented by T and IS respectively.   

Firstly, we reformulate the problem to facilitate the benefit 
measurement of data locality. We use a cost matrix C to represent 
the assignment costs of all possible task assignments.  C(i,j) is the 
assignment cost of scheduling task Ti to idle slot ISj.  If the input 
data of task Ti are stored on the node where idle slot ISj is located, 
task Ti achieves data locality and accesses data locally, and thus 
C(i,j) is set to 0.  Otherwise, task Ti needs to fetch its input data 
from a remote node, and is called a non data local task.  In [14], 
the assignment costs of non data local tasks are set to 1 uniformly.  
It assumes that the data movement of different tasks incurs an 
identical cost, which is not reasonable for typical hierarchical 
network topology where switches are increasingly oversubscribed 
when walking up the hierarchy.  The cost of data fetching 
depends upon where the source node and destination node are 
located.  In our work, the assignment costs of non-data local tasks 
are computed based on network information.  N(ISj) is the node 
where slot ISj resides.  The input data of a non data local task may 
be stored on multiple nodes redundantly. If a task is assigned to 
ISj for execution, the storage node with the best connectivity to 
N(ISj) is chosen as data source.  The calculation of C(i,j) is 
summarized in (1) where DS(Ti) is the size of the input data of 
task Ti, Ri is the replication factor of the input data of task Ti, 
ND(Ti,c) is the node where c-th replica of task Ti is stored, and 
BW(N1,N2) is the available bandwidth between nodes N1 and N2.  
Given an assignment function φ, the sum of assignment costs is 
calculated using (2).  With a constructed cost matrix C(i,j), we 
want to find the task assignment that yields the smallest sum of 
assignment costs.  Mathematically, we want to find a solution to 
(3). 
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It turns out this problem can be converted to the well-known 
Linear Sum Assignment Problem (LSAP) [20] for which a couple 
of algorithms with polynomial-time complexity (e.g. Hungarian 
algorithm) have been proposed.  A brief description of LSAP is 
included below.  From the description, we can see LSAP requires 
the cost matrix be square, which implies LSAP can be directly 
applied to our problem only when the numbers of tasks and idle 
slots are equal.  For the cases where they are not equal, we 
expand the cost matrix to a square one by adding extra rows or 
columns.  If |T| is less than |IS|, we create |IS|-|T| dummy tasks 
whose assignment costs are 0 no matter where they are assigned. 
Figure 2 shows an example in which ti and sj represent tasks and 
idle slots respectively.  The first |T| rows are from the original 
matrix and the last |IS|-|T| rows are for dummy tasks and all filled 

with 0.  After this transformation, the original |T| x |IS| matrix is 
expanded to a |IS| x |IS| square matrix and existing LSAP 
algorithms can be applied to find the optimal assignment of all |IS| 
tasks.  After filtering out the dummy tasks in the solution given by 
LSAP, we obtain a valid assignment φ (termed φ-lsap).  Given the 
fact that LSAP algorithms yield an optimal solution for the 
expanded square matrix, we need to prove that φ-lsap is a solution 
to (3).   

 

Proof: We assume φ-lsap is not optimal and the optimal 
assignment is φ-opt.  Apparently Csum(φ-opt) is less than Csum(φ-
lsap).  We expand the matrix to a square one and extend φ-lsap 
and φ-opt to include the newly added dummy tasks.  The key 
point is that the sum of the assignment costs of dummy tasks is 0 
regardless of where they are assigned.  So the total assignment 
costs of φ-opt and φ-lsap do not change.  As Csum(φ-opt) is less 
than Csum(φ-lsap), we find an assignment that yields lower cost 
sum than the solution given by LSAP algorithms.  This 
contradicts with the assumption that LSAP algorithms guarantee 
optimal solutions.   □ 

 s1 … sIS-1 sIS 

t1 1 2 0 0 

… … … … … 

tT 0 7 2 0 

tT+1 0 0 0 0 

… 0 0 0 0 

tIS 0 0 0 0 

 s1 ... sIS sIS+1 ... sT 

t1 2 … 1 0 0 0 

t2 0 … 0 0 0 0 

t3 5 … 2 0 0 0 

t4 3 … 5 0 0 0 

… 1 … 3 0 0 0 

tT 0 … 2 0 0 0 
 

(a) |T| < |IS| (b) |T| > |IS| 

Figure 2.  Expand cost matrix to make it square.  

