
BIG DATA SYSTEMS FOR ARTIFICIAL INTELLIGENCE

A PREPRINT

Vibhatha Abeykoon∗

Luddy School of Informatics,
Computing and Engineering

Indiana University Bloomington
United States

vlabeyko@iu.edu

December 15, 2019

ABSTRACT

Artificial intelligence (AI) is an inevitable reality, evolved on modern-day scientific breakthroughs. AI
itself is a collection of knowledge and experience. In the current research, the closest approximation
towards AI is made by developing applications with deep learning and reinforcement learning. In
designing AI-enabled solutions another inevitable component is the system design. Intelligence
wrapped around knowledge requires a learning curve on larger datasets. Enabling intelligent solutions
with a larger amount of data raises some concerns related to streamlining dataflow for specific AI
algorithms. Dealing with such larger datasets, the state of the art solution is to use big data systems.
Separating a big data processing framework with AI-enabled systems is hard thing to do. Due to
this inability to decouple AI workflow with big data systems, the challenge is to identify how big
data systems can co-exist with AI-enabled systems. This is an emerging topic in recent research.
Another important aspect is to see how to keep existing big data systems keeping up with the growing
AI-enabled systems. Big data systems play a major role in data organization aspect. Besides, in
unifying data organization, learning and evaluation process, an AI-enabled system must be linked
with a streamlined workflow. Another important thing is supporting AI-enabled systems with the
state of the art big data systems. With emerging data collection, improving training time is a vital task.
Distributed training, data organization and AI algorithm development with rich application interfaces
enables a streamlined workflow for scientists. Once an AI model is optimized to do the expected
task, the next important task is to enable low-latency inference. Combining big-data systems with
an inference workflow is vital. In terms of improving systems considering the hardware stack, both
training and inference of AI algorithms must take place in the state of the art efficient hardware. In
facilitating this with big data systems, hardware capabilities must be taken into consideration when
designing big data systems or when designing interfaces for existing big data systems. In this study,
we do a deep analysis of understanding the current status of AI-enabled systems and the future of
the AI-enabled ecosystem. The core of our study is based on how academic research influenced
early day AI. Specially, we take a close look at how artificial intelligence is efficiently designed by
private co-operations like Google, Facebook, Uber, Tesla, Microsoft and Amazon. From the observed
conclusions, we suggest a workflow for AI systems on top of big data systems.

Keywords Stream Processing · Batch Processing · Deep Learning · Reinforcement Learning · Edge Inference

1 Introduction

Instead of using a classical constrained-based system, modern-day science has taken a step towards AI-enabled
algorithms to solve problems. Deep learning and reinforcement learning are the two pillars dominating the current
research. Deep learning systems are highly coupled with larger datasets with higher dimensions. Reinforcement

∗https://www.vibhatha.org



A PREPRINT - DECEMBER 15, 2019

learning systems are also coupled with larger datasets, but they are mostly involved with experience-based agent training.
Running more simulations and trying to create an older version or more experienced version of the agent from its
younger or less experienced version is the end goal. Memory optimizations and computation optimizations are high
valued assets to enable an efficient AI system. The most challenging problem is to design systems to enable efficiency
depending on the nature of AI algorithms. Depending on the nature of the computation intensity of larger datasets,
modern-day hardware has been evolved from CPU to GPU[1] at a particular stage of the evolution of AI systems. Now,
this trend has been again evolved from GPU to TPU [2]. Depending on each hardware device-specific AI platforms
are being designed by most of the commercial entities like Google[3] and NVidia [4]. Depending on the hardware
capabilities, the design specific platforms are also evolving. Tensorflow [5] from Google, Pytorch [6] from Facebook-AI
[7], MXNet [8] from Amazon (AWS AI) [9] and CuDNN [10] from NVidia AI [4] are a couple of highly used deep
learning and deep reinforcement enabled systems. These AI systems have been designed for training and inference
purposes. All these frameworks can be currently classified as general-purpose AI algorithm development platforms. The
inspiration behind most of the prominent AI platforms designed by industrial entities is with the inevitable necessity of
understanding the data for the increasing demand of a larger number of services in satisfying various aspects of human
life. Even though most of these AI platforms are designed by the industrial entities, the strong driving force in enabling
machine intelligence comes from academia. Geoffrey Hinton is one of the prominent authors in modern-day artificial
intelligence. Deep Learning review on Nature [11], fast learning algorithm for deep belief nets [12] and dimensional
reduction with deep neural networks [13] are major contributions among the other topics [14],[15], [16].

Uber [17] focuses their attention mostly on fine-tuning the customer experience on taxi and delivery mechanisms.
Uber-Eats and Uber for travelling are the main products involved with AI. Autonomous driving is one of the challenging
problems that is being solved by Uber. Also, they focus on food delivery as well. In these scenarios providing the
estimated time of arrival by considering current traffic flow, weather and other factors are taken into consideration.
Tesla on the other hand provides autonomous driving for vehicles by inventing new AI technologies[18]. Safety for the
driver and external entities are most prominent aspects considered in improving the user experience. Object detection,
obstacle avoiding, keeping track on the lanes and the curbs of the road are vital to achieve these goals. A variety of
sensors provide input to a stack of deep learning systems to make decisions. Microsoft is another entity working on
improving AI experience. AI in Microsoft focuses on medical applications, agriculture, production automation, etc.
Most of the AI-enabled workflow systems are made available with the Azure web services. Most of these services
are focused on vision, language and speech[19]. Amazon is another entity focusing on customer experience via AI.
Amazon Alexa is a prominent natural conversing AI-bot. It uses a variety of techniques from voice recognition, speech
recognition, complex sentence interpretation, etc. Most of these technologies are coupled with edge computing and
cloud computing aspects. Providing minimum latency for AI systems are vital when it comes to deploying an advisory
system like Alexa.

Deep learning application on solving challenging scientific problems has become a norm. Earthquake prediction,
high-energy particle physics, weather prediction, climate modelling, precision medicine[20], deployment of clean
fusion energy are some of the most challenging problems. The other aspect is mining data from human interactions to
improve existing business entities and generate new business entities. This is one of the most prominent goals from
social media related research done in Facebook, Google, Amazon, Alibaba[21], etc. Christoph Angerer looks at the
deep learning systems under two main categories [22]. First method is designing a system not with a rules but with
data. The improvement over a larger dataset can evolve to a higher accurate and flexible system. The second aspect is
where a learning system is vital when we need to create scientific applications where we use AI as a surrogate model for
existing solutions. Taking a climate simulation or any physical model consideration, there are a hundreds of thousands
of parameters governing the behaviour. These models have high precision model definitions through mathematical
models. Instead of an exact solution, an approximate solution can be developed with parameter-tuning using deep
learning systems. These approximate models can be designed by modelling a physical model by tuning a larger number
of hyper-parameters with a larger amount of training data. The objective is to generate an approximate model with
training data and compare its accuracy with the existing understanding with the real-world data. Once the surrogate
functions are well trained, a fine-grain physical model can be replaced with a parameterized model designed with the
power of artificial intelligence. In the physics cases the physic models can generate training data. The idea is to speed
up the experiments depending on these physical models. AI can speed up such simulations and provide efficient systems
to design far complex models.

Understanding AI and being a part of the AI evolution comes with the understanding of requirements of evolving
world. The ultimate goal of AI focuses mainly on food, water, health, business and education. Dynamic voltage and
frequency scaling in NoCs has been recently evaluated with supervised and reinforcement learning [23]. Monitor health
of canine [24] (Billion dollar pet industry has to catch up with the wearable in the market (FitBark). Digital advisors for
helping making decisions. For instance teaching how to use a particular device. This can be done with a rule based step
by step system. But with an intelligent system, tracing the progress of a learner and understanding the specific areas

2



A PREPRINT - DECEMBER 15, 2019

he or she needs help, can be done with intelligent systems [25]. AI-enabled safety-critical systems is a vital area of
research. When it comes to the generative adversarial networks it can generate fake data which is close to the real data.
The generation of fake content to compromise a system dependent on it’s intrinsic values. The adversarial examples
involved in training another network can be affected by a wrongly trained system by gaining access to input data and
tampering with it, model parameters modification and poisoning the training data with adversarial information[26].

In designing intelligent systems, the most important thing is designing an entire system including data organization, AI
modelling, AI deployment and AI model evaluation with unobserved external factors. With modern electronic devices,
one of the most prominent component in day to day life is a digital advisor. Amazon Alexa[27], Google Assistant[28],
Siri[29] and Cortana[30] are some of the prominent digital advisors. The growth of digital advisors increased with the
growth of technology trends. From pre-programmed chatbots to natural conversational chatbots were a reality with the
growth of technology towards intelligent applications. Figure 1 shows the technology growth against time. In the dawn
of the 21st century, primitive AI-enabled applications started appearing. But with the evolving machine learning, deep
learning and reinforcement learning algorithms, digital advisors tends to get the maximum out of AI.

Figure 1: Digital Advisor Technology Growth Rate with Respect to Time. Source [25]

All these intelligent applications are driven by the power of knowledge and experience. For gaining more knowledge,
more training has to be done with more data. This implicitly involves the necessity of big data systems. The main
focus of this study is to showcase how existing big-data systems support the AI-enabled applications and how big data
systems must evolve in meeting emerging requirements of AI-enabled applications. In addition, a study on linking AI
platforms with big data systems is also discussed.

2 Workflow for AI Systems

The core of an AI system involves with organized data, algorithm modelling, external system design and AI model
deployment[31]. These steps are all sequential components of a complete AI pipeline.

2.1 Data Organization

Data organization is the most vital component in AI systems. Without organized data, no conclusions can be made. Data
organization has a couple of important components. The raw-data can take the forms of unlabelled data, schema-less
data, sparse data, etc. Processing row-data by labelling, adding schemas and representing sparse data with a memory
optimized format can lead to the first step towards data organization.

’Road to AI’ article in scientific computing world magazine [32], describes a four stage process where data is being
vetted for better use.

• Identification
• Preparation
• Ingestion

3



A PREPRINT - DECEMBER 15, 2019

• Storage

In terms of data organization steps, identification is vital for extracting better features from data sources. The source of
data is not always structured, because the data sources are not providing uniform schemes. Some times data arrives
from IoT devices, databases or by other data streams like Kafka[33] message broker. In such scenarios, making data
into a meaningful format is vital. In this data preparation segment, primitive data analysis and pruning are done with
algorithms like PCA. Data ingestion is all about data gathering and application of necessary data points to the AI or other
analytics platforms. In this stage, the data structure, source and size of data must be taken into consideration. Besides,
the involvement of streams of data for non-re-playable data sources is vital and adding edge level data pre-processing is
very important in formulating schemas. In the final step, the nature of the storage of the processed data is vital when it
has to be fed to the AI system. Here good data vs cold data selection has to be done. Good data is the data stored in the
right storage medium depending on the importance. This refers to a faster dataflow from the storage to the AI system.
Cold data is the data stored in a slower storage medium. This can be in the cloud, as the latency is less critical.

