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Abstract— the design and implementation of higher level 
language interfaces are becoming increasingly important for 
data intensive computation. DryadLINQ is a runtime with a 
set of language extensions that enables programmers to 
develop applications processing large scale distributed data. It 
has been successfully used in a wide range of applications for 
the last five years. The latest release of DryadLINQ was 
published as a Community Technology Preview (CTP) in 
December 2010, and it contains new features and interfaces 
that can be customized to achieve better performances for 
applications and usability for developers. This paper presents 
three design patterns in DryadLINQ CTP that are applicable 
for a large class of scientific applications, exemplified by SW-
G, Matrix-Matrix Multiplication and PageRank with real data. 
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I.  INTRODUCTION 
Applying high level parallel runtimes to data intensive 

applications is becoming increasingly common [1]. Systems 
such as MapReduce and Hadoop allow developers to write 
applications that distribute tasks to remote environment 
where contains the data, which following the paradigm 
“moving the computation to data”. The MapReduce 
programming model has been applied to a wide range of 
applications, and attracts a lot of enthusiasm among 
distributed computing communities due to its easiness and 
efficiency to process large scale distributed data. 

However, its rigid and flat data processing paradigm does 
not directly support relational operations that have multiple 
related inhomogeneous input data stream. This limitation 
causes the difficulties and inefficiency when using Map-
Reduce to simulate relational operations like Join which is 
very common in database. For example, the classic 
implementation of PageRank is very inefficient due to the 
simulating of Join with MapReduce causing lots of network 
traffic for the computation. Further optimization of 
PageRank requires developers to have sophisticated 
knowledge on web graph structure.    

Dryad [2] is a general purpose runtime that supports data 
intensive applications on Windows platform. Dryad lies 
between MapReduce and database, which addresses some of 
the limitations of MapReduce systems. DryadLINQ [3] is the 
programming interface for Dryad that aims to enable 
developers make a wide range of data parallel applications in 
an easy and efficient way. It automatically translates LINQ 
programs written by .NET language into distributed 
computations run on top of Dryad system. For some 
applications, writing DryadLINQ programs are as simple as 

writing sequential programs. DryadLINQ and Dryad runtime 
optimizes the job execution plan and dynamically makes 
changes during the computation. All this process is handled 
by DryadLINQ/Dryad but transparent to users. For example, 
when implementing PageRank with DryadLINQ 
GroupAndAggregate() operator  because it can dynamically 
construct a partial aggregation tree to reduce the number of 
intermediate records that transferring across the compute 
nodes during the computation.   

In this paper, we will explore the easiness and 
efficiency of using DryadLINQ with three classic scientific 
applications and further classify them into three design 
patterns. The contributions of this paper are: 

1) We studied the task granularity that improve 
LINQ’s support for coarse-grain parallelization 
with DryadLINQ CTP data model and interface. 

2) We demonstrated a hybrid parallel programming 
model not only utilizes parallelism in multiple 
nodes but also in multiple cores.  

3) We evaluated different distributed grouped 
aggregation strategies in DryadLINQ CTP and 
studied the feature of input data that affect the 
efficiency of partial preaggregation. 

The structure of this paper is as follows: section 2 
illustrates DryadLINQ basic programming model. Section 3 
describes implementation of three classic scientific 
applications (SW-G, Matrix-Matrix Multiplication and 
PageRank) with DryadLINQ CTP. Section 4 discusses 
related work, and section 5 concludes this paper.  We note 
that as the latest LINQ to HPC has published in June 2011 
and its interface changes much from DryadLINQ CTP, we 
will describe programming models in pseudo code.   

II. DRYADLINQ PROGRAMMING MODEL 
Dryad, DryadLINQ and DSC [5] are a set of technologies 

support the processing of data intensive applications on 
Windows HPC cluster. The software stack of these 
technologies is shown in Fig 1.  

Dryad is a general purpose distributed runtime designed 
to execute data intensive applications on Windows clusters. 
A Dryad job is represented as a directed acyclic graph 
(DAG), which is called Dryad graph. The Dryad graph 
consists of some vertices and channels. A graph vertex is an 
independent instance of the data processing code in certain 
stage. Graph edges are channels transferring data between 
vertices. The Distributed Storage Catalog (DSC) is the 
component that works with NTFS to provide the data 



management functionality such as file replication and load 
balancing for Dryad and DryadLINQ. 