For (a), last |IS|-|T| rows are for dummy tasks we make up and all filled with 1.   
For (b), last |T|-|IS| columns are for dummy slots we make up and filled with 1. 

From the proof above, we can see that any constant can be used to 
fill the extra rows without impacting the optimality.  The intuitive 
explanation is that the assignment of dummy tasks adds a constant 
value to the overall cost and does not change the (non-)optimality 
of each potential solution.  Only the assignment of original tasks 
determines the optimal solutions uniquely. For the case where |T| 
is larger than |IS|, the original matrix can be expanded to a |T| x |T| 
square matrix by adding |T|-|IS| extra columns that are filled with 
constant 0.  In other words, we create |T|-|IS| dummy slots.  After 
applying a LSAP algorithm, we get the assignment of all |T| tasks.  
However, some tasks are assigned to dummy slots that do not 
exist in reality.  After filtering out those invalid assignments, we 
obtain the final task assignment.  The optimality of this approach 
can be proved similarly.   

From (1), we can see the accuracy of pairwise bandwidth 
information impacts the calculation of assignment costs.   Ideally 
real-time network throughput information should be used.  
Network Weather Service [19] can be utilized to monitor and 
predict network usage without injecting an overwhelming number 
of probing packets.   

Based on above discussion, we propose lsap-sched which is 
similar to the one in [14], and show it below.  The critical 

Linear Sum Assignment Problem: Given n items and n workers, 
the assignment of an item to a worker incurs a known cost. Each 
item is assigned to one worker and each worker has one item 
assigned.  Find the assignment that minimizes the sum of cost.   



Table 1. Examples of How Tradeoffs are Made 

Fairness-favored  Data Locality-favored  Both-favored 

FC* DLC*  FC DLC  FC DLC 

[0, 100] [0, 20]  [0,100] [0,150]  [0,100] [0,100] 

* FC: fairness cost; DLC: data locality cost 

difference is network bandwidth information is used to compute 
assignment costs while a constant value is specified in [14].   

Algorithm skeleton of lsap-sched 

Input: instant system state 
Output: assignment of tasks to idle map slots 
Algorithm: 
  TS ← the set of unscheduled tasks 
ISS ← the set of idle map slots 
C ← empty |TS| x |ISS| matrix 
for i in 1:|TS| 
  for j in 1:|ISS| 
    set C[i][j] according to (1) 
expandToSquare(C, 0) # expand to a square matrix 
R = lsap(C)          # solve it using LSAP 
R = filterDummy(R)   # filter out dummy tasks 
return R  

Generally, the more idle slots and tasks there are, the more lsap-
sched outperforms dl-sched. The real cluster traces show the 
maximum utilization is seldom reached.  CPU utilization was 
only 10% for Yahoo’s M45 cluster [22] and below 50% mostly 
for a Google cluster [23].  So on average a significant portion of 
slots is unutilized when new tasks are submitted and lsap-sched is 
expected to perform substantially better than dl-sched.  For the 
extreme case where a cluster operates near its maximum capacity, 
the performance advantage of lsap-sched is attenuated if new 
tasks are scheduled immediately.  Instead, scheduling can be 
delayed by a short period to accumulate a sufficient number of 
idle slots before lsap-sched is applied.  As our experiments below 
illustrate, the ratio of idle slots does not need to be high for lsap-
sched to yield significant performance improvement. For typical 
MapReduce clusters where most jobs are small, scheduling delay 
of several seconds is sufficient to generate performance boost.    

3.3 Integration of Fairness 
We also investigate the integration of fairness into lsap-sched.  
Both capacity scheduler [5] and fair scheduler [6] take the same 
approach that jobs are organized into different groups by 
appropriate criteria (e.g. user-based, domain-based, pool-based).  
This approach is adopted by us as well. 

We do not enforce strict fairness which constrains each group 
cannot use more than its ration strictly, because it results in the 
waste of resources.  We loosen the constraints.  If there are excess 
idle slots to run all tasks, we just schedule them immediately to 
make full use of all resources even if some of the groups have 
used up their rations.  If idle slots are insufficient, we need to 
selectively run tasks aiming to comply with ration specifications.   