. Next important thing is feeding data for the AI system. Dataflow for an AI system must consider the following factors;

• Training dataflow

• Cross-validation dataflow

• Testing dataflow

The training dataflow most of the time deals with retrieving data from existing storage or processing data in-memory.

2.1.1 In-Memory Oriented Dataflow

When the data size for training or predictive task is under the in-memory capacity of the physical resources, in-memory
computation strategies can be taken into consideration. When working with different systems, it is always better to keep
a common data interface understood by all systems involved (discussed more in 6.4).

2.1.2 Storage Oriented Dataflow

Once the data size reaches beyond the in-memory capacity of the system resources (cluster memory capacity), data
must be queried from the storage and fed back to the AI system in terms of a data pipeline. State of the art solutions in
the dawn of this decade was to use Hadoop oriented solutions, but this interest has moved towards data structures with
columnar format depending on different application requirements (discussed more in 6.4, 4.4).

2.1.3 Touch of HPC

High-performance computing resources and the software stack extending from HPC world has become a vital factor
in improving the performance of in-memory dataflow management and distributed training. Deep learning on HPC
has been deeply analyzed by many types of research throughout the last decade. Among these work, the large data
movement with HPC systems in deep learning is one of the most important problems that have to be tackled [34], [35].
Understanding the correct HPC operator can provide a boost in dataflow for the AI system. In addition, in building a
stable system and understanding bottlenecks in scaling AI systems is vital. Awan et.al [36] discusses this problem in
HPC environments to understand how various deep learning workloads affect the system. Another important aspect of
HPC is to enable existing AI platforms to run efficiently on HPC hardware. Biswas et.al discusses on how Tensorflow
can be accelerated using RDMA-based GRPC [37]. The AI platform-driven system design is one of the most important
aspects that can accelerate modern-day AI systems.

2.2 AI Modelling

AI modelling is the most challenging task in building AI systems. The modelling stage is mutually exclusive from the
external system design as long as the structure of the model is known. When the structure of the model is not known
and it has to be designed with the help of simulations. In such a situation, an external system can come to provide such
assistance. Such an approach can be taken when there is a rough estimate on the model. When simulating a couple of
models with similar core model definition, a workflow has to be designed to select the best configuration. This can
be further enhanced by an auto-tuner which can be enabled via a stochastic gradient descent or similar optimization
algorithm. The overall loss and the accuracy against the configuration matrices can be recorded and configurations can
be auto-tuned upon the feedback from the algorithm. The aforementioned workflow can be abstracted using a dataflow
model for algorithm selection.

4



A PREPRINT - DECEMBER 15, 2019

2.3 System Design

Core system design for an AI system must be highly efficient in training and inference stages. In the evolving software
stack which is highly coupled with the hardware stack, designing just an API for building deep learning systems won’t
be the ultimate solution. The ultimate goal must be to design the software stack along with the improving hardware
stack. In recent years, with the dawn of the deep learning and reinforcement learning systems, the hardware stack
dominated by CPU based computation moved to GPU based computation. GPUs are better with graphics processing
and also very good with matrix related computations. This created a ripple effect in AI system designing. Due to high
computational intensity on image processing, language processing, etc. GPU oriented AI system designing became a
dominant trend. In recent years, TPU related research has provided another optimization to the software stack. From
various researches, it has been shown that TPUs can improve beyond GPUs in AI system modelling at training stage
[38], [39]. With such advancements, low latency systems can be designed for training and cross-validation. State of the
art AI SDKs like Tensorflow and Pytorch are powered by TPUs and GPUs while CuDNN is powered by GPUs. For an
AI system design, another important aspect is to visualize the model and understand feature extraction while training
takes place. The data provenance on inference stats like inference time, loss function value, accuracy (top-1, top-5) can
be very important to optimize the AI algorithms with the support of the system design wrapped around it.

2.4 Deployment

AI system deployment is the end goal of all these steps. Providing AI services with increasing demand is a challenge.
The scale-able solution is vital in providing such services. Low-latency is one of the major factors affecting the quality
of the services. As same as training, the inference is also very important to provide scale-able solutions. Moreover,
the hardware on which both training and inference run is an influential factor. Most of the AI SDKs like Tensorflow,
Pytorch and CuDNN have optimized the software stack along with the hardware stack. The reality is training done on
servers in a cloud or a static location. But the inference takes place in billions of places in billions of devices. Providing
faster hardware and optimizing existing mobile and IoT hardware is vital to improving the efficiency of the deployed AI
services. In deep learning, quantization and forming mobile-friendly networks are the key factors towards efficient
inference. In addition, network compression and graph optimizations are also done by the tools like TensorRT[40],
TensorflowLite[41], Pytorch Mobile[42], etc. With mobile compression, two major actions take place. First one is
low-latency inference from INT-8 and FP-16 quantization schemes and smaller model size fitting devices with limited
memory[43, 44, 45]. Apart from mobile devices like smartphones, watches and tablets, there are IoT requirements
with the increasing remote sensing activities. There is specific hardware produced for meeting the aforementioned
requirements. Edge TPU devices[46] (shown in 2 (a) and (b)) and Edge GPU devices[47] (shown in 2 (c) and (d)) have
been the solutions in the modern-day research. The software stack has also been optimized to fit for these hardware
devices. (For CPU devices Raspberry-PI[48] (shown in 2 (e)) like devices are available to run mobile compatible
versions, but hardware acceleration is not there as in Edge TPU or Edge GPU devices.)

3 Role of Big Data Systems

This section is focused on understanding how big data systems can satisfy the requirements in AI systems as described
in section 2. System building is a vital factor when it comes to integrating machine intelligence to domain science
problems or business problems. With the increase in usage of mobile devices, the data collected also increases in an
exponential rate. So, big data processing has become an inevitable component since the last decade. And it will be the
most demanding component that powers AI in modern-day science. The quest is to provide a streamline dataflow for
these learning systems. Existing big data systems like Apache Spark[49], Apache Hadoop[50], Twister[51] have been
major batch processing systems. In-stream processing Apache Storm[52], Apache Flink[53], Heron[54], Alink[55] can
be recognized as state of the art streaming systems. Until the mid of this decade, all these big data systems were mainly
focused on data processing, querying and storage. With the emergence of AI, all these data processing engines have
been adopting certain practices to provide support to such systems. In most of the research conducted in recent years,
the main focus has been to provide a streamline data source for AI systems. Big data systems can be influential with
AI systems in three main ways. The first one is the training of an AI algorithm. The next phase is to use the trained
algorithm at scale. The other important aspect is supporting transient learning. This empowers building AI systems
upon AI systems.

3.1 Training System Requirement

This section discusses how big data systems can enable the necessities discussed in sections 2.1, 2.2 and 2.3. Deep
learning and reinforcement learning are the major components in modern-day AI. Deep learning highly dependent
on high volume and high dimensional data. Reinforcement learning also depends on such larger datasets and also it

5



A PREPRINT - DECEMBER 15, 2019

(a) (b) (c) (d)

(e)

Figure 2: (a) Edge TPU Accelerator (b) Edge TPU Dev Board (c) Jetson Nano (d) Jetson Tx2 (e) Raspberry PI 4. Note
all the figures are not in real scale. Figures in (a) and (b) with scale. Figure (c) includes a device with size 70 mm × 45
mm. Figure (d) includes a device with size 5 cm × 9cm. Figure (e) includes a device with size 85.6 mm × 56.5 mm.
Depth of the devices are relatively smaller among all devices.

depends on gaining experience by simulating itself with a set of actions focusing towards a higher reward. All these deep
learning and reinforcement learning systems are being powered by software like Tensorflow, Pytorch, MXNet, CuDnn,
etc. Creating a streamlined data pipeline to feed these systems is a challenging task. Enabling large in-memory batch
processing and scaling out for thousands of machines is vital when training larger systems. Most of these frameworks
are wrapped around a C++ core with Python. In a pythonic environment, processing very large datasets with numpy
become infeasible, when most of the raw data is not formatted to expected schemas. In addition, memory-bound issues
are always coupled with pythonic data structures. Data organization is a vital task in training AI systems. In terms of
Big data systems, they are well designed to do this heavy-weight task by distributed computing on batch and stream
mode. And also the querying capability with SQL-based interfaces in big data systems enable the data organization
much easier. Once the data is well-organized the next challenge is coupling the link between dataflow from a big data
system to the AI system. Once this is enabled a complete workflow is therefrom data organization to an AI system.
This link can be enabled with distributed file systems like HDFS or modern-day storage formats like Parquet (discussed
in 6.4). Another way is to spawn the processes within the big data system by abstracting data pipeline with training
pipeline. For very large scale experiments on hundreds and thousands of petabytes of data, this won’t be the solution. It
rather works well with distributed cache or distributed file systems. But for medium-sized data sets, in-memory dataflow
and AI process launching via a big data system can enable a streamlined workflow. Another important aspect is loading
cross-validation data which governs the evaluation metric of the AI algorithm. Passing data for cross-validation loop by
overlapping I/O and training is another advantage that can be provided for the AI systems. Big data systems can provide
a streamline data pipeline to enable this. At the training stage, the most important metric to evaluate the progress of the
algorithm can be enabled with data provenance. These capabilities are external attributes to the AI system. But a virtual
coupling between these attributes can be enabled through a big data system. The vital nature of a big data system for AI
application training monitoring is a must to obtain an efficient AI ecosystem.

3.2 Predictive System Requirement

In this section, we discuss how big data systems can facilitate a streamlined workflow to enable tasks discussed in
section 2.4. Once an AI model is trained for the expected accuracy, the next step is deploying the model. For model
deployment and enabling low-latency inference, distributed dataflow in streaming mode, lambda or kappa (discussed
in 6.3) mode is a vital task. Once you obtain millions of requests from thousands and millions of edge devices, a
streamline dataflow model has to be designed to enable low-latency inference. With predictive systems, data provenance
is a vital factor for evaluating the model in terms of accuracy and performance. Collecting stats on dataflow operations
like gather or reduce must be evaluated to understand the bottlenecks in the predictive systems. Besides with the time, if

6



A PREPRINT - DECEMBER 15, 2019

a model seems to be under-performing, these stats must also be collected. These evaluation metrics can be encapsulated
via a big data system. The main reason for such an ethic lies behind the challenges in stream processing, data storage,
distributed cache and data management components. The expert systems doing all these tasks are big data systems.