DryadLINQ is a library that translates Language-
Integrated Query (LINQ) programs written by .NET 
language into distributed computations run on top of Dryad 
system. The DryadLINQ API is based on LINQ 
programming model. It takes the advantage of standard 
query operators and adds query extensions specific to Dryad. 
The developers can apply LINQ operators such as Join, 
GroupBy to a set of .NET objects, which greatly simplify the 
developing of data parallel applications.  

 

 
Fig.1 Software Stack for DryadLINQ CTP 

A. Pleasingly Parallel Programming Model 
Many pleasingly parallel applications are of the (Single 

Program Multiple Data) SPMD model. DryadLINQ 
supports a unified data and programming model in 
representation and processing of data. DryadLINQ data 
objects are collections of strong .NET type objects, which 
can be split into some partitions and distributed across the 
computers of cluster. These DryadLINQ data objects are 
represented as DistributedQuery<T> or DistributedData<T> 
objects to which the LINQ operators can apply. DryadLINQ 
applications can create the DistributeData<T> objects from 
existing data stored in DSC or convert from 
IEnumerable<T> objects with AsDistributed(), 
AsDistributedFromPartitions() operators. Then, these 
DryadLINQ data objects are partitioned and distributed to 
compute nodes. They can be processed by invoking the user 
defined function within Select() or ApplyPerPartition() 
operators. The sample code of this programming model is as 
follows: 
Var inputs= inputDataSet.AsDistributedFromPartitions(); 
//construct DryadLINQ data objects 
Var outputs= inputs.Select(distributedObject => 
UserDefinedAppFunction(distributedObject)); 
//execute DryadLINQ data objects 

A wide range of pleasingly parallel applications can be 
implemented with the above DryadLINQ primitives which 
include CAP3 DNA sequence assembly application, High 
Energy Physics data analysis application [21] and the  all 
pair gene sequences SW-G computation.    

B. Hybrid Parallel Programming Model 
Dryad is supposed to process coarse-granularity tasks for 

large scale distributed data. And it schedules tasks to the 
resources in the unit of compute nodes rather than cores. To 
make high utilization of multi-core resources of a HPC 
cluster, one approach is to perform the parallel computation 
with PLINQ on each node. The DryadLINQ provider can 
automatically transfer PLINQ query to parallel computation. 
The other approach is to apply the multi-core technologies 
in .NET like TPL, thread pool to the user-defined function 
within in the lambda expression of DryadLINQ query.  

In above hybrid model, Dryad handles the parallelism 
between the cluster nodes while the PLINQ, TPL, and 
thread pool technologies deal with the parallelism on multi-
core of each node. This hybrid parallel programing model in 
Dryad/DryadLINQ has been proved to be successful and 
applied to data clustering applications like GTM 
interpolation, MDS interpolation [21]. Most of the 
pleasingly parallel application can be implemented with this 
model to increase the overall utilization of cluster. The 
sample code of this programming model is provided as 
follows:  
Var inputs= inputDataSet.AsDistributedFromPartitions(); 
Var outputs = 
inputs.ApplyPerPartition(distributedPartitions => 
MultiCoreProcessingFunction(distributedPartitions)); 
Further, the performance of applications with hybrid 

model can be affected not only by the parallel algorithm in 
node level, but also by the factors in core level like cache 
and memory bandwidth [17]. This paper will study the 
hybrid parallel programming model using matrix 
multiplication with different combinations of algorithms and 
multi-core technologies.  

C. Distributed Grouped Aggregation: 
The GROUP BY operator in parallel database is often 

followed by the Aggregate functions. It groups the input 
records into some partitions by keys, and then merges the 
records for each group by certain attribute values. This 
common pattern is called Distributed Grouped Aggregation. 
Sample applications of this pattern include the sales data 
summarizations, the log data analysis, and social network 
influence analysis [30].    

