

DRYADLINQ CTP EVALUATION
Performance of Key Features and Interfaces in DryadLINQ CTP

Hui Li, Yang Ruan, Yuduo Zhou, Judy Qiu
November 15, 2011

SALSA Group, Pervasive Technology Institute, Indiana University
http://salsahpc.indiana.edu/

Table of Contents
1 Introduction	4
2 Overview	6
2.1 Task Scheduling	7
2.2 Parallel Programming Model	7
2.3 Distributed Grouped Aggregation	8
3 Pleasingly Parallel Application in DryadLINQ CTP	8
3.1 Introduction	8
3.1.1 Pairwise Alu Sequence Alignment Using Smith Waterman Gotoh	8
3.1.2 DryadLINQ Implementation	9
3.2 Task Granularity Study	10
3.2.1 Workload Balancing	10
3.2.2 Scalability Study	12
3.3 Scheduling on an Inhomogeneous Cluster	14
3.3.1 Workload Balance with Different Partition Granularities	14
3.4 Evaluation and Findings	16
4 Hybrid Parallel Programming Model	16
4.1 Introduction	16
4.2 Parallel Matrix-Matrix Multiplication Algorithms	16
4.2.1 Row-Partition Algorithm	16
4.2.2 Row-Column Partition Algorithm	17
4.2.3 Block-Block Decomposition in the Fox-Hey Algorithm	18
4.3 Performance Analysis in Hybrid Parallel Model	20
4.3.1 Performance on Multi Core	20
4.3.2 Performance on a Cluster	21
4.3.3 Performance of a Hybrid Model with Dryad and PLINQ	21
4.3.4 Performance Comparison of Three Hybrid Parallel Models	22
4.4 Timing Analysis for Fox-Hey Algorithm on the Windows HPC cluster	24
4.5 Evaluation and Findings	26
5 Distributed Grouped Aggregation	26
5.1 Introduction	26
5.2 Distributed Grouped Aggregation Approaches	26
5.2.1 Hash Partition	27
5.2.2 Hierarchical Aggregation	28
5.3.3 Aggregation Tree	28
5.3 Performance Analysis	29
5.3.1 Performance in Different Aggregation Strategies	29
5.3.2 Comparison With Other Implementations	31
5.3.3 Chaining Tasks Within BSP Jobs	31
5.4 Evaluation and Findings	32
6 Programming Issues in DryadLINQ CTP	32
6.1 Class Path in Working Directory	32
6.2 Late Evaluation in Chained Queries within One Job	32
6.3 Serialization for a Two Dimensional Array	33
6.4 Fault tolerant in DryadLINQ CTP	33
6.4.1 Failures and Fault Tolerance	33
7 Classroom Experience with Dryad	35
7.1 Dryad in Eduction	35
7.2 Concurrent Dryad jobs	36
8 Analysis between Dryad CTP and Hadoop	37
8.1 Key features that Dryad CTP outperforms Hadoop	37
8.2 Key features analysis between Dryad CTP and Hadoop	39
8.3 Programming Models Analysis between Dryad CTP and Hadoop	40
8.3.1 Pleasingly parallel programming model	41
8.3.2Relational Data Sets Processing	41
8.3.3 Iterative MapReduce:	42
8.4 Conclusion	43
Acknowledgements	43
References	43
Appendix	44