3.3 Transfer Learning System Requirement

In AI systems, learning a new skill from an existing skill is quite useful in optimizing system design and maintenance.
In supporting such tasks, big data systems can enable linking older versions of trained deep learning or reinforcement
models with transfer learning. In transfer learning, feature extraction is one of the core requirements. A pre-trained
model can be taken and a sub-set of layers can be extracted from it. For instance, excluding a softmax layer, a
dimension-reduced representation of a larger image dataset can be effectively obtained. Big data systems can enable a
streamlined workflow to enable such a re-training process on top of already trained AI models. The effect of big data
systems for this component is merely for data pipelining. Most of the work is done within the mutation of the AI model
which is governed by the AI system itself.

4 AI at Work

So far the study was focused on how AI has been progressed throughout the time and where AI has positioned itself at
the moment. Understanding these ideas help to improve big data systems and evolve on top of it. In this section, the
main focus is to analyze how industrial business entities have collaborated for the evolving AI and how AI has been
positioned to solve the problems in modern human life.

4.1 Google AI

Google is one of the main entities working on artificial intelligence. Alpha Go Zero, Alpha Zero, Tensorflow, Apache
Beam, TPU and Edge TPU are some of the most impacting research focuses that has shaped AI.

4.1.1 Alpha Go Zero

Go[56] is one of the most famous Chinese board games. This game is considered to be one of the most complex games
among other board games like chess or checkers. Google Deepmind is one of the pioneers worked on solving this game
with AI. Alpha Go Zero was the AI solution provided. The core of Alpha Go Zero is designed with deep reinforcement
learning techniques. The main focus is to not to train the Alpha Go Zero with more data, but with more experience
on playing the game. Alpha Go Zero itself is an agent which tries to play the game by increasing the possibility of
winning. As deep reinforcement learning is used the objective is training an agent such that each move played in the
game increases the reward given towards it. An agent is capable of being strong with play when it has more experience
through playing many games. At the beginning of training Alpha Go Zero, it was trained with 100,000 known games
played by different amateur players. At this stage, after training for this much games, it is a better version than that of
the version played 1000 games. The main challenge is the need of more games when it is needed to be trained beyond
the capabilities of an amateur player. So far the main challenge is creating infrastructure and algorithms to facilitate
100,000 games. Without more data, the only way to improve the AI to exceed a human player is to make the AI play
itself. The idea is to generate an older and more experienced version of the existing AI player. Alpha Go Zero has been
trained 30M games with itself in such a way that it creates a version of itself by being better than the old version. So
every time it plays, a newer version is made, outperforming the previous version. There have been many studies done
on understanding the nature of an AI game player exceeding the best level of a human player. A most important study
is to understand the level of a human player through AI techniques, most preferably by deep reinforcement learning and
this has been discussed by Hassabis et.al [57]. Besides, intensive searches are being done on deciding positions for a
game as stated in the study by Silver et.al [58]. The AI modelling itself is computation-intensive as there are exhaustive
tree searches that are being happened to find a better move. But these explorations are not like brute-force searches as
seen in classical chess engines. They are driven by human intuition and intuition gained by experience.

4.1.2 Alpha Zero

Alpha Zero[59] is the generalized framework which unifies the superhuman player level in playing the game, Go, Chess
and Sogi (Japanese Chess)[60, 61]. The difference in this generalized framework is the number of searches are very
minimum when it is compared to IBM DeepBlue[62] and Stockfish[63], Elmo[64] (state of the art engine for Sogi).
The number of searches by a human grand-master is around 100 moves and the number of searches by a state of the
art chess engine is around 10 million. But the Alpha Zero only use 10,000 searches per move. These computation
must take place as fast as possible and the underlying software and hardware influences this. Stockfish and Elmo have

7



A PREPRINT - DECEMBER 15, 2019

used 44 CPU cores while Alpha Go Zero and Alpha Zero has used 4 first class TPU cores and 44 CPU cores. The
performance of Alpha Zero in different game formats is shown in figure 3.

Figure 3: Alpha Zero Performance in Sogi, Chess and Go with the State of the Art Game Engines. Source [61]

With this understanding the evident fact is the need of a big data system in the expansion of multiplayer games can be
vital in handling large streams of data in both batch and streaming mode.

4.1.3 Google Assistant

Google assistant[28] is an AI-powered virtual assistant with a voice base interface designed for interacting with human
beings. A tool like this goes with a variety of AI models. Content identification, voice recognition, speech recognition,
translation and signal denoising major skills needed for such a tool.

4.1.4 Apache Beam

Apache Beam[65] is the software tool which unifies both batch and stream processing[66]. The underlying concept
is commonly known as Google-Dataflow. In big data systems, the most challenging task is to keep batch processing
and stream processing in a unified manner. Also, due to the existence of a large amount of big data systems, providing
support to existing consumer base on each system is a vital task. Apache Beam encapsulates all these requirements
within the core of Google Dataflow model where one can program using PCollections or similar API endpoints in
Apache Beam. There are runners in Apache Beam for other big data systems like Apache Spark and Apache Flink. In
developing state of the art AI-systems, a tool like Apache Beam can be vital to unify data, AI models and providing
services at scale.

4.1.5 Tensorflow

Tensorflow[5] is one of the main software development tool kit (SDK) to develop AI models. Tensorflow provides a
variety of API support for developing deep learning, deep reinforcement learning and machine learning applications.
This software stack is optimized to run on CPU, GPU and especially on TPU. In current research domain, Tensorflow is
performing far better on TPUs than GPUs. The computation shift from GPU to TPU was enabled by the support in
Tensorflow. In order to reduce the training AI models, Tensorflow has provided distributed training on CPU, GPU and
TPU devices.

4.1.6 TensorflowLite

With the increasing demand for efficient predictions or inference on mobile devices, Tensorflow has been optimized to
convert heavy models to fit into mobile devices. TensorflowLite[41] is the software stack that enables the deployment
of quantized mobile-friendly networks at scale. The uniqueness of this platform is that it supports mobile operating
systems like Android, IOS, Raspbian and also support Google Coral edge devices specialized on TPUs (described in
section 2.4 and 3.2).

8



A PREPRINT - DECEMBER 15, 2019

4.1.7 Hardware Oriented Software Stack

Tensor Processing Unit (TPU) is one of the main hardware accelerators developed to improve deep learning research at
scale. TPU devices are a special type of hardware like GPU, but very different in architecture. TPU has been designed
to do training in large scale. And also it is much faster than GPU in training (scales well beyond 1 TPU core[38]).
The software stack developed with Tensorflow provides software abstraction on TPUs to design deep learning and
reinforcement learning applications. In deploying trained models with high efficiency, Google Edge TPU hardware and
TensorflowLite software stacks can be used to harness the power of TPUs (discussed in detail in 2.4 and 3.2).

4.2 Facebook AI

Facebook is another entity driven towards AI. The work done in Facebook relates to developing software tools and
hardware tools. And also there are other supporting tools to enhance the AI development experience.

4.2.1 Pytorch

Pytorch[6] is one of the main software development kit (SDK) for AI modelling. This is a production from Facebook
AI. Pytorch provides support to design dynamic graph definitions in designing deep neural networks. The dynamic
graph execution is one of the most significant aspects of Pytorch. In the beginning, Pytorch was only designed as
a research tool on Facebook. The production was done on Caffe2[67]. When deploying an AI application at scale,
a research-level application had to be converted to Caffe2 format. In order to reduce the overhead in application
development, Pytorch 1.0.0 was introduced by unifying these APIs (the currently available version is Pytorch 1.3.0).
In deep learning application development, the main overhead in the development stage is the training time. In order
to minimize the training time, Pytorch has enabled distributed training mode[68]. Pytorch supports MPI[69], Gloo
(Facebook distributed runtime)[70] and NCCL (Nvidia) [71]. With the variety of distributed environments, the AI
models can be trained efficiently on Nvidia GPUs, HPC hardware and also in Google TPU hardwares[72]. For low-
latency inference, Pytorch Mobile[42] provides an efficient workflow for deploying mobile-friendly AI models for
inference purpose. In addition to training and inference, training with data encryption is a vital element in dealing with
sensitive data[73, 74, 75]. Crypten[76, 77] is one such framework built on top of Pytorch to make a software interface
available for such application development. Another important aspect of AI modelling is understanding what happens
in the models in the training stage. Captum[78, 79] is a model interpreting tool designed on Pytorch. In optimizing a
model to obtain better accuracy, learning meta-data like cross-validation accuracy, top-5 accuracy and gradient overlay
are important hyper-parameters. Capture encapsulates these requirements for both text and pictures related AI system
development. Detectron[80] is an object detection AI software toolkit. And Fairseq[81] is a translation, summarizing
and language modelling AI toolkit developed with Pytorch.

4.2.2 Poker Game with AI

In AI-oriented game development, Facebook has partnered with Carnegie Mellon University to produce an AI-based
Poker game which can play with 5 human players. Among 2 player dominant AI-based games like Alpha Go Zero
and Alpha Zero, this AI-based Poker gaming engine is the first to solve a multiplayer game. It uses Monte Carlo
counterfactual regret minimization for introducing self-play as same as Alpha Go Zero improved itself by playing with
itself[82].

4.2.3 Facebook Hardware Stack for High Performance

Facebook has also designed new hardware devices to facilitate efficient training and inference at scale. Efficient video
processing, image processing and content processing techniques are vital to performing quality analyze on the content
added to the social network by millions of users. The hardware stack builds for this is known as Zion platform. Figure 4
shows the hardware stack used in Facebook research.

4.2.4 Facebook ONNX

From the sections 4.2.1, 4.1.5, it is evident that there are multi-disciplines in writing AI systems. ONNX is a shared
model exchange which facilitates deploying AI systems to build on different software stacks using one middle-ware.
Deploying AI models with multiple software backends takes time and resources. A middle-ware like ONNX can be
used to unify multi-discipline AI workflows to create a streamline inference workflow. And also with the support of the
Glow compiler, the output from the ONNX can be optimized to fit into different hardware for inference in different
vendors. Figure 5 shows the overview of the ONNX platform with other AI platforms.

9



A PREPRINT - DECEMBER 15, 2019

(a) (b) (c)

Figure 4: (a) CPU Chassis with 8 CPUs (b) Accelerators for Inference (c) Zion Platform Connecting CPU Chassis and
Accelerator Chassis in the Rack. Source [83].

Figure 5: ONNX Platform With Other AI Platforms. Source [83].