There are several approaches to implement distributed 
grouped aggregation. A direct one is to use the hash 
partition. It uses hash partition operator to redistributes the 
records to compute nodes so that identical records store on 
the same node. Then it merges the records of each group on 
each node. The sample code is as follows:  
Var groups = source.GroupBy(KeySelect); 
//redistribute records to some groups by keys 
Var reduced = groups.SelectMany(Reduce); 
//aggregate records for each group 

The hash partition is of simple implementation but will 
cause lots of network traffic when the number of input 
records is very large. A common way to optimize this 
approach is to apply partial preaggregation. It aggregates the 



local records of each node, and then hash partition 
aggregated partial results across cluster based on their key. 
This approach is better than directly hash partition because 
the number of records transferring across the cluster 
becomes much fewer after local aggregation operation. 
Further, there are two ways to implement the partial 
aggregation: 1) hierarchical aggregation 2) aggregation tree 
[4]. The hierarchical aggregation is usually of two or three 
aggregation layers each of which has the explicitly 
synchronization phase. The aggregation tree is the tree 
graph that guides job manager to perform the partial 
aggregation for many subsets of input records.  

DryadLINQ can automatically translate the distributed 
grouped aggregation query and its combine functions satisfy 
the associative and commutative rules into optimized 
aggregation tree. During processing, Dryad can adaptively 
change the structure of aggregation tree without additional 
code from developer side. This mechanism greatly 
simplifies the programming model and enhances the 
efficiency of grouped aggregation applications.   

III. IMPLEMENTATIONS 
We implemented SW-G, Matrix-Matrix Multiplication 

and PageRank with DryadLINQ CTP and evaluated their 
performance on two Windows cluster (HPC R2 SP1). The 
hardware resources used in this paper are as follow: 
Table 1. 32 nodes homogeneous HPC cluster TEMPEST 

 TEMPEST TEMPEST-CNXX 
CPU Intel E7450  Intel E7450 

Cores 24 24 

Memory 24.0GB 50.0 GB 

Mem/Core 1 GB 2 GB 

 
Table 2. 7 nodes inhomogeneous HPC cluster STORM 
 STORM-

CN01,CN02, 
CN03 

STORM-
CN04,CN05 

STORM-
CN06,CN07 

CPU AMD 2356 AMD 8356 Intel E7450 
Cores 8 16 24 
Memory 16GB 16GB 48GB 
Mem/Core 2GB 1GB 2GB 
 

A. SW-G Application 
The Alu clustering problem [6] [7] is one of the most 

challenging problems for sequencing clustering because Alus 
represent the largest repeat families in human genome. There 
are about 1 million copies of Alu sequences in human 
genome, in which most insertions can be found in other 
primates and only a small fraction (~ 7000) are human-
specific. This indicates that the classification of Alu repeats 
can be deduced solely from the 1 million human Alu 
elements. Notably, Alu clustering can be viewed as a 
classical case study for the capacity of computational 
infrastructures because it is not only of intrinsic biological 
interests, but also a problem of a scale that will remain as the 
upper limit of many other clustering problems in 

bioinformatics for the next few years, e.g. the automated 
protein family classification for a few millions of proteins 
predicted from large meta-genomics projects. 

 
Fig. 2 DryadLINQ implementation of SW-G Application 

 
We implemented the DryadLINQ application to calculate 

the pairwise SW-G distances in parallel for a given set of 
gene sequences. To clarify our algorithm, let’s consider an 
example with 10,000 gene sequences, which produces a 
pairwise distance matrix of size 10,000 × 10,000. We 
decompose the overall computation into a block matrix D of 
size 8 × 8, each block contains 1250 × 1250 sequences in this 
case. Due to the symmetry of the distances D(i,j) and D(j,i), 
we only calculate the distances in the 36 blocks of the upper 
triangle of the block matrix as shown in Fig 2. Assuming 
there are 6 compute nodes, and we split the 36 blocks into 6 
partitions each of which contains 6 blocks. Each Dryad tasks 
invokes the user defined function PerformAlignments() via 
ApplyPerPartition to apply Alu clustering computation to the 
6 blocks that dispatched to them. The main component of 
DryadLINQ SW-G code is as follows: 
DistributedQuery<OutputInfo> outputInfo = 
inputBlocks.AsDistributed().ApplyPerPartition(subBlocks
Set => PerformAlignments4(subBlockSet, 
values,_inputFile, _sharepath, _outputFilePrefix, 
_outFileExtension, _seqAlignerExecName, _swgExecName)) 

 
1) Scheduling for inhomogeneous tasks 

The SW-G is pleasingly parallel application, but 
pairwise SW-G computations are inhomogeneous in CPU 
time. That task of splitting all SW-G blocks into partitions 
with even number of blocks still has the workload balance 
issue when processing those partitions on homogeneous 
computational resources. We adopt two approaches to 
address this issue.  