[bookmark: _Toc310698549]1 Introduction
We are in the data deluge when progress in science requires the processing of large amounts of scientific data [1]. One important approach is to apply new languages and runtimes to new data-intensive applications [2] to enable the preservation, movement, access, and analysis of massive data sets. Systems such as MapReduce and Hadoop allow developers to write applications for distributing tasks to remote environments containing the desired data, which instantiates the paradigm of “moving the computation to data”. The MapReduce programming model has been applied to a wide range of applications and attracts enthusiasm from distributed computing communities due to its ease of use and efficiency in processing large-scale distributed data.
MapReduce, however, has its limitations. For instance, its rigid and flat data-processing paradigm does not directly support relational operations that have multiple related inhomogeneous data sets. This causes difficulties and inefficiency when using MapReduce to simulate relational operations such as join, which is very common in database systems. For example, the classic implementation of PageRank is notably inefficient since the simulation of joins with MapReduce causes a lot of network traffic during the computation. Further optimization of PageRank requires developers to have sophisticated knowledge of web graph structure.
Dryad [3] is a general-purpose runtime for supporting data-intensive applications on a Windows platform. It models programs as a directed, acyclic graph of the data flowing between operations and addresses some limitations existing in MapReduce. DryadLINQ [4] is the declarative programming interface for Dryad, and it automatically translates LINQ programs written by the .NET language into distributed computations executing on top of the Dryad system. For some applications, writing DryadLINQ distributed programs is as simple as writing sequential programs. DryadLINQ and Dryad runtime optimize job execution planning. This optimization is handled by the runtime and is transparent to users. For example, when implementing PageRank with the GroupAndAggregate() operator, DryadLINQ can dynamically constructs a partial aggregation tree based on data locality to reduce network traffic over cluster nodes.
The overall performance issues of data parallel programing models like MapReduce are well understood. Dryad simplifies usage by leaving the details of scheduling, communication, and data access to underlying runtime systems that hide the low-level complexity of parallel programming. However, such an abstraction may come at a price in terms of performance when applied to a wide range of applications that port to multi-core and heterogeneous systems. We have conducted extensive experiments on DryadLINQ/Dryad CTP and its usage in a recent publication [5] to identify the classes of applications that fit well. It is based on our evaluation of DryadLINQ, which was published as a Community Technology Preview (CTP) in December 2010.
Let us explain how this new report fits with earlier results.This report extends significantly the results presented in our earlier DryadLINQ evaluation [2] and we have not repeated discussions given earlier. The first report in particular focused on comparing Dryad with Hadoop and MPI and covered multiple pleasing parallel (essentially independent) applications. Further it covered K-means clustering as an example of an important iterative algorithm and used this to motivate the Iterative MapReduce runtime. The original report had an analysis of applications suitable for MapReduce and its iterative extensions which is still accurate but not repeated here.
In this report we use a newer version of DryadLINQ (CTP) programming models and can be applied to three different types of classic scientific applications including pleasingly parallel, hybrid distributed and shared memory, and distributed grouped aggregation. Our focus was on novel features of this run time and particularly challenging applications. We cover a single pleasing parallel application consisting of Map and Reduce steps, the Smith Waterman Gotoh (SWG) [6] algorithm for dissimilarity computation in bioinformatics. In this case, we study in detail load balancing with inhomogeneity in cluster and application characteristics. We implement SWG with ApplyPerPartition operator, which can be considered as a distributed version of “Apply” in SQL. We cover the use of hybrid programming to combine inter-node distributed memory with intra-node shared memory parallelization, using multicore threading and DryadLINQ for the case of matrix multiplication which was covered briefly in the first report. We port multicore technologies including PLINQ and TPL into a user-defined function within DryadLINQ queries. Our new discussion is much more comprehensive than the first paper and has an extensive discussion of the performance of different parallel algorithms on different programming models for threads. The other major application we look at is Pagerank which like matrix multiplication has an iterative algorithm. Here we compare several of the sophisticated LINQ models for data access. PageRank is a communication-intensive application that requires joining two input data streams and performing the grouped aggregation over partial results. We implemented the PageRank application with three distributed grouped aggregation approaches. The new paper has comments on usability and use of DryadLINQ in education, which were not in the original report [2].
Now we finish the introduction with the highlights of following sections as Table 1.
Table 1. Highlights of the DryadLINQ CTP Evaluation
	
	Key Features
	Applications
	Selected Findings

	1
	Task scheduling
	Smith-Waterman Gotoh (SWG)
	Compared with Dryad (2009,11), DryadLINQ CTP provides better task scheduling strategy, data model, and interface to solve the workload balance issue for pleasingly parallel applications. (Section 3.4)

	2
	Hybrid Parallel programming models
	Matrix multiplication
	Porting multi-core technologies like PLINQ and TPL to DryadLINQ tasks can increase system utilization. (Section 4.5)

	3
	Distributed grouped aggregation
	PageRank
	The choice of distributed grouped aggregation with DryadLINQ CTP has a substantial impact on the performance of data aggregation/reduction applications. (Section 5.4)