We enhance lsap-sched to support fairness by carefully tuning the 
cost matrix C.  The assignment cost of a task can be positively 
related to the resource usage of the group the task belongs to.  In 
other words, for groups that use up or overuse the allocated 
capacity, their tasks have high assignment costs so that the 
scheduler does not favor them.  Oppositely, the assignment costs 
of tasks from groups which underuse their allocated capacity 
should be low so that they get higher priority.   

Let G represent the set of groups that a system administrator 
configures for a cluster, and i-th group is Gi.  Each group contains 
some number of tasks and each task can only belong to exactly 
one group.  Given a task T, function group(T) returns the group 
which T belongs to.  Each group is assigned a weight/ration w 
which is the portion of map slots allocated to it.  The sum of the 
weights of all groups is 1.0, which is formulated in (4).  At time t, 
rti(t) is the number of running tasks belonging to group Gi.  

Formula (5) calculates the ratio of map slots used by group Gi 
among all occupied map slots, which measures the real resource 
usage ratio of each group.  For group Gi, the desired case is that si 
and wi are equal, which implies real resource usage exactly 
matches the configured share.  If si is less than wi, group Gi can 
have more tasks scheduled immediately.  Otherwise, if group Gi 
has used its entire ration, to schedule more tasks, it needs to wait 
until some of its tasks complete or there are sufficient idle slots to 
run all tasks.  A Group Fairness Cost GFC is associated with each 
group to measure its “priority” of scheduling and calculated via 
(6).  Groups with low GFC have high priority so that their tasks 
are considered before the tasks from groups with high GFC.   

Data locality sometimes conflicts with fairness.  For example, it is 
possible that the unscheduled tasks that can achieve data locality 
are mostly from groups that have already used up their rations.  
And thus we get into the dilemma that tradeoffs between fairness 
and data locality must be made. To integrate data locality and 
fairness, we divide assignment cost into two parts: Fairness Cost 
(FC) and Data Locality Cost (DLC) (shown in (7)).  FC implies 
the order of tasks to be scheduled according to fairness 
constraints.  Tasks with low FC should be scheduled before tasks 
with high FC.  The range of FC is denoted by [FCmin, FCmax].  
DLC reflects the overhead of data movement and has the same 
meaning as the cost definition described in section 3.2 above. The 
weights of FC and DLC can be implicitly adjusted by carefully 
choosing the value ranges. Table 1 gives examples of how 
fairness-favored scheduling, data locality-favored scheduling and 
both-favored scheduling can be achieved.  The range of FC is [0, 
100] for all the examples, while that of DLC varies. DLC with 
range [0, 20] makes the scheduler favor fairness because FC has a 
larger impact on the total assignment cost.  DLC with range [0, 
150] makes the scheduler favor data locality because the loss of 
data locality bumps up the total assignment cost significantly.  
DLC with range [0, 100] makes the scheduler favor both fairness 
and data locality, because the loss of data locality and fairness 
impacts overall assignment costs to the same extent.   

Above example shows how data locality and fairness can be 
balanced.  We need to quantitatively determine FC and DLC of 
tasks dynamically.  Formula (8) shows how to calculate DLC, in 
which α is a configuration parameter fed by system administrators 
and implicitly controls the relative weight of FC. If α is small, FC 
is dominant and the scheduler favors fairness.  If α is large, DLC 
stands out and the scheduler favors data locality.  If α is medium, 
FC and DLC become equally important.  The calculation of FC is 
trickier and more subtle. As we mentioned, a GFC is associated 
with each group.  One simple and intuitive strategy is for each 
group FC of all its unscheduled tasks is set to its GFC.  This 
implies all unscheduled tasks of a group have identical FC, and 
therefore the scheduler is inclined to schedule all or none of them.  
Consider the scenario where FC dominates.  Initially a group Gi 
underuses its ration just a little and has many unscheduled tasks.  
If group Gi has the lowest GFC, all its tasks naturally have the 
lowest FC and are scheduled to run so that group Gi uses 
significantly more resources. After scheduling, the resource usage 