One approach is to construct SW-G blocks of input data 
by randomly selecting sequences. To verify this strategy, we 
manually generate a set of gene sequences with a given mean 
sequence length (400) with a variety of standard deviations 
following a normal distribution of the sequence lengths. We 
construct the SW-G blocks input data by randomly selecting 
sequences from above data set as well as by selecting in a 
sorted order based on the sequence length. As shown in Fig 
3, the randomly distributed input data can deliver a better 
performance than skew distributed one [1]. Note: there is a 
small performance increase of randomized distributed data 



when standard deviation increases from 0 to 150 which are 
due to nature randomness of SW-G program. 

 
Fig. 3 Performance Comparison for Skewed Distributed and 

Randomized Distributed Data 
 

The above approach in Fig 3 requires additional work 
from developer side. Another approach for this issue is to 
split the skewed distributed input data into many finer 
granularity tasks. To verify this, we constructed a set of gene 
sequence with a given mean sequence length (400) with 
varying standard deviations (50, 150, 250) and run these 
SW-G data set on our TEMPEST cluster with different 
number of partitions. As it shows in Fig 4, as the number of 
partitions increase the overall job turnaround time decrease 
for the three skewed distributed input data set. This is 
because the finer granularity tasks can achieve better 
workload balance among nodes by keeping dispatching 
available tasks to idle resources. However, when the number 
of partitions keeps increasing, the scheduling cost becomes 
the dominant factor on overall performance. 

     
Fig 4. Performance Comparison for Skewed Distributed Data 

with Different Task Granularity.  
2) Scheduling for inhomogeneous cluster 

Clustering or extending existing hardware resources 
may lead to the problem of scheduling tasks on an 
inhomogeneous cluster with different CPU, memory, 

network capability between nodes [8]. Allocating work load 
to resources according to their computational capability is a 
solution, but it requires the runtimes to know the resources 
requirement of each job and availability of hardware 
resources. One other solution is to split the entire job into 
many finer granularity tasks and keep dispatching available 
tasks to idle computational resources. 

 
Fig. 5 CPU and scheduling time of same SW-G job with 

various partition granularities 
 
We verify the second approach by executing the 4096 

sequences SW-G jobs on the inhomogeneous HPC STORM 
with different partition granularity. Fig 5 shows the CPU 
time and task scheduling time of same SW-G job with 
different number of partitions: 6, 24, and 192. In the first 
SW-G job, an entire job is split into 6 partitions. The 
difference in CPU time for each task is caused by the 
difference in computational capability among nodes. It is 
clearly illustrated that finer partition granularity can deliver a 
better load balance on inhomogeneous computational nodes. 
However, it also shows that the task scheduling cost 
increases as the number of partitions increases.    

B. Hybrid Parallel Programming Model 
To explore the hybrid parallel programming model, we 

implemented DryadLINQ Matrix-Matrix Multiplication 
with three different algorithms and four multi-core 
technologies. The three matrix multiplication algorithms 
are: 1) row split algorithm, 2) row/column split algorithm, 
3) two dimension block decomposition split in Fox 
algorithm [9]. The multi-core technologies are: PLINQ, 
TPL, thread pool, and parallel for.  

In the experiments, we port multi-core technologies to 
different algorithms and study their overall performance. 
We use square matrix in this section by default, where each 
element is double number. The basic equation to calculate 
matrix-matrix multiplication is:  

∑
=

=
p

k
kjikij BAC

1        
1) Matrix-Matrix Multiplication algorithm  

The row split algorithm splits matrix A by its rows. It 
scatters the rows blocks of matrix A across compute nodes, 
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and then copies the whole matrix B to every compute node. 
Each Dryad task multiplies some rows blocks of A by entire 
B, and retrieves the output results to main program and 
combine them into matrix C.   

