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Abstract. Support Vector Machines (SVM) is one of the unique ma-
chine learning algorithms which is a computationally intensive when it
comes to classify millions of data points in a data set. There are differ-
ent methods that have been proposed to solve the problem in a faster
way, we propose DDMSVM, Data-Driven Modular Support Vector Ma-
chines providing a much faster sequential implementation by means of
a model based training approach depending on randomly picking parti-
tioned data and selectively picking partitions by using a simplified Se-
quential Minimal Optimization (SMO) approach on top of a data driven
training model. Single Data Single Model (SDSM) and Multiple Data
Multiple Model (MDMM) approaches proposed by us provides a much
faster convergence with descent training accuracy with reference to the
very low training time. We prove our concept by experimentally show-
ing that randomized data partitioning and grouping can lead to a faster
convergence with higher accuracy by implementing a novel data driven
computational model on top of the proposed SDSM and MDMM mod-
els. We implement a novel data grouping approach called Correlation
Modular Approach (CMA) enhancing the accuracy and improving the
convergence rate significantly. In the experiments, our data driven com-
putational model outperforms LibSVM and DC-SVM which can be con-
sidered as benchmark sequential implementations in Support Vector Ma-
chines implementations. With Webspam data set we get a speed up of
7.835 times with respect to DC-SVM and that ratio is 52.63 times with
respect LibSVM performance along with an accuracy of 99.55%. Our ob-
jective is to show that a randomized data partitioning model with a less
complex computational model can provide a much faster convergence
with a significant accuracy allowing users to train Support Vector Ma-
chines, even for larger data sets which cannot be sequentially processed
due to memory related problems.

Keywords: svm, smo, correlation, model, randomized data pooling,
data-driven

1 Introduction

In the realm of machine learning, Support Vector Machines (SVM) [5] by Cortes
and Vapnik plays a major role in classifying data in a much faster manner. The



2 Abeykoon et al.

focus of SVM is to identify the boundary between different classes to separate
one class from the other class. The main concern with SVM is that it is very
computational intensive because of the nature of the objective function. It is an
exact quadratic problem which is a computational intensive problem. There are
couple of sequential implementations like DC-SVM [1], LibSVM [2] and SMO [4]
which can be considered as most prominent sequential implementations to solve
the SVM problem. SVM becomes a computation expensive method depending
on the number of data points in the data set. For a data set having few hundreds
of Mega Bytes can cause memory issues when the algorithm has to compute a
kernel matrix of size n x n where n is the number of data points in the data set.
To overcome this problem there has been different researches done considering
random samples via bootstrap techniques [12], described in SVM ensemble. But
the performance improvement or the nature of execution on very large data sets
has not been elaborated for bigger data sets. With bigger data sets the effect
of random data partitioning causes accuracy degradation to a certain level. The
approach of random data partitioning is a significant concept when it comes to
training larger data sets in a sequential manner with the capability of improving
up to a parallel executing framework. In LibSVM, DC-SVM and most of the
SVM based implementations, the core algorithm used is the SMO algorithm
which is computationally expensive.

In our proposed method we are trying to use a simplified version of the
sequential minimal optimization algorithm to improve the performance of the
algorithm by means of reducing the execution time. And also we have proposed a
data-driven modular way of training random samples based on data partitioning
before feeding the data set to the SVM algorithm. The modular architecture is
supported by a data partitioning engine which partitions the data depending on
two concepts. Random data partitioning and correlation based data partition-
ing. By experiments we have shown that our approaches provide a much faster
convergence and higher accuracy for larger data sets with close to half a million
data points by experimenting on standard LibSVM data sets with hundreds of
Mega Bytes to Giga Byte level.

The section 2 describes about the research work done on SVM regarding
different aspects of optimizing SVM, section 3 gives a brief idea about the math-
ematical approach taken in SVM, section 4 describes the proposed methodology
to improve the performance of SVM using the data-driven modular based ap-
proach.