4.2.5 Facebook AI @Scale

Scaling AI systems is one of the main challenges for many of the business entities. With the increasing consumers and
devices, data management has to be optimized for higher efficiency. Most of the increasing demand is focused on text,
video and image processing. In increasing efficiency, computation and memory management optimizations are vital. In
AI systems, there are many layers responsible for various tasks. The lower levels are more data-oriented and depend on
memory. The higher levels are more intense on computations. Understanding the overheads in each layer will allow
optimizing systems for higher efficiency. Concerning computation, understanding common computations done within a
larger AI system enables in reducing redundant execution. Once such common computation done in one machine is
useful to a computation done in another machine, the final result can be sent through the wire. This involves lower-level
optimizations on understanding the data-parallelism or model-parallelism of distributed training of such AI models.
And also providing hybrid AI modelling support for data-parallel and model-parallel training is vital to optimizing
modelling time and resource usage. Considering memory, using better data schemes for supporting sparse data and
dense data is vital in optimizing applications. In such scenarios usage of embedding, tables[84] to encapsulate the data
representations can be very effective to represent data. Instead of re-vectorizing data, with embedded table lookup,
more time can be saved to find data representations for computations. With such optimizations memory bandwidth,
sensitive problems can be solved [85]. Figure 6 shows the memory and computation based layer categorization in a
deep neural network.

4.3 Tesla AI

Tesla AI is more focused on facilitating the autonomous experience for vehicles. Such an autonomous task needs a
vast amount of sensory inputs. Most critical thing is to infer and take actions instantly. For autonomous driving, object
detection, object identification, obstacle avoiding, predicting the flow of objects and many other external sensations are
required to make accurate decisions. With AI modelling, the obvious solution is to create an ensemble solution for each
of the components. For instance, a deep learning network for object detection and object identification can be used.
But when the number of tasks scale to a larger extent, having separate AI model doesn’t provide a scale-able solution.
Common characteristics involved in these tasks must be identified and knowledge has to be shared among the networks
to provide an efficient and scale-able solution. This provides a generalized network to execute multiple tasks with

10



A PREPRINT - DECEMBER 15, 2019

Figure 6: Neural Network Layer Categorization on Memory and Computation. Source [85].

multi-disciplines. Tesla has produced Hydra-Nets, a version of a complex AI system which enables the aforementioned
functionality. A reinforcement learning network can help to link up unseen connections or find unseen features in a
given event. This is vital to make automated AI. When complex decisions like steering or moving the car to a specific
location has to be done, some features need to be burrowed from different hydra-nets. For instance, the depth of the
picture is very important in identifying the obstacles, but at the same time, it needs to burrow some features related to
the shape of the road if you need to steer. Each hydra-net is specific for different tasks. A recurrent set of tasks can be
used in such a setting. Figure 7 shows the structure of the multiple networks forming a Hydra-net.

Figure 7: Architecture of Tesla Hydra-Net. Source [86]

As shown in the figure, there are 8 different tasks done by these hydra-nets. Each hydra-net extracts features and all
these features are sent for a 2nd layer to do another evaluation. The speciality of each net performing a unique task is
vital, but having an overall understanding to formulate a clear goal is vital when performing the global task. So the
decision making is done by analyzing the features extracted by each of these systems. All these networks are recurrent
neural networks. So this means it is heavy training. The main issue is these models are very large, so what happens
is the amount of data that has to be processed doesn’t fit the memory. In this case, the single node training won’t be
practical. In such a scenario, distributed training is vital. In these Hydra-Nets, 48 different networks are being used to
provide 1000 tensor outputs as predictions. The estimated time of training is 70,000 GPU hours. It is clear from these
stats that the model parallelism and the data parallelism must be used. Hydra-Nets consume Pytorch model parallel and
data-parallel AI model designs to do the heavy lifting in distributed training. In addition to that, there are special types
of chips called Dojo, designed to improve the inference performances[86].

4.4 Uber AI

Uber AI division focuses on a couple of disciplines which go in parallel with transportation. The Uber Taxi services
have also been linked with a delivery system linked with a large restaurant network. In facilitating such services, traffic
data understanding, estimated time evaluation on services and locating customers and other service centres are vital.
Uber Driver demand prediction is a very important feature. This is vital in understanding where more drivers need to be
and try to arrange resources such that a surge can be handled. Another one is the estimated meal arriving time. ETA

11



A PREPRINT - DECEMBER 15, 2019

calculation is a very important thing. Suggestions for texting with the driver. Making things much easier when there is
no room to do heavy typing. In a rainy day, this is great. Involving with large data, the main contribution from Uber to
the state of the art AI ecosystem is the Horovod[87] platform. Horovod is a distributed training platform developed to
facilitate distributed training for Pytorch, Tensorflow, MxNet and Keras. It uses OpenMPI[88] backend to do model
synchronization in distributed training. For the heavy data pre-processing Horovod has been wrapped with Apache
Spark (PySpark) to facilitate an effective workflow.

Dealing with large data pre-processing and facilitating a larger amount of services, data querying becomes a very
intriguing challenge. According to Uber research, most of the data are stored contain thousands of columns, but the
queries from users only require one or 2 columns to generate the expected results. Storing data in an optimized way is
vital to provide efficient services. When this data is transformed into column architecture, the retrieved values are in
transposed. Here the row data in the normal state becomes column data. So when you just need a few rows from the
original setting, this becomes a few columns after converting to row setting. This way of data access is very efficient.
This optimization is vital when such queries are present.

Understanding the business statement is vital to design a data processing system for AI applications. In analyzing more
on data storage in Uber, the largest datasets are stored in a key-value store and then there is an incremental pull of data
for every 30 minutes. Once the data is being pulled, it is being processed as a batch and sorted in timely passion. In
Uber rides, sometimes the trips need to be updated due to the pricing of the trip. So, in this case, these records need to
be retrieved. So these records are going to be updated consistently for a given period. Some transaction update can take
some time to complete its process. Depending on the number of data associated with the transaction, the update process
can be costly. A refund in a complex trip where there were multiple drivers and multiple trips were involved, there has
to be a way to retrieve these records fast from historical data. The data has to be labelled. Once a transaction is being
completed and it must be made immutable after a certain period. This kind of policy enables data being not subjected to
any change.

Aforementioned business statement involves a larger portion of AI system building on data organization. Having batch
and streaming data processing involved to most of the transactions causes a huge overhead in dataflow management.
Most of the data processing in Uber is adopted on Hadoop based technologies. But with the complex data querying
involved with incremental processing followed by batch processing, a novel framework has to be introduced to
encapsulate all the business logic. In addressing this, an effective solution on top of the existing framework was
designed. This framework is known as Marmaray[89]. In incremental processing and batch processing pipelines, there
can be an update for an existing key-value pair. In such a scenario the record can be viewed in two formats. One format
is the latest mode, which provides the data set with the final updates. The other data retrieval mode is the incremental
mode, it provides the view of the latest given a previous checkpoint timestamp. Hudi[90] is a framework designed
within Uber to facilitate such complex tasks[91]. Figure 8 shows the Lambda architecture in Hudi.

Figure 8: Lambda Architecture in HUDI. Source [90]

12



A PREPRINT - DECEMBER 15, 2019

4.5 Microsoft AI

In modern research, Microsoft AI has been mostly focused around providing scale-able solutions via Azure cloud. In
addition to that, the literature on Microsoft AI shows that their main focus is towards solving problems by providing AI
as services. These are some of such influential services on AI. Vector search is an AI-powered search instead of classical
index-based search. By analyzing user inputs, approximate results are being retrieved by the use of AI algorithms. Here
deep learning models are being used to represent data as vectors. The distance between vectors designates the similarity
of two entities. "Approximate nearest neighbour (ANN) algorithms search billions of vectors, returning results in
milliseconds"[92]. Snip Insights [93] is an AI-based tool developed for identifying famous people or landmarks. Such
applications are very important for people who are travelling and exploring the world. Snow leopard trust [94] is a
research project on enabling a safe environment for snow leopards. In this research, scientists are using "camera traps to
spot snow leopards in their natural habitats with minimal disruption". This camera traps records hundreds of thousands
of images. The necessity is to identify and analyze these images. By facilitating image processing techniques developed
on AI provides support for such a labour-intensive task. Ethics in AI [95] is one of the most important aspects that need
to be considered. In this research, the focus on providing technology support for people with disabilities. This research
questions and answers the ethical duty of AI to serve humanity. In addition to this, Cortana is another Microsoft AI
advisor which is built on top of a larger ecosystem of AI technologies.

4.6 Amazon AI

Amazon is another business entity involved in AI-related research. The main applications from Amazon focus on
user experience improvement on shopping, delivering, searching and conversational intelligence. Understanding user
requirements via searches and existing purchases is a qualitative and quantitative study. Using classical statistical
models limit the deep understanding. In recent research from Amazon, the main focus is on deep learning-based
research. Amazon Alexa is one of the main research outputs from these AI-related research. This contains a larger
area of expertise to produce a natural conversational AI. At the moment, Alexa also serves as a digital advisor with the
capability of linking up with external services like weather, news, music, video, smart devices, etc. Home automation
and voice navigated instructions to control electronic services is one of the outcomes of this AI advisor.

Figure 9: Amazon Alexa Workflow. Source [96]

Natural conversation is one of the most important aspects to provide a streamlined service. For such services, AI models
developed using deep learning for signal processing and denoising are used. In addition to this, data pre-processing at
the Edge is one of the most effective usages of network bandwidth. The Alexa AI or the inference models are hosted
on the cloud, so the synthesised speech is sent to the cloud with pre-processing. The task offloading from Edge to
Cloud is an important aspect that is considered in Alexa to provide low-latency responses. In the cloud, this data is
being inferred with relevant AI models and results are communicated the user as voice. Signal denoising and voice
recognition are very important technologies at the user end. In addition to this understanding complex sentences and
infer the meaning from such sentences is vital for a digital advisor like Alexa. Figure 9 shows the workflow associated
with Amazon Alexa.

13



A PREPRINT - DECEMBER 15, 2019

Amazon SageMaker[97] is another tool developed to cover a subsection of AI, machine learning. This tool is a complete
workflow manager which enables data cleaning, machine learning algorithm modelling, auto-tuning, monitoring,
deploying and maintenance. It covers the life-cycle of a machine learning related project. Most of the functionalities
are around auto-tuning and automating most of the redundant work in machine learning algorithm modelling. The
workflow of SageMaker can also be used to develop AI workflow management.

5 IBM with Big Data Stack

There are a set of application areas identified by IBM research on data analytics and simulation workflows. Data
analytics is mostly done by big data systems. The simulation workflows are mainly done by high-performance systems.
In addition to that, there are some applications and research interests overlapping both of these areas. The convergence
of the high performance and big data stack provides a highly productive and high-performance region. High productivity
enables powerful APIs for data organization. And also the power of high-performance computing literally enables the
high performance.