The row/column split algorithm [18] splits matrix A by 
rows and split matrix B by columns. The column blocks of 
B are scattered across the cluster in advance. Then the 
whole computation is divided into several iterations, each of 
which multiplies the one row block of A to all the column 
blocks of B on compute nodes. The output of tasks within 
the same iteration will be retrieved to the main program to 
aggregate one row block of matrix C. The main program 
collects results in multiple iterations to generate the final 
output of matrix C.  

 The two dimensional block decomposition in Fox 
algorithm splits matrix A and matrix B into squared sub-
blocks. These sub-blocks are dispatched to a squared 
process mesh with same scale. For example, let’s assume to 
run the algorithm on a 2X2 processes mesh. Accordingly, 
matrix A and matrix B are split by both rows and columns 
and construct a 2X2 block mesh respectively. In each 
computation step, every process holds a block of matrix A 
and a block of matrix B and computes a block of matrix C. 
The data flow of the algorithm is shown in Fig 6. 

 
Fig. 6 Program Flow for DryadLINQ Matrix-Matrix 

Multiplication in Fox Algorithm 
 

The Fox algorithm is originally implemented with MPI, 
which requires maintaining intermediate status and data 
within processes during the computation. The Dryad 
implementation uses a data flow runtime which does not 
support status of tasks during computation. In order to keep 
the intermediate status and data, we apply the update 

operation to DistributedQuery<T> objects, and assign new 
status and data to themselves where the pseudo code is 
included as follows: 

DistributedQuery<object> inputData =    
inputObjects.AsDistributed(); 

inputData = inputData.Select(data=>update(data)); 
We evaluate the three algorithms by running matrix-

matrix multiplication jobs with various input data size from 
2400 to 19200 with only one core per node on 16 compute 
nodes (4X4 mesh). Fig 7 shows that the Fox and RowSplit 
algorithm can achieve the better speed up than 
RowColumnSplit. Comparing with the other two 
algorithms, the Fox algorithm has finer granularity tasks as 
it only calculate one sub-block of matrix A and matrix B. 
This will cause the high cache hitting rate during the 
computation. The row/column algorithms perform the worst 
due to cost to launch Dryad vertex in every iteration. 

 
Fig 7 Speed-up of three algorithms with various sizes of data 

 
2) Parallelism in core level 

We evaluated the multi-core technologies in .NET 4 by 
running matrix-matrix multiplication jobs with various size 
of input data from 2400 * 2400 to 19200 * 19200 on a 24-
core Windows server. Fig 8 shows the performance results of 
matrix-matrix multiplication jobs for three different multi-
core technologies. As illustrated in Fig 8, the PLINQ has the 
best performance compare with other approaches.  

 
Fig. 8 Speed up for Different Method of Multi-Core 

Parallelism on 24 cores Compute Node 
 

3) Port multi-core tech into Dryad task  
We port the above multi-core technologies into the three 

matrix-matrix multiplication algorithms. Fig 9 shows the 
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relative speed up for three algorithms combined with 
different multi-core technologies run on 16 compute nodes 
with 24 cores per node. Fig 9 shows that the Fox algorithm 
does not perform well as RowSplit in Fig 7. In matrix-matrix 
multiplication, the computation cost O(n^3) increases faster 
than the communication cost O(n^2). Thus after porting 
multi-core into Dryad task, the task granularity for the row 
split and row/column split algorithm becomes finer as well, 
which alleviates the low cache hit rate issue for coarse-
granularity task. 

 
Fig 9. Relative Speed up for Different Combination of 

Algorithms and Multi-core Technologies 
 
Fig 10 is the CPU and network utilization static data of 

the three parallel algorithms from HPC resource manager.  

 
Fig 10. CPU & Network Utilization for Different Algorithms 

 

C. Distributed Grouped Aggregation 
We have studied the distributed grouped aggregation in 

DryadLINQ CTP with PageRank with real data. Specifically, 
we investigated the programming interface and evaluate 
performance of three distributed grouped aggregation 
approaches in DryadLINQ which include: Hash Partition, 
Hierarchical Aggregation and Aggregation Tree. Further, we 

studied the features of input data that affect the performance 
of distributed grouped aggregation implementations.   