Additional observations:
1) We found a bug in AsDistributed() interface, namely a mismatch between partitions and compute nodes in the default setting of Dryad CTP. (section 3.2.1)
2) DryadLINQ supports iterative tasks by chaining the execution of LINQ queries. However, for BSP-style applications that need to explicitly evaluate LINQ query in each synchronization step, DryadLINQ requires resubmission of a Dryad job to the HPC scheduler at each synchronization step, which limits its overall performance. (section 5.3.3)
3) When Dryad tasks invoke a third party executable binary file as process, Dryad process is not aware of the class path that the Dryad vertex maintains, and it throws out an error : “required file cannot be found.” (section 6.1)
4) When applying late evaluation in chained queries, DryadLINQ only evaluates the iterations parameter at the last iteration and uses that value for further execution of all the queries including previous iterations. This imposes an ambiguous variable scope issue. (section 6.2)
5) When using a two dimensional array, objects in matrix multiplication, and PageRank applications, Dryad program will throw out an error message when a Dryad task tries to access unserializedilized two dimensional array objects on remote compute nodes. (section 6.3)
6) DryadLINQ CTP is able to tolerate up to 50% compute node failure. The job manager node failure is a single point failure that has no fault tolerance support from Dryad. (section 6.4.1)
7) It is critical to run multiple Dryad jobs simultaneously on a HPC cluster. However, this feature is not mentioned in either Programming or Guides. Every Dryad job requires an extra node acting as a job manager causing low CPU usage on this particular node. (section 7.2)
The report is organized as follows. Section 1 introduces key features of DryadLINQ CTP. Section 2 studies the task scheduling in DryadLINQ CTP with a SWG application. Section 3 explores hybrid parallel programing models with Matrix Multiplication. Section 4 introduces distributed grouped aggregation exemplified by PageRank. Section 5 investigates the programming issues of DryadLINQ CTP. Section 6 illustrates how Dryad/DryadLINQ has been used in class projects for computer science graduate students of Professor Qiu’s courses at Indiana University.
Note that in the report: “Dryad/DryadLINQ CTP” refers to the Dryad/DryadLINQ community technical preview released in 2010.12; “Dryad/DryadLINQ (2009.11)” refers to the version released in 2009.11.11; “Dryad/DryadLINQ” refers to all Dryad/DryadLINQ versions. Experiments are conducted on three Windows HPC clusters: STORM, TEMPEST, and MADRID [Appendix A, B, and C]. STORM consists of heterogeneous multicore nodes while TEMPEST and MADRID are homogeneous production systems of 768 and 128 cores each.
[bookmark: _Toc310698550]2 Overview
Dryad, DryadLINQ, and the Distributed Storage Catalog (DSC) [7] are sets of technologies that support the processing of data-intensive applications on a Windows HPC cluster. The software stack of these technologies is shown in Figure 1. Dryad is a general-purpose distributed runtime designed to execute data-intensive applications on a Windows cluster. A Dryad job is represented as a directed acyclic graph (DAG), which is called a “Dryad” graph. The Dryad graph consists of vertices and channels. A vertex in the graph represents an independent instance of the data processing for a particular stage. Graph edges represent channels transferring data between vertices. A DSC component works with the NTFS to provide the data management functionalities, such as file replication and load balancing for Dryad and DryadLINQ.
DryadLINQ is a library for translating .NET written Language-Integrated Query (LINQ) programs into distributed computations executing on top of the Dryad system. The DryadLINQ API takes advantage of standard query operators and adds query extensions specific to Dryad. Developers can apply LINQ operators such as join and groupby to a set of .NET objects. Specifically, DryadLINQ supports a unified data and programming model in the representation and processing of data. DryadLINQ data objects are collections of.NET type objects, which can be split into partitions and distributed across the computer nodes of a cluster. These DryadLINQ data objects are represented as either DistributedQuery <T> or DistributedData <T> objects and can be used by LINQ operators. In summary, DryadLINQ greatly simplifies the development of data parallel applications.
[image:]
Figure1: Software Stack for DryadLINQ CTP
[bookmark: _Toc310698551]2.1 Task Scheduling
Task scheduling for DryadLINQ CTP is a key feature investigated in this report. A DryadLINQ provider translates LINQ queries into distributed computation and automatically dispatches tasks to a cluster. This process is handled by the runtime and is transparent to users. The task scheduling component also automatically handles fault tolerance and workload balance issues.
We have studied DryadLINQ CTP’s load balance issue and investigated its relationship to task granularity along with its impact on performance. In batch job scheduling systems, like PBS, programmers manually group/ungroup (or partition/combine) input and output data for the purpose of controlling task granularity. Hadoop provides a user interface to define task granularity as the size of input records in HDFS. Similarly, Dryad (2009,11) allows developers to create a partition file. DryadLINQ CTP has a simplified data model and flexible interface in which AsDistributed, Select, and ApplyPerPartition operators (which can be considered as the distributed versions of Select and Apply in SQL) enable developers to tune the granularity of data partitions and run pleasingly parallel applications like sequential ones.