2 Related Work

In referring to vivid aspects of the SVM training process, the core algorithm has
been mutated in ways such that it provides a much more improved performance.
Here the quadratic problem solving mechanism has been improved using different
mathematical tools. Support Vector Networks or SVN by Cortes and Vapnik [5]
can be considered as the first proposed method on the SVM problem which em-
ploys a chunking strategy to solve the objective function. In SVM, the objective
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function is not just an objective function that has to be maximized, but also it
must successfully agree with the constraints imposed on it. Chunking algorithm
proposes a way to find the boundary lines with respect to the data points by
considering the Lagrange multipliers and it tries to optimize a set of Lagrange
multipliers at a time. This mechanism is a computationally expensive approach.
Sequential Minimal Optimization or SMO [4] is a research conducted on im-
proving the performance of SVM algorithm implemented in chunking method
by Cortes and Vapnik. In this algorithm, Platt explains how the existing chunk-
ing algorithm can be surpassed by means of considering the sequential minimal
optimization concept which deals with two Lagrange multipliers at a time. This
algorithm was used in most of the sequential implementations of SVM. Lib-
SVM, a benchmark SVM implementation which can be considered as one of
these implementations employing a type of Sequential Minimal Optimization
[3]. For smaller data sets, these approaches provide a much faster convergence
with higher accuracy. In case of processing bigger data sets with hundred thou-
sands of data points to millions and billions of data points, the memory issues
and computational expensiveness acts as a barrier when traditional sequential
implementations are used.

In order to solve the problem with a sequential approach, DC-SVM [1] a
divide and conquer model of SVM was developed by considering a data driven
model along with pre clustering the data before training. DC-SVM employs the
LibSVM as the core algorithm to do the classification. DC-SVM can be consid-
ered as a faster sequential version of SVM which has benchmarked its perfor-
mance on top of a number of SVM implementations by considering larger data
sets up to a half a million data points. The bottleneck in most of the SVM im-
plementations comes with the memory boundaries and high number of Lagrange
multipliers that has to be calculated to optimize the objective function. In order
to get a faster convergence, Simplified Sequential Optimization algorithm has
been proposed by Yang et.al [7]. In the original SMO algorithm it takes a longer
time to calculate the Lagrange values in the optimizing the objective function,
and there are heuristics to do this, but in a simpler way without over optimiz-
ing or optimizing Lagrange values to get maximum of the objective function. If
this maximization can be limited to a certain level, the algorithm can optimize
Lagrange values in a much faster way. This concept is discussed in [8].

3 Background of Support Vector Machines

In understanding a better model to train Support vector machines, the math-
ematics behind SVM must be clarified. Support Vector Machines or SVM is
an exact quadratic problem which involves a larger amount of memory and a
very high computation time in solving the problem in a sequential manner. The
main concept in SVM is to classify a data set into the given classes by means
of understanding which data points from the data set involves in contributing
to decide that decision boundary which claims the boundaries for each class. In
SVM, the data points which are known as support vectors are the data points
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which involves in finding the decision boundaries and the rest of the data points
are called non support vectors.

The main objective in this algorithm is to find out these support vectors. The
Support Vector Machines algorithm understands which data points out of a data
sets are contributing to decide decision boundaries in a classification problem.

The decision boundary has to be detected in such a way that the gap between
the data points separated by boundaries takes a maximum value. Mathematical
representation of this problem comes with an objective function that has to
be optimized with respect to a constraint. The objective function is defined so
that the maximum objective value is achieved in such a manner that it won’t
violate a certain constrains coming with KKT or Kursh Kuhn Tucker conditions.
In identifying this fact, the mathematical trick used to formulate this problem
is by assigning a Lagrange multiplier to each data point and maximizing the
objective function meeting the constraint. The final output contains a set of
Lagrange values greater than zero and the rest equal to zero.