of group Gi changes from slight underuse to heavy overuse.  The 
reason why resource usage oscillates between underuse and 
overuse is the tasks in each group, no matter how many there are, 
are assigned to the same FC.  Instead, we calculate for each group 
how many of its unscheduled tasks should be scheduled based on 
the number of idle slots and its current resource usage.  It is 
shown in (9) where AS is the total number of all slots.  AS·wi 
gives the number of map slots that should be used by group Gi.  
Group Gi already has rti tasks running so we have AS·wi-rti slots 
at disposal (termed sto – Slots To Occupy).  Because we only can 
use stoi more slots, accordingly the FC of at most stoi tasks is set 
to GFCi and that of other tasks is set to a larger value wi·β (β is 
fed by system administrators).  So the tasks of each group do not 
always have the same FC. The number of unscheduled tasks for 
group Gi is denoted by uti.  If uti is greater than stoi, we need to 
decide how to select stoi tasks out of uti tasks.  Now, data locality 
comes into play, and the tasks that can potentially achieve data 
locality are chosen.  Details are given in the proposed algorithm 
below. 
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Based on above discussion, scheduling algorithm lsap-fair-
sched is proposed and shown below.  The main difference 
than lsap-sched is how assignment costs are calculated.  
Lines 7-8 find the set of nodes with idle slots.  Lines 10-12 
find the set of tasks whose input data are stored on nodes 
with idle slots.  So these tasks have the potential to gain data 
locality while all other tasks will lose data locality definitely 
for next scheduling.  Lines 13-16 calculate sto of all groups.  
Lines 18-27 calculate task FC.  Lines 29-33 calculate DLC.  
Line 35 adds FC matrix and DLC matrix to form the final 
cost matrix, which is expanded to a square matrix shown by 
line 36.  After that, a LSAP algorithm is used to find the 
optimal assignment which is filtered and returned.   

Algorithm skeleton of lsap-fair-sched 

Input: 
  α: DLC scaling factor for non data local tasks 
  β: FC scaling factor for tasks that are beyond 
     its group allocation 
Output: assignment of tasks to idle map slots  
Functions: 
rt(g): return a set of running tasks that belong 
       to group g. 
node(s): return the node where slot s resides 
reside(T): returns a set of nodes that host the 
           input data of task T 

Algorithm: 
1  TS ← the set of unscheduled tasks 

2  ISS ← the set of idle map slots 
3  w ← rations/weights of all groups 
4  ut ← the number of unshed. tasks for all groups 
5  gfc ← GFC of all groups calculated via (6) 
6  INS ← ∅    # the set of nodes with idle slots 
7  for slot in ISS: 
8    INS ← INS ⋃ node(slot) 
9  # tasks that can potentially gain data locality 
   DLT[1:|G|] = ∅  
10 for T in TS: 
11    if reside(T) ∩ INS ≠ ∅: 
12      DLT[group(T)] = DLT[group(T)] ⋃  T 
13 for i in 1:|G| 
14   diff = w[i] · AS - rt[i] 
15   if diff > 0: sto[i] = min(diff, ut[i]) 
16   else: sto[i] = 0 
17 
18 fc[1:|TS|][1:|ISS|] = 0 #fill with deft value 
19 for i in 1:|G| 
20   tasks = G[i]    #a list of tasks in group i 
21   NDLT = tasks - DLT[i]   #non-local tasks  
22   fc[tasks] = β·(1-w[i])  #default value 
23   if |DLT[i]| ≥ sto[i]:   
24     tasks = DLT[i][1:sto[i]] #choose a subset 
25   else if ut[i] > sto[i]: 
26     tasks = DLT[i] ⋃ NDLT[1:(sto[i]-|DLT[i]|]] 
27   fc[tasks] = gfc[i] #assign GFC to some tasks 
28 
29 dlc[1:|TS|][1:|ISS|]=1 
30 for T in ⋃DLT[i]: 
31   for j in 1:|ISS| 
32     if co-locate(T, ISS[j]): dlc[T][j] = 0 
33     else: dlc[T][j]= α·1/BW(T,ISS[j]) 
34 
35 C = fc + dlc 
36 if C is not square: expandToSquare(C, 0) 
37 R = lsap(C) 
38 R = filterDummy(R) 
39 return R   

In above strategy, some tasks may get started although the 
possibility is remote.  FC and DLC can be reduced for the tasks 
that have been waiting in queue for long time, so that they tend to 
be scheduled at the subsequent scheduling points.   