The PageRank is already a well-studied web graph 
ranking algorithm. It calculates the numerical value to each 
element of a hyperlinked set of web pages, which reflects the 
probability that the random surfer accesses those pages. The 
process of PageRank can be understood as a Markov Chain 
which needs recursive calculation to converge. An iteration 
of the algorithm calculates the new access probability for 
each web page based on values calculated in the previous 
computation. The iterations will not stop until the Euclidian 
distance between two subsequent rank value vectors 
becomes less than a predefined threshold. In this paper, we 
implemented the DryadLINQ PageRank with the 
ClueWeb09 data set [16] which contains 50 million web 
pages. 

We split the entire ClueWeb graph into 1280 partitions, 
each of which is saved as Adjacency Matrix (AM) file. The 
characteristics of the input data are described as below: 
No of am 
files 

File size No of web 
pages 

No of links Ave out-
degree 

1280 9.7GB 49.5million 1.40 billion 29.3 

1) The Hash Partition Approach  
A simple way to implement PageRank with hash 

partition approach in DryadLINQ CTP is to use GroupBy() 
and Join() as follows: 
for (int i = 0; i < maxNumIteration; i++)    { 
newRanks = pages.Join(ranks, page => page.key, rank => 
rank.key,(page, rank) => page.links.Select(key => new Rank(key, 
rank.value / (double)page.links.Length()))) 
.SelectMany(ranks => ranks).GroupBy(rank => rank.key). 

Select(group => new Rank(group.Key, group.Select(rank => 
rank.value).Sum() * 0.85 + 0.15 / (double)numUrls)); 

    ranks = newRanks;    } 

The Page objects are used to store the structure of web 
graph. Each element Page in collection pages contains a 
unique identifier number page.key and a list of identifiers 
specifying all the pages in the web graph that page links to. 
We construct the DistributedQuery<Page> pages objects 
from the AM files with function BuildPagesFromAMFile(). 
The rank object is a pair specifying the identifier number of 
a page and its current estimated rank value. In each iteration 
the program JOIN the pages with ranks to calculate the 
partial rank values. Then GroupBy() operator hash partition   
partial rank values across cluster and return the IGrouping 
objects (groups of group), where each group represents a set 
of partial ranks with the same source page pointing to them. 
The grouped partial rank values are summed up to new final 
rank values and updated with power method [20]. 

2) The Hierarchical Aggregation Approach 
The hash partition PageRank is not efficiency when the 

number of output tuples is small. Thus we also implemented 
PageRank with hierarchical aggregation approach which has 
tree fixed aggregation stages: 1) the initial aggregation stage 
for each user defined Map task. 2) the second stage for each 
DryadLINQ partition. 3) the third stage to calculate the final 
PageRank rank values. In stage one, each user-defined Map 
task calculates the partial results of some pages that belongs  
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Fig. 12 CPU and Network Utilization for Different Aggregation Strategies 

 
to sub web graph represented by the AM file. The output of 
Map task is a partial rank value table, which will be merged 
into global rank value table in later stage. Thus the basic 
processing unit of our hierarchical aggregation 
implementation is a sub web graph rather than one paper in 
hash partition implementation. The coarse granularity 
processing strategy has a lower cost in task scheduling, but 
it requires additional code and the understanding of web 
graph from developer side.   

3) The Aggregation Tree Approach 
The hierarchical aggregation approach may not perform 

well for computation environment which is inhomogeneous 
in network bandwidth, CPU, memory capability, because it 
has several synchronization stages. In this scenario, the 
aggregation tree approach is a better choice. It can construct 
a tree graph to guide the job manager to make aggregation 
operations for many subsets of input tuples so as to decrease 
intermediate data transformation. We also implemented 
PageRank with GroupAndAggregate() operator that enable 
aggregation tree optimization.  

In ClueWeb data set, the urls are stored in alphabet 
order, web pages belong to same domain are more likely 
saved in one AM file. Thus the intermediate data transfer in 
the hash partition stage can be greatly reduced by applying 
the partial grouped aggregation to each AM file.  