Under the data analytics category, there are tasks related to data organization, data processing and interpretation. Data
organization takes place at the source of the data pipeline. When dealing with the data generated by different sources,
handling unstructured or semi-structured data is a very important aspect of the first step towards data organization.
Spark offers a structured streaming API for handling structured data. This enables schema for the data stream, and this
is very useful in the higher levels of the data pipeline. For any other big data system, it is vital to have structured data
processing capability. Down the data pipeline, the data filtering, grouping takes place. Depending on various application
requirements it is vital to understand how to provide such capabilities. These steps basically cover the data organization
and data processing section of data analytics. This is the generic data-oriented workflow in a big data system. Due to
the exponential growth of data, centralized data processing won’t become a practical approach. In the decentralized
data processing, providing big data systems to extend the data processing capabilities from cloud to edge is vital. Task
offloading from cloud to edge is enabled by this way. So the overhead caused by sending raw data over the network can
be eliminated by such a process. In addition to that, data summarizing or data compression is also a very important task
that needs to be done on the edge. For such cases, PCA, TSNE[98] or lightweight DNN models can be used.

The data simulation category is highly associated with various model simulations in domain science problems. Most
of the data associated with this area are structured. The reason is most of these models are designed for domain
science-related research. The expected outcome is not known but the structure of the outcome is known as the data
sources are the endpoints of the designed simulators. In such cases, the overhead is data organization is minimum.
The strength of this category mostly depends on doing computations much faster. Exascale experimenting is one
of the strengths in the data simulation related applications. The objective of this application category is to enable
high-performance applications.

Enabling better systems for understanding data and making new interpretations of data is the main goal. Both data
analytics systems and data simulation systems have strengths and weaknesses. For instance, data analytics systems are
strong in data organization but not as competitive as data simulation systems in processing data with high efficiency.
This effect is vice-versa. The overlap of these systems is very valuable to build a unified system which has the strengths
of both data analytics and data simulation systems. The challenge is understanding how such frameworks can be
designed aligned together to support efficient applications.

With this study by IBM on the overlap of the data analytics and data simulation frameworks, the design of such a system
comes under four main layers.

• Application Level: Involves with both big data applications and applications and community codes from
various domain sciences.

• Middleware and Management: In this layer, as per big data model, it contains the distributed data
management, data processing APIs and all the software developed for these purposes. For HPC mode, there
are MPI, OpenMP related application development libraries and supporting development tools.

• System Software: For big data model, virtualization, containers and other cloud services related tools can be
noted as core components. For HPC model, specific container management tools like Singularity, Shifter can
be denoted. But all the components lie upon the Linux OS variant.

• Cluster Hardware: Cluster hardware is the lowest layer where the network connections and network storage
for both HPC and big data system stands. For big data applications, Ethernet switches, local node storage,
etc can be denoted as sub-components. For HPC model, Infiniband, Ethernet switches, GPU accelerators and
other In-situ processing components can be noted.

14



A PREPRINT - DECEMBER 15, 2019

As the idea is the converged software development, the best way to support the overlap is by providing support for
the big data stack to match with the high-performance application development. The reason is the necessity always
come with easiness to develop applications. That is one of the most significant qualities of the big data systems. So the
overlap of these two domains must provide MPI as a service, big data tools as a service, web app as a service, GPU as a
service and similar components that could make an impact. Hereafter the term "The Overlap" refers to the system
design with the overlap of the aforementioned system disciplines. Figure 10 shows the Apache Spark related application
stack developed by IBM.

Figure 10: Apache Spark related Application Stack

Figure 10 shows the generic layout of a system designed with the overlap of big data and HPC model. Under this
unified framework, there are three main tracks of system design.

• Linking with Scientific Applications: There are many tools designed for climate modelling, earthquake
analysis, genomics analysis, etc. Re-writing them in the new APIs created by the overlap. So the best model is
to support the applications via creating interfaces to connect the overlap and these scientific applications.

• Machine Learning and Deep Learning Support: Many frameworks are supporting the development of
streamlines machine learning and deep learning application. So rather than re-writing these codes, it is better
to link them with the existing frameworks.

• Data Analytics Support: SQL, R and frameworks like H2O offers a variety of APIs to do data analytics in a
streamlined passion.

The main concern with linking up the high-performance programming models with the big data stack is the language
barrier. For the cause of much easier programmability, JVM oriented languages are extensively used in developing big
data frameworks. But almost all the high-performance applications are designed with C++/Fortran or FPGA. Apart
from the language boundary, linking up JVM oriented programs to support accelerated hardware devices like GPUs or
TPUs is a great challenge. The best way is to design linking programmes between each of these programming stacks.
But still, the data movement issue has to be handled when data has to be copied from CPU to GPU for optimized
computations involved with matrix or vector computations. Spark provides optimizers for JVM related application
development with Tungsten and Catalyst projects. Similar optimizers are necessary for other big data frameworks to
support optimum performance. The first line of optimizations comes under the language level optimizations on JVM.
IBM has optimized several Java implementations (OpenJDK and OpenJ9).

5.1 JVM Optimization

OpenJ9 is one of the prominent work from IBM for JVM optimization. This has been tested with Apache Spark and the
results show that there is a significant improvement in performance with OpenJ9. Some of the improvements are as
follows.

• Java object models with smaller footprints

15



A PREPRINT - DECEMBER 15, 2019

• Effective Garbage Collection
• Efficient JVM lock contention schems
• JIT (Just-In-Time compilation)
• GPU-enabled JIT
• Shared classes technology

Figure 11: Language Optimization Support for Apache Spark

Figure 11 shows the language level optimization added big data system evolved around Apache Spark. Another task of
the language level optimization is to provide native C/C++ performance by using JNI for tasks to get better performance.
Underneath the language optimization layer, there exists the scaling capability obtained from IBM Spectrum and IBM
Cloud Private. Underneath this layer, there exist communication, storage/communication and accelerator layer. The
communication layer is associated with RDMA and GPUDirect. The storage/communication layer is associated with
NVMe, OpenCAPI and Flash/RDMA. The accelerator layer is associated with GPU/NVLink and FPGA. Apart from
these, there are connectors to online message processing via message brokers.

5.2 GPU Acceleration

IBM has worked on a GPU-enabled version of Apache Spark, called IBMSparkGPU. The compute-intensive workload
is being allowed to run on GPUs. Here the support for Spark Mlib, SparkSQL and GrapX has been given to run on
GPUs. Besides, the GPU code generation is done using Tungsten. And the other way of supporting GPU Acceleration
is providing support for GPU-enabled data analytics or simulation platforms. For instance, Tensorflow, Pytorch and
CuDNN (with Rapids) already support GPU with their underline architecture. So it is always easier effective to support
such platforms to harness the power of GPU for big data analytics. Optimizations associated with these system design
always couple with JVM. And the optimizations are done for JVM as mentioned in section 5.1, have enabled better
performance for Apache Spark.

5.3 Data Broker

IBM-Databroker is the message broker level optimization added for the overlap. It is nothing but an in-memory
key-value store enabling applications to share data using one or more namespaces. In a traditional dataflow model
program, if a message broker is not used, the data is fed to the analytics engine in terms of File (I/O) or sockets. With
a file-based approach, the latency can be very high, as the data has to be load from the disk into the memory. This
becomes a task with a longer latency. Sockets, the issue is the same, the latency is very high. The advantage of a data
broker is that a data broker can be used to link the distributed data over multiple nodes using the DRAM. This is much
effective than using I/O oriented methods. In this setting, the latency is relatively lower than that of an I/O oriented
method. Another advantage of using a data broker is app discovery can be effectively carried out. To improve the
performance in Spark a data broker mechanism has been introduced by IBM. In Spark for shuffling the data, blocks
are stored on disk. The main overhead lies in the OS as the I/O operations are intensive. With a data broker, a simpler
shuffle is implemented with No File I/O, disk access and no sorting.

16



A PREPRINT - DECEMBER 15, 2019

6 Distributed Data Paradigm

Distributed data paradigm contains business entities and various resources they make. Apart from the large business
entities, there are other academic and non-academic related entities developing such systems.

6.1 K3s and K8s For Containing

In scaling applications with the virtual machines, Kubernetes or K8s related software stack provides a much easier way
of scaling applications. Kubernetes provides support in managing containerized workloads and services. There are
two types of workloads associated with modern-day systems. Things that run on larger hardware like data centres and
things that run on much smaller hardware like decentralized Edge-devices. In both these scenarios, containerization is
vital. K3s becomes the lightweight Kubernetes for Edge-devices. In scaling deep learning models in the Edge devices,
K38s can be used to do better scaling and maintaining models[99].

6.2 Streaming for AI with Message Brokers

Streaming machine learning and streaming for deep learning inference need state of the art message brokers to make
the workflow streamlined. In such cases, a few of the current state of the art streaming brokers are Apache Kafka[100],
ZeroMQ[101] and RabbitMQ[102]. Among these, Apache Kafka provides a streamlined API in Java and Python. This
enables easier application development and connector design for other big data systems. When connecting multiple
systems which work on different disciplines, message-brokers are the best way to provide access to different services.
There are many layers involved in these large big data ecosystem. There is a huge issue in combining all these layers
together to enable a complete workflow. Linking each of these components, Extract, Store, Transformation, Load and
Store is a challenge. That is the main reason most of the application developers use message brokers to link different
services and systems[103].

6.3 Lambda for Incremental Processing

Lambda architecture uses both batch processing and stream processing to enable the increasing requirement for low-
latency application development with the rise of data contained in the big data applications. This is more like a definition
of data processing rather than a system design.

6.4 Storage Handling

In the earliest days of handling big data, Hadoop Distributed File System (HDFS) was the most prominent way of
managing the distributed data. With the increasing demand for data, the MapReduce came into the picture. MapReduce
concept is all about processing the distributed data in terms of a mapping process and reduction process. In a mapping
process, data is being filtered or transformed. In a reduction process, data summarizing is being handled by arithmetic
or algebraic expression. All these processes are happening in a distributed manner and HDFS supports the data
management, basically, data read, write and delete. But with the increase of various applications, there are requirements
on retrieving a part of a data record. For instance, a record contains sub-records. Generally, these records are representing
in row formats. The issue with the row format is, the data storage is not well compressed and not I/O efficient when
records have to be retrieved in such a way that, a few elements in a row of data records are useful for the query. In
supporting such requirements, a different storage mode can be efficient. With memory architecture, a columnar data
structure with more data compression can be used to do effective querying. Parquet is one such columnar data storage
format and the Apache Arrow is a cross-platform in-memory columnar data format. These new trends have improved
data storage and data handling across multiple big data platforms.