The zero Lagrange multipliers are eliminated and non-zero Lagrange mul-
tipliers are used to solve the problem. In order to understand these support
vectors, the standard implementation is to solve this exact quadratic problem
using Lagrange multipliers and iteratively solving each multiplier and after an
expected tolerance value is obtained in the training process, the algorithm exits
to provide the final set of Lagrange multipliers which decide the weight vector,
maximizing the objective function under the imposed constraints. In this pas-
sion, the training model can be obtained. There are many approaches taken by
different researches on different aspects of SVM. A set of SVM implementations
try to optimize the training procedure by dividing data sets in to small portions
and training the SVM in a iterative passion on these partitions of data. In these
approaches the core of the algorithm or the quadratic problem solving section
is not being optimized that much, but the data partitioning and training pro-
cedure has been improved. In SVM there are two challenging things, first one
is the memory issue, in calculating the Lagrange multipliers it involves a much
bigger kernel matrix when the data set grows and it is directly proportional to
the number of data points in the data set. The second challenge is the time con-
suming procedure of calculating the Lagrange multipliers. Sequential Minimal
Optimization or SMO algorithm is one of the most prominent approaches used
to optimize the objective function. In this paper, our main focus is towards a
simplified version of SMO in order to increase the performance of the algorithm
with reference to execution time.

3.1 Sequential Minimal Optimization Algorithm

In SMO algorithm the main focus is to make the support vector identification
step much faster. Because through out the SVM algorithm the main problem
that has to be dealt with is the maximization of the objective function which is
a quadratic problem, QP subjecting to constraints. In SMO approach, instead
of calculating all the Lagrange multipliers for the duality problem in equation
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1, it calculates two Lagrange multipliers at a time and optimizes those two at
each iteration. So per iteration only two Lagrange multipliers will be optimized.
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In referring to equation 1, it is clear that the equation is about a quadratic
problem which will take matrix format calculation a long time to simplify. Ac-
cording to Platt’s idea the mechanism he provides is to use two Lagrange mul-
tipliers at a time and optimize the whole set of Lagrange multipliers in iterative
passion. All the Lagrange multiplies or LM must be obeying KKT (Karush-
Kuhn-Tucker) conditions explained in equation 3. In SMO, rather than focusing
on the whole set of data points each having it’s own LM, it focuses on two of
LM at time and optimize them to the best and move to the next data point.
Here it considers a particular data point and then focuses on finding a paring
data point which can maximize the objective function 1 in with a maximum
impact subjecting to the constraints, 4 and 5. In SMO two heuristics are being
used to determine these LM.

Heuristic 1 Determining the first LM is the first objective of this heuristic.
In the SVM algorithm the outer loop iterates through the whole data set and
determines the data points which are violating KKT conditions explained in
equation 3. In case of finding an example or data point violating KKT condition
it is being selected as eligible for optimization. After one pass through the entire
data set, outer loop iterates through the LM that are neither 0 nor C which are
known as non-bound examples or data points. In this looping, the KKT violating
data points are being optimized. The outer-loop goes through all the non-bound
examples until they obey KKT conditions within a given tolerance value which
is generally selected as 0.001. This is basically the first heuristic explained in a
simple manner.
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Heuristic 2 In selecting the 2nd LM, it must maximize the step taken in
the optimization of objective function. So the second LM must be selected in
a manner that it satisfies this requirement. Here we define a term E; = u; —
d; and in this step, the LM must be selected in a way such that |Eq — Es|
gets the maximum value. In order to fulfill this requirement, in case of F; >
0, select E5 with the minimum error and in case of E; < 0, select Ey with
maximum error. This is the basic thing that has to be done. In order to check
this condition, there is a code level implementation done to avoid any unusual
circumstances regarding this scenario. This step is a computational expensive
step which searches for the highest optimizing pair. The unusual circumstance
can happen due to having another input being identical to the current input
vector. This causes the original algorithm to loop through non-bound examples
again until it finds a possible data point which provides maximum optimization.
This way the second heuristic is completed after finding a Lagrange multiplier
providing the maximum optimization for the objective function.

In SMO, the main problem is it needs more space when forming the Kernel
matrix which has the dimension of IV x IV and refers to the number of data points
in the training data set. For a larger problem, in pragmatical wise it causes heap
overflow problems in implementing this approach using a programming language.
And also the approach used for finding unusual circumstances in SMO causes
the algorithm to slow down in case of it finding a unusual data points which can
be rare in certain data sets and it is a data set dependent feature. These are the
two main problems regarding SMO algorithm.