4) Performance Analysis 
We evaluate performance of the three approaches by 

running PageRank jobs with various sizes of input data on 17 
compute nodes on TEMPEST. Fig 11 shows that the 
aggregation tree and hierarchical aggregation approaches 
outperform hash partition approach. Fig.12 is the CPU 
utilization and network utilization statistic data obtained 
from HPC cluster manager for the three aggregation 
approaches. It shows that the partial aggregation requires less 
network traffic than hash partition in the cost of CPU 
overhead.  

The hierarchical aggregation approach outperforms 
aggregation tree because it has the coarser granularity 
processing unit. Besides, our experiment environment of 
TEMPEST cluster has homogeneous network and CPU 
capability. 

 
Fig. 11 Time in sec to compute PageRank per iteration 

with three aggregation approaches with clue-web09 data set 
on 17 nodes of TEMPEST 

 
In summary, the hierarchical aggregation and 

aggregation tree approaches have different trade-offs on 
memory and CPU overhead vs. network overhead. And they 
work well only when the number of output tuples is much 
smaller than that of input tuples; while hash partition works 
well only when the number of output tuples is larger than 
that of input tuples.  

We design a mathematics model to describe how the 
ratio between input and output tuples affects the 
performance of aggregation approaches. First, we define the 
data reduction proportion (DRP) to describe the ratio as 
follows: 
𝐷𝑅𝑃 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑢𝑝𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑡𝑢𝑝𝑙𝑒𝑠
    (1) 

Table 3. Data reduction ratios for different PageRank 
approaches with Clue-web09 data set 
Input size hash 

aggregation 
partial 
aggregation 

hierarchical 
aggregation 

320 files 2.3G 1: 306 1:6.6:306 1:6.6:2.1:306 
640 files 5.1G 1: 389 1:7.9:389 1:7.9:2.3:389 
1280 files 9.7G 1: 587 1:11.8:587 1:11.8:3.7:587 
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Fig. 13 Time for two aggregation approaches with different 
DRP values. 
 

Further, we define a mathematic model to describe how 
DRP will affect the efficiency of different aggregation 
approaches. Assume the average number of tuples of each 
group is M (M=1/DRP); and there are N compute nodes; and 
assume the M tuples of each group are evenly distributed on 
the N nodes. In hash partition approach, the M tuples with 
same key are hashed into same group on one node, which 
require M aggregation operations. In partial aggregation 
approaches, the number of local aggregation operations is 
M/N on each node, which produces N partial aggregated 
results and need N more aggregation operations. Thus the 
total number of aggregation operations for the M tuples is 
(M/N)*N+N. Then the average number of aggregation 
operations of each record of the two approaches is as follows: 

�
𝑂 �𝑀

𝑀
� = 𝑂(1) 

𝑂�𝑀+𝑁

𝑀
� = 𝑂(1 + 𝑁 ∗ 𝐷𝑅𝑃) 

   (2) 

Usually, DRP is much smaller than the number of 
compute nodes. Taking word count as an example, the 
documents with millions words may consist of several 
thousands common words. In PageRank, as the web graph 
structure obeys zipf’s law, DRP is not as small as that in 
word count. Thus, the partial aggregation approach may not 
deliever performance as well as word count [4].  

To quantatively analysis of how DRP affects the 
aggregation performance, we compare two aggregation 
approraches with a set of web graphes with different DRP by 
fixing the number of output tuples and changing that of input 
tuples. It is illustrated in Fig. 13 that when the DRP smaller 
than 0.017 the partial aggregation perform better than hash 
partition aggregation. When DRP bigger than 0.017, there is 
not much different between these two aggregation 
approaches. Fig. 14 shown the time per iteration of 
PageRank jobs of web graphes with  different number of 
output tuples when that of input tuples fixed. Fig.13 and 14 
show that different grouped aggregation approaches fit well 
with different DRP range of input data. 

IV. RELATED WORK 
In this paper, we illustrate three design patterns in 
DryadLINQ CTP for classic scientific applications with the  

Fig. 14 Time per iteration for two aggregation approaches 
with different number of output tuples (from 100000 to 
1000000) when number of input tuples is 4.3 billion 
 
focus on easiness of programming and the performance of 
applications. To our knowledge, these patterns have covered 
a wide range of distributed scientific applications.   