4. EXPERIMENTS 
In the experiments below, the main considered system factors 
include the number of nodes, the number of slots per node, the 
ratio of idle slots, and replication factor. One factor is varied 
while others are fixed in each test.  We have conducted simulation 
experiments to evaluate the effectiveness of our proposed 
algorithms. We are preparing FutureGrid to support direct 
evaluation. Because we do not have access to real MapReduce 
production clusters, we need to mimic some factors artificially 
(such as slot utilization, workload, and bandwidth usage). We 
expect to have FutureGrid results to add to published paper if 
accepted. 

4.1 Overhead of LSAP Solver 
We measured the time taken by lsap-sched to compute optimal 
task assignment in order to understand the overhead of solving 
LSAP.  We varied the number of tasks from 100 to 3000 with step 
size 400, and the number of idle slots is equal to the number of 
tasks for each test.  They represent small-sized to moderate-sized 
clusters.  The corresponding cost matrices are constructed and fed 
into LSAP solver.  It takes 7ms, 130ms, 450ms, and 1s for the 
LSAP solver to find optimal solutions given the matrices of sizes 
100x100, 500x500, 1700x1700 and 2900x2900.  So the overhead 
is acceptable in small-sized to medium-sized clusters.  Note in our 
tests, values in the matrices were randomly generated, which 
eliminates the possibility to mine and explore useful patterns of 



       (a) Varied replication factor              (b) Varied the number of tasks 

Figure 4. Comparison of data locality (varied rep. factor and # of tasks)

cost distribution.  In reality, the cost of data movement exhibits 
locality for typical hierarchical network topologies, which can be 
used to speed up the execution potentially.  

4.2 Improvement of Data Locality 
In this test, we evaluate how lsap-sched influences the percent of 
data local tasks.  In the simulated system, the number of nodes 
varied from 100 to 500 with step size 50, and each node has 4 
slots.  Replication factor is 3.  The ratio of idle slots was fixed to 
0.5 and enough tasks were generated to utilize all idle slots.  The 
results are shown in Figure 3.  Figure 3(a) shows the goodness of 
data locality for dl-shed and lsap-sched.  Obviously, the goodness 
of data locality is pretty stable for both algorithms: dl-sched 
achieves 83% while lsap-sched achieves 97%.  Their differences 
are shown in Figure 3(b), which implies lsap-sched increases the 
goodness of data locality by 12% - 14%.  This indicates that lsap-
sched consistently outperforms dl-sched significantly when the 
system is scaled out.  In addition, we observe that the 
improvement oscillates in Figure 3(b).  Our conjecture of the 
cause is that the number of all possible data and slot distributions 
is gigantic and only a portion of them is covered in our tests.   

Then we varied replication factor from 1 to 19 and fixed the 
number of nodes to 100.  The goodness of data locality was 
measured and is shown in Figure 4(a).  The increase of replication 
factor yields substantial improvement of data locality for both 
lsap-sched and dl-sched; and lsap-sched can more efficiently 
explore the increasing data redundancy and thus achieve better 
data locality.  For lsap-sched, common replication factors 3 and 5 
yield surprisingly high data locality 72% and 88% respectively.   

Finally, we set the total number of idle slots to 100 and increased 
the number of tasks from 5 to 100 so that they use more and more 
idle slots.  Results are shown in Figure 4(b).  Data locality 
degrades slowly as more tasks are injected into the system, and 
the degradation of lsap-sched is much less severe than that of dl-
sched.  When the number of tasks is much smaller than that of 
idle slots, the scheduler has the great freedom of picking the best 
slots to assign tasks.  As their numbers become close, more tasks 
need to be scheduled in one “wave” and the cherry-picking 
freedom is gradually attenuated.  This explains why the increase 
of the number of tasks has negative impact on data locality. 

4.3 Reduction of Data Locality Cost 
In above tests, we measured the percentage of data local tasks.  In 
reality, performance depends upon not only the goodness of data 
locality, but also the incurred data movement penalty of non data 
local tasks.  In this test, we measure the overall data locality cost 
(DLC) to quantify the performance degradation brought by non 
data local tasks.  The assignment cost of any non data local task is 
set to 1 regardless of the proximity between the location of 
compute and input data, which assumes that the cluster is 
homogeneous.  The same test environment as above is used.  