6.5 Databricks

Databricks is the Apache Spark-based entity designing a variety of solutions for the big data stack. They support
all of the states of the art data processing functions like data storage, data querying, data analytics in both streaming
and batch formats, machine learning and deep learning. Databricks support application development especially on
Jupyter notebooks with PySpark, a python wrapper for Apache Spark Scala core. This allows most of the application
developers to design applications with much ease and it allows connecting with most of the state of the art python-based
APIs like PyArrow, Tensorflow, PyTorch, MXNet, Pandas and many other such libraries. In addition to that, the
MLFlow system designed to evaluate machine learning and deep learning algorithm training and testing have been a
new addition. It provides an API abstraction linked with Tensorflow to evaluate the training process. All these additions
to the Apache Spark big data system enables application development much more streamlined than the other big data

17



A PREPRINT - DECEMBER 15, 2019

systems. In addition, another new addition is the structured streaming API of Apache Spark supporting schema-based
data processing with the SQL-enabled streaming API.

6.6 Harp

Harp[104] is one of the high performance communication library designed on top of the Java language. Due to usability
in Java, extending to ML and similar workflow development can be enhanced by Harp communication collectives.
Like MPI, Harp offers similar collectives like, reduce, allreduce, gather, allgather, broadcast and another Harp specific,
rotation. Harp-DAAL[105] is an extension to Intel DAAL[106] library which facilitates deep learning and machine
learning performance improvement on Harp.

6.7 Twister2

Twister2[107] is a big data system enabling both batch and stream processing with the deployments on Kubernetes,
Mesos, Slurm and also a MPI backend. Twister2:Net[108] is the core of Twister2 framework. It enables writing both
batch and streaming applications with a unified API. Twister2 also supports machine learning applications. Twister2
has a dynamic task graph design which enables designing complex applications in a streamlined passion. Twister2
default runtime is developed on top of MPI ISend and IRecv communication protocols. This allows Twister2 to do
collective communication much faster than other state of the art big data systems.

6.8 BigDL

BigDL[109] written on PySpark. These frameworks also support developing deep learning applications but now most
of the applications have been developed on Tensorflow and Pytorch.

6.9 Weka and Moa

Weka[110] is one of the most prominent machine learning designed by the academic institute, University of Waikato.
This is a complete library machine learning with data processing and data organization. Weka has also extended the
classical batch mode applications into streaming applications by using Moa[111]. Moa is a streaming machine learning
library built with the core of Weka.

6.10 Apache Samoa

Apache Samoa[112] is another streaming machine learning framework which is inactive at the moment. Apache Samoa
supported creating a complete streamlined workflow for streaming machine learning algorithms. It also supports the
streaming workflow with Apache Flink and Apache Storm.

6.11 H20

In addition to this, there are some other Deep Learning related tools like. In addition H20 is also another distributed
library which supports development of deep learning and similar workflow applications with in-memory distributed
computing capability[113].

6.12 GraphX

Apache Spark’s Graphx[114] is one of the earliest high performance graph processing library built on big data stack. It
supports graph processing with the core of Apache Spark. Graphx allows to do distributed iterative graph processing
within a single system.

6.13 Snap

Snap [115] or Standford Network Analysis Platform is defined as a general purpose network analysis and graph library.
This library is written in C++ and graph implementations designed with this tool scales for hundreds of millions of
nodes with billions of edges. This framework also has a Python interface called SNAP.py.

18



A PREPRINT - DECEMBER 15, 2019

6.14 Petuum

Petuum[116] is a distributed machine learning library which supports both data and model parallelism. This framework
supports matrix factorization, Lasso, SVM, Convolutional Neural Networks, Latent Dirtchlet Allocation, Logistic
regression, KMeans, etc. This is one of the most prominent machine learning libraries which support model parallelism.

6.15 DeepDriveMd

DeepDriveMD[20] is a deep-learning-oriented protein fold simulation library with adaptive simulations. This tool has
better performance over other protein fold simulation systems because of the usage of deep learning analysis. It enables
the effective learning of the latent representations and drive adaptive simulations.

6.16 Deep Learning and Machine Learning Frameworks with Middle-ware Support

The deep learning or machine learning systems consumes a vast range of other resources. In the universe of these
complex systems, this AI component recognized as an ML component in figure 12, is just a tiny piece. There are other
layers which facilitates the functionality of the ML system.

Figure 12: System Overview of an Intelligent System

In the table 1 shows the AI frameworks along with the third-party and core systems supported in scaling and providing
support for multiple applications.

In addition for graph neural networks a framework called Deep Graph Library[117] also supports with the state of the
art platforms like Amazon SageMaker, Apache MXNet, Pytorch and Tensorflow.

Active or Inactive nature is decided upon the recent releases of the library.

7 Breaching the Programming Language Barrier

The main reason for big data systems not being popular among scientists is the learning curve of programming languages
like Java, Scala, C++, etc. Most of the big data systems are designed with Java and Scala while high-performance
systems are designed with C++. This is where python becomes the most helpful programming language in breaching
the gap between a domain scientist and a big data system. Apache Spark, Apache Flink and many other big data systems
provide a Python API. In addition to these big data systems, there are other systems designed by both HPC and Big data
community to provide high-performance data solutions to scientists.

7.1 Dask

Dask is a distributed computing platform written for Pythonic applications. Dask support data organization with
easy-in-memory loading, support for Numpy and Scipy. Besides, Dask is a frontier python framework which supports

19



A PREPRINT - DECEMBER 15, 2019

Table 1: AI Framework and Middleware

AI/BigData Framework Middleware AI Major Status
Scikit-Learn Dask Machine Learning Active
Tensorflow Apache Spark, Google XLA Deep Learning Active
Pytorch Apache Spark Deep Learning Active
MXNet Horovod Deep Learning Active
Weka MOA Machine Learning Active
Spark Mlib Apache Spark Machine Learning Inactive
Apache Samoa Apache Samoa Streaming Machine Learning Inactive
Keras Tensorflow, Theano Deep Learning Active
Graphx Apache Spark Graph Computation Active
Snap C++ and Python Graph Computation Active
Petuum Distributed Model and Data Parallel Native System Machine Learning Active
H20 Multithreaded MapReduce Machine Learning Active
BigDL Apache Spark Deep Learning Active

Deep Graph Library
Native Python Libraries
Amazon Sagemaker
Apache MXNet

Graph Neural Network Active

many other python-based data analytics tools like, Scikit-Learn, Scikit-Image, Rapids, etc. Because of the high usability
of python and support of Dask for multiple frameworks, this is being used by many researchers to do domain science
research.

7.2 Epython

Epython[118] is a lightweight python API developed for application development in micro-architectures. In this design,
the interpreter and the runtime resident has an actual memory size of 24KB. And this implementation works both with
many-core processors executed independently and co-processors with some extra shared memory between the host.

7.3 PyComps

PyCOMPS[119] is a framework built on Python to support parallel computation workflows. The APIs in PyCOMPS
allows users to write the programmes sequentially but use functions with asynchronous tasks by annotating them. This
allows domain scientists to write parallel programmes with much ease.

7.4 Dislib

Dislib[120] is a distributed computing library providing distributed algorithms for scientific computations. This library
is highly focused on machine learning algorithms. This is a library designed on top of PyCOMPS7.3 library.

7.5 Parsl

Parsl[121] is a Python oriented framework designed to run programs on any compute resource from laptops to
supercomputers. This framework also supports annotation oriented methods to do parallel programming and the APIs
have abstracted the parallel logics from the user so that parallel programmes can be written in a streamlined passion.

8 Conclusion

AI systems consisting machine learning, deep learning and reinforcement learning systems are always coupled with
data and simulations. In designing larger ecosystems capable of solving state of the art scientific and non-scientific
problems, the big data frameworks associated with data processing can be very vital in designing such systems. From
this study, the conclusion made is that machine learning, deep learning and reinforcement learning are vital, but these
applications cannot exist without the support of high-performance big data systems.

20



A PREPRINT - DECEMBER 15, 2019

References

[1] Developer resources for deep learning and ai | nvidia. https://www.nvidia.com/en-us/
deep-learning-ai/developer/. (Accessed on 12/02/2019).

[2] Cloud tpu | google cloud. https://cloud.google.com/tpu/. (Accessed on 12/02/2019).
[3] Google. https://www.google.com/. (Accessed on 12/02/2019).
[4] Artificial intelligence computing leadership from nvidia. https://www.nvidia.com/en-us/. (Accessed on

12/02/2019).
[5] Tensorflow. https://www.tensorflow.org/. (Accessed on 12/02/2019).
[6] Pytorch. https://pytorch.org/. (Accessed on 12/02/2019).
[7] Facebook ai. https://ai.facebook.com/. (Accessed on 12/02/2019).
[8] Apache mxnet | a flexible and efficient library for deep learning. https://mxnet.apache.org/. (Accessed

on 12/02/2019).
[9] Ai with aws machine learning. https://aws.amazon.com/ai/. (Accessed on 12/02/2019).

[10] Nvidia cudnn | nvidia developer. https://developer.nvidia.com/cudnn. (Accessed on 12/02/2019).
[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.
[12] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural

computation, 18(7):1527–1554, 2006.
[13] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.

science, 313(5786):504–507, 2006.
[14] Geoffrey E Hinton. Learning multiple layers of representation. Trends in cognitive sciences, 11(10):428–434,

2007.
[15] Geoffrey E Hinton. To recognize shapes, first learn to generate images. Progress in brain research, 165:535–547,

2007.
[16] Geoffrey Hinton. Where do features come from? Cognitive science, 38(6):1078–1101, 2014.
[17] Uber ai home | uber ai. https://www.uber.com/us/en/uberai/. (Accessed on 12/02/2019).
[18] Autopilot | tesla. https://www.tesla.com/autopilot. (Accessed on 12/03/2019).
[19] Ai platform | microsoft azure. https://azure.microsoft.com/en-us/overview/ai-platform/. (Ac-

cessed on 12/03/2019).
[20] Hyungro Lee, Heng Ma, Matteo Turilli, Debsindhu Bhowmik, Shantenu Jha, and Arvind Ramanathan.

Deepdrivemd: Deep-learning driven adaptive molecular simulations for protein folding. arXiv preprint
arXiv:1909.07817, 2019.

[21] Alibaba. Machine learning platform for ai: Data mining & analysis - alibaba cloud. https://www.
alibabacloud.com/product/machine-learning. (Accessed on 12/02/2019).

[22] Robert Roe and Chirstoph Angerer. Deep learning drives new science. Scientific Computing World, 2019.
[23] Quintin Fettes, Mark Clark, Razvan Bunescu, Avinash Karanth, and Ahmed Louri. Dynamic voltage and

frequency scaling in nocs with supervised and reinforcement learning techniques. IEEE Transactions on
Computers, 68(3):375–389, 2018.

[24] Anna Zamansky, Dirk van der Linden, Irit Hadar, and Stephane Bleuer-Elsner. Log my dog: perceived impact of
dog activity tracking. Computer, 52(9):35–43, 2019.