A. Pleasingly Parallel Application 
We have shown that the developers can easily control the 

partition granularity with DryadLINQ interface to solve 
work load balance issue. In batch job scheduling systems 
like PBS, programmers have to manually group/un-group or 
split/combine input data to control task granularity.  Hadoop 
provides the interface that allows developers to control task 
granularity by defining the size of input records in HDFS. 
This is a good improvement, but it still requires developers 
to know and define the logic format of input data in HDFS. 
DryadLINQ provides a simplified data model and interface 
for this issue based on existing .NET platform. 

B. Hybrid Parallel Programming 
The hybrid parallel programming must combine inter 

node distributed memory parallelization with intra node 
shared memory parallelization. MPI + 
MPI/OpenMP/Threading are the hybrid programming 
model utilized in the high performance computing. Paper 
[31] discusses the hybrid parallel programming paradigm 
using MPI.NET and TPL, CCR (Concurrency and 
Coordination Runtime) on Windows HPC server. It shows 
that the efficiency of hybrid parallel programming model 
have to do with the task granularity, while parallel overhead 
is mainly caused by synchronization and communication. 
Our paper is focus on Dryad, which is intended for the data 
intensive computation.  

Twister [14] and Hadoop can also make use of multiple 
core system by launching multiple task daemons on each 
compute node. Typically the number of task daemons is 
equal to that of cores on each compute node, but it can be 
less or more than number of cores on each node as well. The 
developers do not need to know the difference of underline 
hardware resources, because the runtime provide the 
identical programming interface to dispatch tasks to task 
daemons across cluster automatically.  
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C. Distributed Grouped Aggreagtion 
MapReduce and SQL in database are two programming 

models that can perform grouped aggregation. MapReduce 
has been applied to process a wide range of flat distributed 
data. However, MapReduce is not efficient to process 
relational operations which have multiple inhomogeneous 
input data stream like JOIN. The SQL queries are able to 
process relational operations of multiple inhomogeneous 
input data stream. But, the operations in full-feature SQL 
database has lots of extra overhead which prevents 
application from processing large scale input data. 

DryadLINQ lies between SQL and MapReduce, and it 
addresses some limitations of SQL and MapReduce. 
DryadLINQ provides developers SQL like queries to 
process efficient aggregation for single input data stream 
and multiple inhomogeneous input stream, but it does not 
have much overhead as SQL by eliminating some 
functionality of database (transactions, data lockers, etc.). 
Further Dryad can build the aggregation tree (some database 
also provide this kind of optimization) so as to decrease the 
data transformation in hash partitioning stage. 

V. DISCUSSION AND CONCLUSION 
We have presented in this paper three typical 

programming models, which are applicable to a large class 
of applications in science domain using DryadLINQ CTP. 
Further, we discussed the issues that affect the performance 
of applications implemented with these programming 
models.   

We investigated the hybrid parallel programming model 
with the matrix-matrix multiplication. We have shown that 
porting multi-core technology can increase the overall 
performance significantly. And we observed that different 
combination of parallel algorithm in nodes level and multi-
core technology in core level will affect overall performance 
of application. In matrix-matrix multiplication, the CPU cost 
O(n^3) increase faster than the memory and bandwidth cost 
O(n^2). Thus the CPU cache and memory paging is more 
important than network bandwidth to scale up matrix-matrix 
multiplication.  

At last, we studied the different aggregation approaches 
in DryadLINQ CTP. And the experiment results showed that 
different approaches fit well with different range of data 
reduction proportion (DRP). We designed a simple 
mathematics model to describe the overhead of aggregation 
approaches. For a complete analysis of the performances of 
aggregation approaches, one has to take in consideration 
several factors: 1) The size of memory on each node. Partial 
preaggregation requires more memory than hash partition. 2) 
The bandwidth of network. Hash partition has larger network 
traffic overhead than partial preaggregation. 3) The choice of 
implementation of partial preaggregation in DryadLINQ, like 
the accumulator fullhash, iterator fullhash/fullsort. The 
different implementations require different size of memory 
and bandwidth. Our future job is to supplement the 
mathematics model with above factors to describe the timing 
cost of distributed grouped aggregation.  
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