3.2 Simplified Sequential Minimal Optimization Algorithm

In the proposed method, we use the Simplified Sequential Minimal Optimization
(SSMO) method proposed by [7] and [8] to define the core SVM algorithm. In
our DDMSVM framework, SSMO implementation is done using a sequential
version of the algorithm in Java. This implementation is used as the core of
the DDMSVM framework. In SMO algorithm, the o; and o; are selected such
that it maximized the objective function as much as possible. By giving away a
portion of the maximization, the algorithm can be run in a faster manner. When
it comes to a much larger data set this factor can be very important as it has
to optimize Lagrange multipliers from thousands to millions of data points. In
Simplified Sequential Minimal Optimization (SSMO) algorithm, the algorithm
iterates through the Lagrange multipliers and if they don’t follow the KKT
conditions within a given numerical tolerance, the paring Lagrange multiplier
is being selected in a randomized way by considering the rest of the Lagrange
values and then work on optimizing these two Lagrange multipliers. This choice
can be higher advantage in running the algorithm in a much faster manner. The
algorithm terminates when non of the Lagrange multipliers are changed. This is
the unique nature in this approach discussed in [8]. This approach gives away a
accuracy for a certain level. In this paper, we propose a data-driven approach
to make the training process much faster to get a higher accuracy by grouping
data in a correlation based modular approach.
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4 Data-Driven Modular Support Vector Machines

In this paper, we propose a data-driven model to train SVM using a simplified
sequential minimal optimization approach discussed in 3.2. The data-driven ap-
proach initially partitions the data into smaller data pools in a way that each
data pool contains an equal amount of data. In pooling we kept the data points
from 500-1000 data points for smaller data sets and we kept this in couple of
thousands for much larger data sets. After main partitioning is done data chunks
are randomly chosen for training. The unique nature in our approach is that the
randomization used in optimizing the objective function.

In this paper, we propose three training methodologies to run SVM in a
faster way. First method we propose is called Single Data Single Model (SDSM)
4.2, the second method we propose is Multiple Data Multiple Model (MDMM)
4.3 and the third method is known as Correlation Modular Approach (CMA)
4.4. Our methodology employs our own implementation of SSMO 3.2 and it is
linked with three different models of training and they are described in sections
4.2, 4.3 and 4.4 followed by a data partition engine defined in two different ways
described in sections 4.1 and 4.1.

4.1 DPE: Data Partition Engine

The system is fed with Libsvim formatted data sets in LibSVM archives [2]. In
the initial stage the data is converted to ISESVM format (Intelligent Systems
Engineering SVM data format) by separating feature points and respective labels
into separate files using a csv format. The data partition engine partitions the
data depending on the number of data chunks requested by the user as a param-
eter when running the framework. The partitioned data is saved locally into the
disk for the further access in the training, cross-validating and testing process.
The objective of the data partition engine is to provide faster convergence for the
SSMO algorithm. The partitioned data chunks are ranked with a label. In the
training procedure the data partitions are called upon the label name. The data
partition model takes two different forms depending on the partitioning models.
In this paper we propose two methods to partition data namely, Random Data
Partitioning 4.1 and Correlation Based Data Partitioning 4.1.

RDP: Random Data Partition In this step data is partitioned without con-
sidering the relationship between data points and they are being shuffled and
partitioned into m chunks depending on the user input. This data partitioning
mechanism is employed by training approaches described in section 4.2 and 4.3.

CDP: Correlation Based Data Partition In CDP, the correlation among
data points are calculated by randomly selecting a data point and with respect
to that data point the correlation factor to each data point is calculated. The
correlation factor can be positive or negative. Depending on these categories,
data is first clustered into two different groups. Then the RDP operation is
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applied on each cluster and a label is provided for each group. In selecting
correlation groups for training and testing data sets the initially selected random
sample will be governing the correlation value for each data point. In the initial
round, the correlation values for all the data samples in training and testing
data sets is being calculated and the mean value of the correlation values is
being selected to group training and testing data sets into two sub groups.