[25] Mark Salisbury. When computers advise us: How to represent the types of knowledge users seek for expert
advice. Computer, 52(9):44–51, 2019.

[26] Apostolos P Fournaris, Aris S Lalos, and Dimitrios Serpanos. Generative adversarial networks in ai-enabled
safety-critical systems: Friend or foe? Computer, 52(9):78–81, 2019.

[27] Amazon. Amazon alexa - wikipedia. https://en.wikipedia.org/wiki/Amazon_Alexa. (Accessed on
12/02/2019).

[28] Google. Google assistant, your own personal google. https://assistant.google.com/. (Accessed on
12/02/2019).

[29] Apple. Siri - apple. https://www.apple.com/siri/. (Accessed on 12/02/2019).

21

https://www.nvidia.com/en-us/deep-learning-ai/developer/
https://www.nvidia.com/en-us/deep-learning-ai/developer/
https://cloud.google.com/tpu/
https://www.google.com/
https://www.nvidia.com/en-us/
https://www.tensorflow.org/
https://pytorch.org/
https://ai.facebook.com/
https://mxnet.apache.org/
https://aws.amazon.com/ai/
https://developer.nvidia.com/cudnn
https://www.uber.com/us/en/uberai/
https://www.tesla.com/autopilot
https://azure.microsoft.com/en-us/overview/ai-platform/
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://en.wikipedia.org/wiki/Amazon_Alexa
https://assistant.google.com/
https://www.apple.com/siri/


A PREPRINT - DECEMBER 15, 2019

[30] Microsoft. Cortana - your personal productivity assistant. https://www.microsoft.com/en-us/cortana.
(Accessed on 12/02/2019).

[31] Robert Roe and Loren Dean. Beyond the ’i’ in ai. Scientific Computing World, 2019.
[32] Rob Johnson. Road to ai. Scientific Computing World, 2019.
[33] Apache kafka. https://kafka.apache.org/. (Accessed on 12/03/2019).
[34] Ammar Ahmad Awan, Karthik Vadambacheri Manian, Ching-Hsiang Chu, Hari Subramoni, and Dhabaleswar K

Panda. Optimized large-message broadcast for deep learning workloads: Mpi, mpi+ nccl, or nccl2? Parallel
Computing, 85:141–152, 2019.

[35] Dhabaleswar K Panda, Ammar Ahmad Awan, and Hari Subramoni. High performance distributed deep learning:
a beginner’s guide. In PPoPP, pages 452–454, 2019.

[36] Ammar Ahmad Awan, Arpan Jain, Ching-Hsiang Chu, Hari Subramoni, and Dhabaleswar K Panda. Communi-
cation profiling and characterization of deep learning workloads on clusters with high-performance interconnects.
IEEE Micro, 2019.

[37] Rajarshi Biswas, Xiaoyi Lu, and Dhabaleswar K Panda. Accelerating tensorflow with adaptive rdma-based grpc.
In 2018 IEEE 25th International Conference on High Performance Computing (HiPC), pages 2–11. IEEE, 2018.

[38] Kun Yang, Yi-Fan Chen, George Roumpos, Chris Colby, and John Anderson. High performance monte carlo
simulation of ising model on tpu clusters. arXiv preprint arXiv:1903.11714, 2019.

[39] Gu-Yeon Wei, David Brooks, et al. Benchmarking tpu, gpu, and cpu platforms for deep learning. arXiv preprint
arXiv:1907.10701, 2019.

[40] NVidia. Nvidia tensorrt | nvidia developer. https://developer.nvidia.com/tensorrt. (Accessed on
12/04/2019).

[41] Google. Tensorflow lite. https://www.tensorflow.org/lite. (Accessed on 12/04/2019).
[42] Facebook. Home | pytorch. https://pytorch.org/mobile/home/. (Accessed on 12/04/2019).
[43] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.
[44] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks.

In Advances in neural information processing systems, pages 4107–4115, 2016.
[45] Minje Kim and Paris Smaragdis. Bitwise neural networks. arXiv preprint arXiv:1601.06071, 2016.
[46] Google. Frequently asked questions | coral. https://coral.ai/docs/edgetpu/faq/. (Accessed on

12/04/2019).
[47] NVidia. Embedded systems developer kits & modules from nvidia jetson. https://www.nvidia.com/en-us/

autonomous-machines/embedded-systems/. (Accessed on 12/04/2019).
[48] En Li, Zhi Zhou, and Xu Chen. Edge intelligence: On-demand deep learning model co-inference with device-

edge synergy. In Proceedings of the 2018 Workshop on Mobile Edge Communications, pages 31–36. ACM,
2018.

[49] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95, 2010.

[50] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al. The hadoop distributed file system.
In MSST, volume 10, pages 1–10, 2010.

[51] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu, and Geoffrey Fox.
Twister: a runtime for iterative mapreduce. In Proceedings of the 19th ACM international symposium on high
performance distributed computing, pages 810–818. ACM, 2010.

[52] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al. Storm@ twitter. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pages 147–156. ACM, 2014.

[53] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 36(4), 2015.

[54] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter heron: Stream processing at scale. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, pages 239–250. ACM, 2015.

22

https://www.microsoft.com/en-us/cortana
https://kafka.apache.org/
https://developer.nvidia.com/tensorrt
https://www.tensorflow.org/lite
https://pytorch.org/mobile/home/
https://coral.ai/docs/edgetpu/faq/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/


A PREPRINT - DECEMBER 15, 2019

[55] alibaba/alink: Alink is the machine learning algorithm platform based on flink, developed by the pai team of
alibaba computing platform. https://github.com/alibaba/Alink. (Accessed on 12/03/2019).

[56] Wikipedia. Go (game) - wikipedia. https://en.wikipedia.org/wiki/Go_(game). (Accessed on
12/04/2019).

[57] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[58] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484, 2016.

[59] Google. Alphago | deepmind. https://deepmind.com/research/case-studies/
alphago-the-story-so-far#alphago_zero. (Accessed on 12/02/2019).

[60] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play with a
general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[61] Google Deepmind. Alphazero: Shedding new light on chess, shogi, and go | deepmind. https://deepmind.
com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go. (Ac-
cessed on 12/04/2019).

[62] Ibm100 - deep blue. https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/. (Accessed
on 12/04/2019).

[63] Stockfish (chess) - wikipedia. https://en.wikipedia.org/wiki/Stockfish_(chess). (Accessed on
12/04/2019).

[64] elmo (shogi engine) - wikipedia. https://en.wikipedia.org/wiki/Elmo_(shogi_engine). (Accessed
on 12/04/2019).

[65] Google. Apache beam. https://beam.apache.org/. (Accessed on 12/04/2019).
[66] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven Lax,

Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow model: A practical
approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing.
Proceedings of the VLDB Endowment, 8:1792–1803, 2015.

[67] Facebook. Caffe2 | a new lightweight, modular, and scalable deep learning framework. https://caffe2.ai/.
(Accessed on 12/04/2019).

[68] Facebook. Distributed communication package - torch.distributed — pytorch master documentation. https:
//pytorch.org/docs/stable/distributed.html. (Accessed on 12/04/2019).

[69] Wikipedia. Message passing interface - wikipedia. https://en.wikipedia.org/wiki/Message_Passing_
Interface. (Accessed on 12/04/2019).

[70] Facebook. facebookincubator/gloo: Collective communications library with various primitives for multi-machine
training. https://github.com/facebookincubator/gloo. (Accessed on 12/04/2019).

[71] Nvidia collective communications library (nccl) | nvidia developer. https://developer.nvidia.com/nccl.
(Accessed on 12/04/2019).

[72] pytorch/xla: Enabling pytorch on google tpu. https://github.com/pytorch/xla. (Accessed on 12/04/2019).
[73] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. Cryp-

tonets: Applying neural networks to encrypted data with high throughput and accuracy. In International
Conference on Machine Learning, pages 201–210, 2016.

[74] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over encrypted data.
arXiv preprint arXiv:1711.05189, 2017.

[75] Qian Lou, Bo Feng, Geoffrey C Fox, and Lei Jiang. Glyph: Fast and accurately training deep neural networks on
encrypted data. arXiv preprint arXiv:1911.07101, 2019.

[76] Facebook. Crypten: A new research tool for secure machine learning with pytorch. https://ai.facebook.
com/blog/crypten-a-new-research-tool-for-secure-machine-learning-with-pytorch/. (Ac-
cessed on 12/04/2019).

[77] Facebook. facebookresearch/crypten: A framework for privacy preserving machine learning. https://github.
com/facebookresearch/CrypTen. (Accessed on 12/04/2019).

23

https://github.com/alibaba/Alink
https://en.wikipedia.org/wiki/Go_(game)
https://deepmind.com/research/case-studies/alphago-the-story-so-far#alphago_zero
https://deepmind.com/research/case-studies/alphago-the-story-so-far#alphago_zero
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://en.wikipedia.org/wiki/Stockfish_(chess)
https://en.wikipedia.org/wiki/Elmo_(shogi_engine)
https://beam.apache.org/
https://caffe2.ai/
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://github.com/facebookincubator/gloo
https://developer.nvidia.com/nccl
https://github.com/pytorch/xla
https://ai.facebook.com/blog/crypten-a-new-research-tool-for-secure-machine-learning-with-pytorch/
https://ai.facebook.com/blog/crypten-a-new-research-tool-for-secure-machine-learning-with-pytorch/
https://github.com/facebookresearch/CrypTen
https://github.com/facebookresearch/CrypTen


A PREPRINT - DECEMBER 15, 2019

[78] Facebook. pytorch/captum: Model interpretability and understanding for pytorch. https://github.com/
pytorch/captum. (Accessed on 12/04/2019).

[79] Facebook. Captum · model interpretability for pytorch. https://captum.ai/. (Accessed on 12/04/2019).

[80] Facebook. facebookresearch/detectron: Fair’s research platform for object detection research, implementing
popular algorithms like mask r-cnn and retinanet. https://github.com/facebookresearch/Detectron.
(Accessed on 12/04/2019).

[81] Facebook. pytorch/fairseq: Facebook ai research sequence-to-sequence toolkit written in python. https:
//github.com/pytorch/fairseq. (Accessed on 12/04/2019).

[82] Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):885–890, 2019.

[83] Open Compute Project and Facebook. (4) ocpsummit19 - facebook ai infrastructure- presented by facebook -
youtube. https://www.youtube.com/watch?v=MYlCesArTWk&t=615s. (Accessed on 12/05/2019).

[84] Jian Zhang, Jiyan Yang, and Hector Yuen. Training with low-precision embedding tables. In Systems for Machine
Learning Workshop at NeurIPS, volume 2018, 2018.