Figure 5(a) shows the absolute DLC.  As the number of nodes is 
increased, the DLC of dl-sched increases much faster than that of 
lsap-sched.  So lsap-sched is more resilient to system scale-out 
than dl-sched.  We also computed the DLC reduction of lsap-
sched against dl-sched, and show results in Figure 5(b).  We 
observe that lsap-sched eliminates 70% - 90% of the DLC of dl-
sched.   

 
Previously, constant value 1 was used as the assignment cost of 
non data local tasks, which does not reflect the fact that pairwise 
network bandwidth is not uniform (e.g. intra-rack throughput is 
usually higher than cross-rack throughput).  In this test, we 
complicate the tests by setting non-constant costs.  We simulated 
a cluster where each rack has 20 nodes.  Again the assignment 
cost of data local tasks is 0.  The assignment costs of rack local 
tasks (i.e. computation and input data are co-located on the same 
rack) follow a Gaussian distribution with mean and standard 
deviation being 1.0 and 0.5 respectively.  The assignment costs of 
remote tasks follow another Gaussian distribution with mean and 
standard deviation being 4.0 and 2.0 respectively.  This setting 
matches the reality that cross-rack data fetching incurs higher cost 
than intra-rack data fetching. We varied the total number of nodes 
from 100 to 500 and measured DLC.   Firstly the ratio of idle slots 
was set to 50% and DLC is shown in Figure 6.  Lsap-sched still 
outperforms dl-sched significantly by up to 95%.  By comparing 
Figure 5 and Figure 6, we observe that rack topology does not 
result in performance degradation.  Dl-sched is rack aware in the 
sense that rack local tasks are preferred over remote tasks if there 
are no node local tasks.  So it avoids assigning tasks to the nodes 
where they need to fetch input data from other racks with best 
efforts.  Lsap-sched is naturally rack aware because the high 
cross-rack data movement cost prohibits non-optimal task 
assignments.  So both dl-sched and lsap-sched can effectively 
utilize the network topology information.  Then we decreased the 
ratio of idle slots from 50% to 20%, which implies there was a 
fewer number of idle slots.  Results are show in Figure 7.  
Compared with Figure 6, the DLC of dl-sched is decreased and 
the DLC of lsap-sched is increased, so that the performance 
superiority of lsap-sched over dl-sched becomes less significant 
which is between 60% and 70%.  When there are only a small 
number of idle slots, the room of improvement brought by lsap-

(a)Overall DLC of dl-sched and lsap-sched(b)Reduction of DLC(in percent) 

Figure 5. Comparison of data locality cost (with equal net. bw.) 

(a) Data locality of dl-sched and lsap-sched (b) Percent of improvement 

Figure 3. Comparison of data locality (varied # of nodes) 



sched is minor.  For the extreme case where there is only one idle 
slot, dl-sched and lsap-sched becomes equivalent approximately.  
The more available resources and tasks there are, the more lsap-
sched reduces DLC.  The utilization of typical production clusters 
rarely reaches up to 80% [22, 23].  So we believe lsap-sched can 
offer substantial benefit in moderately-loaded clusters.   

Then we fixed the number of nodes to 100 and increased 
replication factor from 1 to 13 with step size 2.  The other settings 
were identical to that of the above test except each node has 1 idle 
slot.  As replication factor is increased, we expect positive impact 
on DLC because the possibility of achieving better data locality 
increases theoretically. Test results are shown in Figure 8.  
Firstly, DLC drastically decreases as replication factor is 
increased initially from small values, and the decrement of DLC 
becomes less significant as replication factor gets larger and 
larger.  Secondly, when replication factor is 1, lsap-sched and dl-
sched perform comparably. Lsap-sched yields much faster DLC 
reduction than dl-sched as replication factor grows, and it almost 
thoroughly eliminates DLC when replication factor is larger than 
7.  Figure 8(b) shows a low replication factor (e.g. 3) is sufficient 
for lsap-sched to outperform dl-sched by over 50%.  Note the 
number of slots per node was set to 1 in this test, and increasing it 
can bring larger improvement.   