The reasoning behind this partitioning was deduced by experiments. In bi-
nary classification or multi-class classification, each cluster or class will have a
unique correlation factor among the data points belonging to each class or clus-
ter. The idea was to find out the margin for this factor in a binary classification
scenario. This can be extended for a multi-class problem by clustering the cor-
relation values (clustering scalars) and finding out the centroids and obtaining
the margin levels by the centroid values of the each cluster. This way the data
can be grouped in a much faster way. In the training phase each group will be
trained with a unique model. The training model will be explained in detail in
section 4.4.

4.2 SDSM: Single Data Single Model

SDSM methodology employs a single partition of a data set out of m number
of data partitions created in the first stage of the data processing as described
in section 4.1. Then a random partition is selected from m models. That is why
it is called as single data. This selected partition is submitted as the training
data set for the SSMO algorithm and the training model is generated and it
is written to the disk using ISE Model Format. We have defined a XML based
format to record the model weight values, bias values and important statistics
in the training process. This is the first phase of the SDMM approach. In the
second stage, we pick k number of random data partitions from the rest of the
partitions excluding the partition used for training in the first stage. Now these
data sets are being tested with the trained model in the first stage by using these
a single data partition and the accuracy is recorded. In this stage we calculate
the average accuracy for k training models and we keep a base accuracy limit and
checks whether it exceeds the base accuracy expected in the experiment, if this
exceeds the threshold accuracy, we terminate the modular training approach. If
the calculated average accuracy is lesser than the expected threshold accuracy
(currently we keep the lower boundary in a range of 80% - 90% in the default
configurations), another data partition is randomly chosen (excludes already
trained data partitions) and training is done again. This process will go on, until
a particular training model exceeds the threshold accuracy. Up to this stage
we calculate the accuracy by considering k number of cross-validation data sets
depending on a random computation strategy. This strategy gives away a portion
of accuracy. For the tested data sets, our training model exits after the first level
of training for the tested data sets. In this way we finalized the trained model
weights. In the next stage we use the finalized model to do the predictions. Then
we selects user defined number of data partitions from the pool of partitioned
testing data set and the predictions are being recorded. The system records the
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accuracy of each data partition and calculate the average accuracy for the overall
data set. The algorithm for SDSM training is described in Algorithm 1.

Algorithm 1 SDSM Training Algorithm

INPUT:

Xtr: Training Feature Data Partition Id,

Ytr: Training Label Data Partition Id,

Xts: Testing Feature Data Partition Id,

Yts: Testing Label Data Partition Id

OUTPUT: Save Training Models, Save Training Statistics

1: procedure MAIN(Xtr,Ytr,Xts.Yts)

2 while (avg_accuracy < defined_tolerance) do

3 procedure SDSM(Xtr;, Ytr;) > random data partition for each iteration
4 a+0 > Initializes Lagrange values
5: w <+ 0.1 > Initializes weight vector
6: b« 0 > Initializes bias
7: procedure SMO(a, b, w, Xtr;, Yir;)

8 Save Model < model

9: return model

10: procedure SDSM_TEST_ACCURACY(Xts;, Yis;, k, model)

11: return avg_accuracy

In prediction, the saved model from the training process has to be provided
when we take the prediction accuracy for the test data sets.

4.3 MDMM: Multiple Data Multiple Model

MDMM approach is functionally similar to the SDSM approach, but we have
added multiple data partitions and we train multiple models in order to obtain
a concrete definition on the training process. In this algorithm, we choose a m
number of random partitions from the training data partition pool and after the
training process we get m training models. Then we choose k number of random
data partitions from the cross-validation partition pool and each data sample is
being trained with each model and average accuracy is being obtained for each
model using k data samples. Here we have m number of accuracy values for m
models. If we get an average accuracy for m models above the threshold accuracy
value that we have set for the training process, the algorithm terminates, if not
it again searches for m models randomly (excluding the current samples) and
the same process is being run until it reaches up to a the threshold accuracy
level. After this stage, we normalize the accuracy distribution and get a weight
vector for m number of training models. This weight vector becomes a biased
coeflicient for the prediction from each model. When the weight is a higher value
for a particular model, the effect from that model on the final prediction is higher
and if the weight is low, the prediction value is affected less by that model. For
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the prediction stage, we selects samples from the testing data pool. MDMM
algorithm is described in Algorithm ?? and the weight calculation algorithm is
described in Algorithm 3.