[85] Srinivas Narayanan and Facebook AI. @scale 2019 keynote: Ai — the next big scaling frontier – @scale. https:
//atscaleconference.com/videos/scale-2019-keynote-ai-the-next-big-scaling-frontier/.
(Accessed on 12/05/2019).

[86] Andrej Karpathy and Tesla. (4) pytorch at tesla - andrej karpathy, tesla - youtube. https://www.youtube.
com/watch?v=oBklltKXtDE. (Accessed on 12/05/2019).

[87] Meet horovod: Uber’s open source distributed deep learning framework. https://eng.uber.com/horovod/.
(Accessed on 12/03/2019).

[88] Open mpi: Open source high performance computing. https://www.open-mpi.org/. (Accessed on
12/05/2019).

[89] Marmaray: An open source generic data ingestion and dispersal framework and library for apache hadoop | uber
engineering blog. https://eng.uber.com/marmaray-hadoop-ingestion-open-source/. (Accessed on
12/05/2019).

[90] Hudi: Uber engineering’s incremental processing framework on apache hadoop | uber engineering blog. https:
//eng.uber.com/hoodie/. (Accessed on 12/05/2019).

[91] Reza Shiftehfar and Stepan Bedratiuk. (4) uber : Big data infrastructure and machine learning platform - youtube.
https://www.youtube.com/watch?v=y3O94MnO_IU&feature=youtu.be. (Accessed on 12/05/2019).

[92] Application samples from microsoft ai lab. https://www.microsoft.com/en-us/ai/
ai-lab-application-samples?activetab=pivot1:primaryr8. (Accessed on 12/05/2019).

[93] Application samples from microsoft ai lab. https://www.microsoft.com/en-us/ai/
ai-lab-application-samples?activetab=pivot1:primaryr7. (Accessed on 12/05/2019).

[94] Stories from microsoft ai lab. https://www.microsoft.com/en-us/ai/ai-lab-stories?activetab=
pivot1:primaryr8. (Accessed on 12/05/2019).

[95] Meredith Ringel Morris. Ai and accessibility: A discussion of ethical considerations. Communications of the
ACM, January 2020. (preprint of a "Viewpoint" column to appear in CACM in late 2019/early 2020).

[96] Ashwin Ram and Amazon Alexa. (4) ashwin ram, conversational ai in amazon alexa at the ai conference 2017 -
youtube. https://www.youtube.com/watch?v=2Bazibaz1F8&t=1214s. (Accessed on 12/05/2019).

[97] Amazon sagemaker. https://aws.amazon.com/sagemaker/. (Accessed on 12/05/2019).

[98] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008.

[99] Duy Ho H., Raj Marri, Sirisha Rella, and Yugyung Lee. Deeplite: Real-time deep learning framework for
neighborhood analysis. Stream-ML, IEEE Big Data, 2019.

[100] Apache Kafka. apache kafka - google search. https://www.google.com/search?q=apache+kafka&
oq=apache+kafka&aqs=chrome..69i57j0l2j69i65l3.1633j0j9&sourceid=chrome&ie=UTF-8. (Ac-
cessed on 12/13/2019).

[101] Zero MQ. Zeromq. https://zeromq.org/. (Accessed on 12/13/2019).

[102] Rabbit MQ. Messaging that just works — rabbitmq. https://www.rabbitmq.com/. (Accessed on
12/13/2019).

24

https://github.com/pytorch/captum
https://github.com/pytorch/captum
https://captum.ai/
https://github.com/facebookresearch/Detectron
https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://www.youtube.com/watch?v=MYlCesArTWk&t=615s
https://atscaleconference.com/videos/scale-2019-keynote-ai-the-next-big-scaling-frontier/
https://atscaleconference.com/videos/scale-2019-keynote-ai-the-next-big-scaling-frontier/
https://www.youtube.com/watch?v=oBklltKXtDE
https://www.youtube.com/watch?v=oBklltKXtDE
https://eng.uber.com/horovod/
https://www.open-mpi.org/
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
https://eng.uber.com/hoodie/
https://eng.uber.com/hoodie/
https://www.youtube.com/watch?v=y3O94MnO_IU&feature=youtu.be
https://www.microsoft.com/en-us/ai/ai-lab-application-samples?activetab=pivot1:primaryr8
https://www.microsoft.com/en-us/ai/ai-lab-application-samples?activetab=pivot1:primaryr8
https://www.microsoft.com/en-us/ai/ai-lab-application-samples?activetab=pivot1:primaryr7
https://www.microsoft.com/en-us/ai/ai-lab-application-samples?activetab=pivot1:primaryr7
https://www.microsoft.com/en-us/ai/ai-lab-stories?activetab=pivot1:primaryr8
https://www.microsoft.com/en-us/ai/ai-lab-stories?activetab=pivot1:primaryr8
https://www.youtube.com/watch?v=2Bazibaz1F8&t=1214s
https://aws.amazon.com/sagemaker/
https://www.google.com/search?q=apache+kafka&oq=apache+kafka&aqs=chrome..69i57j0l2j69i65l3.1633j0j9&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=apache+kafka&oq=apache+kafka&aqs=chrome..69i57j0l2j69i65l3.1633j0j9&sourceid=chrome&ie=UTF-8
https://zeromq.org/
https://www.rabbitmq.com/


A PREPRINT - DECEMBER 15, 2019

[103] Ganesh Srinivasan. @scale 2019: Kafka @scale: Confluent’s journey bringing
event streaming to the cloud – @scale. https://atscaleconference.com/videos/
scale-2019-kafka-scale-confluents-journey-bringing-event-streaming-to-the-cloud/.
(Accessed on 12/13/2019).

[104] Bingjing Zhang, Yang Ruan, and Judy Qiu. Harp: Collective communication on hadoop. In 2015 IEEE
International Conference on Cloud Engineering, pages 228–233. IEEE, 2015.

[105] Langshi Chen, Bo Peng, Bingjing Zhang, Tony Liu, Yiming Zou, Lei Jiang, Robert Henschel, Craig Stewart,
Zhang Zhang, Emily Mccallum, et al. Benchmarking harp-daal: High performance hadoop on knl clusters. In
2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pages 82–89. IEEE, 2017.

[106] Intel R© data analytics acceleration library | intel R© software. https://software.intel.com/en-us/daal.
(Accessed on 12/14/2019).

[107] Supun Kamburugamuve, Kannan Govindarajan, Pulasthi Wickramasinghe, Vibhatha Abeykoon, and Geoffrey
Fox. Twister2: Design of a big data toolkit. Concurrency and Computation: Practice and Experience, page
e5189, 2017.

[108] Supun Kamburugamuve, Pulasthi Wickramasinghe, Kannan Govindarajan, Ahmet Uyar, Gurhan Gunduz,
Vibhatha Abeykoon, and Geoffrey Fox. Twister: Net-communication library for big data processing in hpc
and cloud environments. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pages
383–391. IEEE, 2018.

[109] intel-analytics/bigdl: Bigdl: Distributed deep learning library for apache spark. https://github.com/
intel-analytics/BigDL. (Accessed on 12/14/2019).

[110] Weka 3 - data mining with open source machine learning software in java. https://www.cs.waikato.ac.
nz/ml/weka/. (Accessed on 12/14/2019).

[111] Moa – machine learning for data streams. https://moa.cms.waikato.ac.nz/. (Accessed on 12/14/2019).
[112] Apache samoa. https://samoa.incubator.apache.org/. (Accessed on 12/14/2019).
[113] H2o architecture — h2o 3.26.0.11 documentation. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/

architecture.html. (Accessed on 12/14/2019).
[114] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J Franklin, and Ion Stoica. Graphx:

Graph processing in a distributed dataflow framework. In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages 599–613, 2014.

[115] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library. ACM
Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

[116] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie,
Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed machine learning on big data. IEEE
Transactions on Big Data, 1(2):49–67, 2015.

[117] Deep graph library. https://www.dgl.ai/pages/about.html. (Accessed on 12/14/2019).
[118] mesham/epython: Python for the epiphany co-processor. https://github.com/mesham/epython. (Accessed

on 12/13/2019).
[119] Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M Badia, Jordi Torres, Toni Cortes, and

Jesús Labarta. Pycompss: Parallel computational workflows in python. The International Journal of High
Performance Computing Applications, 31(1):66–82, 2017.

[120] Javier Álvarez Cid-Fuentes, Salvi Solà, Pol Álvarez, Alfred Castro-Ginard, and Rosa M. Badia. dislib: Large
Scale High Performance Machine Learning in Python. In Proceedings of the 15th International Conference on
eScience, pages 96–105, 2019.

[121] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford, Rohan Kumar, Lukasz Lacinski, Ryan
Chard, Justin M Wozniak, Ian Foster, et al. Parsl: Pervasive parallel programming in python. In Proceedings
of the 28th International Symposium on High-Performance Parallel and Distributed Computing, pages 25–36.
ACM, 2019.

25

https://atscaleconference.com/videos/scale-2019-kafka-scale-confluents-journey-bringing-event-streaming-to-the-cloud/
https://atscaleconference.com/videos/scale-2019-kafka-scale-confluents-journey-bringing-event-streaming-to-the-cloud/
https://software.intel.com/en-us/daal
https://github.com/intel-analytics/BigDL
https://github.com/intel-analytics/BigDL
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://moa.cms.waikato.ac.nz/
https://samoa.incubator.apache.org/
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/architecture.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/architecture.html
https://www.dgl.ai/pages/about.html
https://github.com/mesham/epython

	Introduction
	Workflow for AI Systems
	Data Organization
	In-Memory Oriented Dataflow
	Storage Oriented Dataflow
	Touch of HPC

	AI Modelling
	System Design
	Deployment

	Role of Big Data Systems
	Training System Requirement
	Predictive System Requirement
	Transfer Learning System Requirement

	AI at Work
	Google AI
	Alpha Go Zero
	Alpha Zero
	Google Assistant
	Apache Beam
	Tensorflow
	TensorflowLite
	Hardware Oriented Software Stack

	Facebook AI
	Pytorch
	Poker Game with AI
	Facebook Hardware Stack for High Performance
	Facebook ONNX
	Facebook AI @Scale

	Tesla AI
	Uber AI
	Microsoft AI
	Amazon AI

	IBM with Big Data Stack
	JVM Optimization
	GPU Acceleration
	Data Broker

	Distributed Data Paradigm
	K3s and K8s For Containing
	Streaming for AI with Message Brokers
	Lambda for Incremental Processing
	Storage Handling
	Databricks
	Harp
	Twister2
	BigDL
	Weka and Moa
	Apache Samoa
	H20
	GraphX
	Snap
	Petuum
	DeepDriveMd
	Deep Learning and Machine Learning Frameworks with Middle-ware Support

	Breaching the Programming Language Barrier
	Dask
	Epython
	PyComps
	Dislib
	Parsl

	Conclusion