 

 

 

4.4 Evaluation of lsap-fair-shed 
We have shown that theoretically fairness and data locality can be 
integrated together by carefully setting Fairness Cost and Data 
Locality Cost. In this experiment, we conducted a series of 
simulations to demonstrate the effectiveness of our proposed 

algorithm lsap-fair-sched. For each group, formula (10) calculates 
the fairness distance between the actual resource allocation si and 
the desired allocation specified via weights wi.  Value 0 indicates 
that the group uses exactly its ration.  If its value is greater than 0, 
the resource usage of the group either exceeds or is less than its 
ration.  So its value indicates the compliance with administrator-
provided allocation policies, and smaller is better usually.  
Formula (11) calculates the mean of fairness distance of all 
groups and serves as a metric to measure the fairness of resource 
allocation.  At initial time instant 0, the fairness distance is 
denoted by d(0). Then submitted tasks are scheduled, and at time t 
the fairness distance becomes d(t).  If the scheduler is fairness-
aware, usually d(t) should be smaller than d(0) which implies 
fairness is improved.  Given an initial state, we use d(0)-d(t) to 
measure to what extent lsap-fair-sched improves fairness, and 
larger is better. 
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In our tests, there were 60 nodes; each node had 1 slot; half of all 
slots were idle; replication factor was 1; and there were 30 
running tasks and 90 tasks to schedule.  In addition, there were 5 
groups to which tasks belong.  Weights for groups were {20, 21, 
22, 23, 24} and normalized to {20/31, 21/31, 22/31, 23/31, 24/31} so 
that they add up to 1.0.  The groups to which running tasks belong 
were randomly assigned.  The DLC of non-local tasks was varied 
and results are shown in Figure 9. Initially, DLC is small 
compared with FC so that FC dominates the total assignment cost 
and lsap-fair-sched improves fairness most.  Gradually, as the 
DLC of non-local tasks increases, data locality gains larger 
weight so that data locality improves and fairness deteriorates.  
After the DLC of non-local tasks gets sufficiently large, data 
locality becomes the dominant factor so that scheduling favors 
data locality mainly. Another observation is that improvement/ 
deterioration of data locality/fairness is not smooth, and the 
curves are staircase shaped. During the continuous increase of 
DLC, not every small increment makes DLC become dominant. 
There are some critical steps that cause “phase” transition and 
make the assignment costs of some tasks become larger than that 
of other tasks that had larger cost before, so that data locality 
becomes dominant in scheduling.  Oppositely, the non-critical 
increase is not sufficient to influence scheduling decisions.   

 

5. CONCLUSIONS 
In this paper, we conducted an in-depth investigation of data 
locality and fairness in MapReduce.  We illustrated the default 
Hadoop scheduling strategy dl-sched takes a slot-by-slot approach 

(a)Overall DLC of dl-sched and lsap-sched(b)Reduction of DLC(in percent) 

Figure 8. Comparison of DLC w/ rep. factor varied (rack aware)

(a)Overall DLC of dl-sched and lsap-sched(b)Reduction of DLC(in percent) 

Figure 6. Comparison of DLC with 50% idle slots (rack aware)

(a)Overall DLC of dl-sched and lsap-sched(b)Reduction of DLC(in percent) 

Figure 7. Comparison of DLC with 20% idle slots (rack aware) 

 
Figure 9. Tradeoffs between fairness and data locality 



and does not guarantee optimal data locality.  Then we used a cost 
matrix to represent the associated data movement costs of all 
{task, slot} pairs, and reformulated the scheduling problem into a 
new problem that tries to find an assignment that minimizes the 
sum of cost.  We proposed lsap-sched that gives optimal data 
locality by utilizing the well-known problem LSAP.  The 
conducted simulation shows lsap-sched can improve the goodness 
of data locality and reduce the overall DLC substantially.  In 
addition, we investigated fairness and noticed the conflict 
between fairness and data locality.  The assignment cost is split 
into two parts: fairness cost and data locality cost.  We enhanced 
lsap-sched to balance fairness and data locality based on the user-
provided weights.  Corresponding experiments show that the 
relative importance of fairness and data locality can be tuned 
effectively and conveniently.  The desired setting is system 
specific and depends upon fairness requirements and the typical 
workload of submitted MapReduce jobs.  We are implementing 
our algorithms in Hadoop and expecting to get real results later 
that will be added to this paper if accepted.   
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