Algorithm 2 MDMM Training Algorithm

INPUT:

Xtr []: Training Feature Data Partition Ids,

Ytr []: Training Label Data Partition Ids,

Xts [|: Testing Feature Data Partition Ids,

Yts []: Testing Label Data Partition Ids

OUTPUT: Save Training Models, Save Training Statistics

1: procedure MAIN(Xtr [],Ytr [,Xts [],Yts [])

2: while (avg-accuracy < defined_tolerance) do

3: procedure MDMM (Xtr;[], Yir;[]) > random data partition for each
iteration

4: a+ 0 > Initializes Lagrange values

5: w <+ 0.1 > Initializes weight vector

6: b« 0 > Initializes bias

T: procedure SMO_BULK(a, b, w, Xtr;[], Yir]])

8: Save Models <+ model[], weight_vectors

9: return models[], weight_vectors

10: procedure MDMM _TEST_ACCURACY (Xts;[], Yts;[], k, models]])

11: return avg-accuracy > Return average accuracy for k partitions

across m models.

After training process m models are being written to the disk and in the
prediction stage we specify the location for saved models in the disk and the
prediction is carried out by using data partitions from prediction pool of data
sets.

4.4 CMA: Correlation Modular Approach

CMA approach is employed by the process explained in section 4.1. In this
approach we implements an additional layer on top of SDSM or MDMM by
means of grouping data into two groups. We separate training, validation and
testing data sets in to three different pools and each pool is then divided into
two sub groups which are with positive correlating data points and negative
correlating data points. In this approach we train SDSM or MDMM separately
depending on the data group and two types of models are created. By putting
data with close correlation and same sign in the same group, we obtain positive
correlated model and negative correlated model. For the prediction stage we use
these models on pre-processed correlation wise grouped data and continue the
approaches described in 4.2 or 4.3 to get the final prediction results for the test
data. Algorithm 4, 5 provides the detail algorithm for CMA approach.
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Algorithm 3 Weight Calculation Algorithm
INPUT: Accuracy Per Model
OUTPUT: Weight Vector

1: procedure WEIGHT CALCULATION (accuracy-per_model]])
2 model size < len(accuracy_per_model)

3 model_count < 0

4: total _accuracy < 0

5: while (model_count < model_size) do

6: total_accuracy+ = accuracy-per_model[model_count]
7 model_count ++

8: weights[] < 0

9: weight_count < 0

10: while (weight_count < model_size) do

11: weights|weight_count] = accuracy_per_model|weight_count]/total _accuracy
12: weight_count++

13: return weights|]

Algorithm 4 CMA-SDSM Training Algorithm
INPUT:

CMA _Xtr: Training Feature Data Partition Id,

CMA_Ytr: Training Label Data Partition Id,

CMA Xts: Testing Feature Data Partition Id,

CMA _Yts: Testing Label Data Partition Id

OUTPUT: Save Training Models, Save Training Statistics

1: procedure MAIN(CMA _Xtr,CMA_Ytr,CMA _Xts,CMA_Yts)

2: while (avg_accuracy < defined_tolerance) do
3: procedure CMA_SDSM(CMA_Xtr;, CMA_Ytr;) > random data
partition for each iteration

4 a+0 > Initializes Lagrange values
9: w <+ 0.1 > Initializes weight vector
6: b0 > Initializes bias
T procedure CMA_SMO(«, b, w, CMA_Xtr;, CMA_Ytr;)

8 Save Model <« positive_model, negative_model

9: models < positive_model, negative_model
10: return models
11: procedure SDSM_TEST_ACCURACY(CM A_Xts;,CM A_Yts;,k,models)
12: avg-accuracy < avg(avg-positive_accuracy, avg-negative_accuracy)

13: return avg_accuracy
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Algorithm 5 CMA-MDMM Training Algorithm
INPUT:

CMA Xtr []: Training Feature Data Partition Ids,
CMA_Ytr []: Training Label Data Partition Ids,

CMA Xts []: Testing Feature Data Partition Ids,

CMA_Yts []: Testing Label Data Partition Ids

OUTPUT: Save Training Models, Save Training Statistics

1: procedure MAIN(CMA Xtr [],CMA_Ytr [|,CMA _Xts [|,CMA_Yts [])

2: while (avg_accuracy < defined_tolerance) do

3: procedure MDMM(CMA_Xtr;[|, CMAYtr;[]) > random data partition
for each iteration

4 a+0 > Initializes Lagrange values

: w <+ 0.1 > Initializes weight vector

6: b0 > Initializes bias

7 procedure CMA_SMO_BULK(a, b, w, CMA_Xtr;[], CMA_Ytr;[])

8 Save Model < positive_models[], negative_models[], weight_vectors

9: models < positive_models[], negative_model||s

10: return models[], weight_vectors

11: procedure MDMM _TEST_ACCURACY (CM A_Xts;[],C MA_Yts;[],k,models[])

12: avg_accuracy — avg(avg_positive_accuracy, avg_negative_accuracy)

13: return avg_accuracy

After SDSM or MDMM training with CMA approach the models are saved
to the local disk along with the weight vectors (only for MDMM approach), in
the prediction stage these models are loaded and tested with grouped test data
and predictions are obtained.

5 Results

In testing our proposed model, we have used an Intel(R) Core(TM) i7-6700HQ
CPU with 2.60 GHz node to test the single node experiments. Currently we
have a single node single threaded implementation of this algorithm. We have
implemented SSMO, SDSM, MDMM and CMA approaches in Java 1.8. In order
to benchmark the results, we use standard LibSVM C++ implementation and
DCSVM Matlab (only in Matlab) implementation. For the experiments we have
selected 4 data sets. Ijennl [10], Webspam [11], a9a [9] and Heart [2] data sets.
When the data sets from the original source doesn’t have a testing data set, we
partitioned the main data set into 3:2 ratio for training and testing. The MSVM
framework was tested with four different data sets under binary classification via
linear kernel. In the current phase of the project, our implementation contains
a tested version on the linear kernel. The Figure 1 gives the accuracy recorded
by each framework with training configuration of C parameter as 1, tolerance of
training as 0.001 and gamma value as 2. The execution time for each data set is
recorded against each framework and it is depicted in Figure 2, 3, 4, 5.
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The SDSM training model training model outperforms LibSVM and DC-
SVM under the same initial configurations with respect to accuracy in the Heart
data set. SDSM provides a faster convergence with a descent accuracy in all
the data sets. This model provides an accuracy above 80% at all times and it
provides a ceiling value of 90% accuracy for the current experiments that we
have completed. The SDSM model shows that even though the initial training
sample is a portion of the original data set, it can still provide a descent accuracy
with much faster convergence rate. By sacrificing a small portion like 8%-10%,
we can get an average speed up of 2.5 for a9a data set with respect to libsvm and
above 600 speed up for webspam data set with respect to libsvm. And also with
respect to DC-SVM full for webspam data set a speed up of 10 and a speed up
of 10 for the data set a9a. SDSM model proposed by us works well with larger
data sets and the results are significant when the data set is larger.

Accuracy Comparison
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B DCsvM

CMA-MSVM

o

B SDSM-MSYM
B VDMMMSVIM(E)

o B MOMMMSYMIT0)

Accracy
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Fig. 1. Overall Accuracy Comparison

MDMM approach was designed to increase the accuracy of the training. But
with the current experiments even with 10 models we can increase the accuracy
by 1% and that is not much, and it costs a lot of computing time in the serial
computation model. The objective of MDMM approach comes strongly with a
parallel approach in which we can increase the number of models and increase
the accuracy without giving away much convergence time.

CMA approach consumes both SDSM and MDMM approaches, but CMA
can be highly effective with both approaches. In our current implementation
with MDMM being sequential, the computation overhead is still there, but the
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accuracy is very high for both cases. In SDSM approach the CMA speed up
is lesser than SDSM standalone approach, but it has the ability to provide a
very high accuracy. The speed up obtained using CMA approach with SDSM
is 5 to 40 times for overall experiments with respect LibSVM and the speed up
values are 16 to 30 with DC-SVM Full. DC-SVM early bears considerably same
accuracy but much faster convergence and CMA scores the speed ups between
0.67 to 5.
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Execution Time Comparison - [IJCNNT
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Fig. 2. Execution Time Comparison of IJCNN1 Dataset
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Fig. 3. Execution Time Comparison of Webspam Dataset
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Execution Time Comparison - a9a

B =0
LIBSWIM

DCSVM Full

DCSVM Early

CMA-MDMM-
MSSWM (5)
MDMWM-MSY M
(s)

SDSM-MSVIM

Implementation

CMA-SDSM-
MSSWM

] 100 200 300 400

Execution Time (s)
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Fig. 5. Execution Time Comparison of Heart Dataset
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SDSM: Accuracy Distribution For Random Data Samples
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Fig. 6. IJCNN1: SDSM Accuracy Distribution Per Data Partition
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Fig. 7. Webspam: SDSM Accuracy Distribution Per Data Partition
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SDSM: Accuracy Distribution For Random Data Samples
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Fig. 8. a9a: SDSM Accuracy Distribution Per Data Partition
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Fig. 9. Ijcnnl: 5 Model-MDMM Accuracy Distribution Per Data Partition
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MDMM: Accuracy Distribution for Random Partitions
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Fig. 10. Webspam: 5 Model-MDMM Accuracy Distribution Per Data Partition
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Fig.11. a9a: 5 Model-MDMM Accuracy Distribution Per Data Partition
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Accuracy Distribution For Random Partitions
Dataset: [JCNN1, Number of Models =10
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Fig.12. Ijennl: 10 Model-MDMM Accuracy Distribution Per Data Partition
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Fig. 13. Webspam: 10 Model-MDMM Accuracy Distribution Per Data Partition
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Accuracy Distribution For Random Partitions
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Fig. 14. a9a: 10 Model-MDMM Accuracy Distribution Per Data Partition
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6 Conclusion

In this paper, we propose a novel method to train a support vector machines
algorithm using a simplified version of sequential minimal optimization algorithm
as the core of the training model and we provide a data partitioning method to
overcome the training overhead in a larger data sets. The proposed SDSM and
MDMM methods proves that a partitioned data set can provide a fair accuracy
and much faster convergence after training the svm for a smaller portion of data
from the original data set. By comparing the MSVM framework with the state of
the art SVM implementations like DC-SVM and LibSVM we have proved that
SDSM implementation can be used as a faster training approach to obtain fair
accuracy with much faster convergence. The CMA approach provides a faster
convergence and a very high accuracy compared to DC-SVM and Libsvm. We
kept Libsvm as the benchmark for accuracy and DC-SVM as the benchmark for
covergence rate evaluation. DC-SVM can be considered as a faster sequential
implementation for SVM to obtain higher accuracy and faster convergence rate.
The MDMM approach discussed in this paper provides higher accuracy when
the number of models involved in training increases, but in order to increase the
performance the programme must be improved with a parallel implementation.
With our experiments done larger and moderate data sets, we have proved that
our model works very well with larger data sets with a significant improvement
in convergence rate of the algorithm with a higher accuracy. Among the three
methods proposed in this paper the CMA convergence rate and accuracy is
the highest. In our current experiments, we have proved the model for binary
classification and even with a linear kernel we can obtain a higher accuracy with
MSVM while LibSVM and DC-SVM uses different kernels and different settings
to get higher accuracy. With MSVM for binary classification less tweaking needs
to be done in tuning. MSVM shows a significant improvement in training SVM
with faster convergence and higher accuracy.

7 Future Work

In improving the MDMM approach we are planning to implement a MPI ver-
sion to increase the performance. And also we are working on improving CMA
approach for multi-class classification problems as well. In addition to that we
plan to release MSVM framework for research purposes.
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