[bookmark: _Toc310698552]2.2 Parallel Programming Model
Dryad is designed to process coarse granularity tasks for large-scale distributed data and schedules tasks to computing resources over compute nodes rather than cores. To achieve high utilization of the multi-core resources of a HPC cluster for DryadLINQ jobs, one approach is to explore inner-node parallelism using PLINQ since DryadLINQ can automatically transfer a PLINQ query to parallel computations. Another approach is to apply multi-core technologies in .NET, such as Task Parallel Library (TPL) or thread pool for user-defined functions within the lambda expression of DryadLINQ query.
In a hybrid parallel programming model, Dryad handles inter-node parallelism while PLINQ, TPL, and thread pool technologies leverage inner-node parallelism on multi-cores. Dryad/DryadLINQ has been successful in executing as a hybrid model and applied to data clustering applications, such as General Topographical Mapping (GTM) interpolation and Multi-Dimensional Scaling (MDS) interpolation [8]. Most of the pleasingly parallel applications can be implemented in a straightforward fashion using this model with increased overall utilization of cluster resources. However, more compelling machine learning or data analysis applications usually have either squared or quadratic computation complexity, which has high requirements of system design for scalability.
[bookmark: _Toc310698553]2.3 Distributed Grouped Aggregation
The groupby operator in parallel databases is often followed by aggregate functions, which groups input records into partitions by keys and merges the records for each group by certain attribute values; this computing pattern is called Distributed Grouped Aggregation. Example applications include sales data summarizations, log data analysis, and social network influence analysis.
MapReduce and SQL for databases are two programming models to perform distributed grouped aggregation. MapReduce has been applied to the process of a wide range of flat distributed data, but is inefficient in processing relational operations, which have multiple inhomogeneous input data stream such as join. However, a full-featured SQL database has extra overhead and constraints that prevent it from processing large-scale input data.
DryadLINQ is between SQL and MapReduce and addresses some of their limitations. DryadLINQ provides SQL-like queries for processing efficient aggregation for homogenous input data streams and multiple inhomogeneous input streams and does not have sufficient overhead since SQL eliminates some of the functionalities of a database (transactions, data lockers, etc.). Further, DryadLINQ can build an aggregation tree (some databases also provides this kind of optimization) to decrease data transformation in the hash partitioning stage. In this report, we investigated the usability and performance of three programming models using Dyrad/DryadLINQ as illustrated in Figure 2: a) the pleasingly parallel mode, b) the hybrid programming model, and d) distributed grouped aggregation.
[image:]
Figure 2: Three Programming Models for Scientific Applications in DryadLINQ CTP
[bookmark: _Toc310698554]3 Pleasingly Parallel Application in DryadLINQ CTP
[bookmark: _Toc288106620][bookmark: _Toc290885815][bookmark: _Toc310698555]3.1 Introduction
A pleasingly parallel application can be partitioned into parallel tasks since there is neither essential data dependency nor communication between those parallel tasks. Task scheduling and granularity have a great impact on performance and are evaluated in Dryad CTP using the Pairwise Alu Sequence Alignment application. Furthermore, many pleasingly parallel applications share a similar execution pattern. The observation and conclusion drawn from this work applies to a large class of similar applications.
[bookmark: _Toc310698556]3.1.1 Pairwise Alu Sequence Alignment Using Smith Waterman Gotoh
The Alu clustering problem [9] is one of the most challenging problems for sequencing clustering because Alus represent the largest repeat families in human genome. There are approximately 1 million copies of Alu sequences in the human genome in which most insertions can be found in other primates and only a small fraction (~ 7000) are human-specific. This indicates that the classification of Alu repeats can be deduced solely from the 1 million human Alu elements. Notably, Alu clustering can be viewed as a classic case study for the capacity of computational infrastructure because it is not only of great intrinsic biological interests, but also a problem of a scale that will remain as the upper limit of many other clustering problems in bioinformatics for the next few years, e.g. the automated protein family classification for a few millions proteins predicted from large meta-genomics projects.
An open source version, NAligner [10], of the Smith Waterman-Gotoh algorithm (SWG) [11] was used to ensure low start-up effects by each task process for large numbers (more than a few hundred) at a time. The needed memory bandwidth is reduced by storing half of the data items for symmetric features.

[image:]
Figure 3: Task Decomposition (left) and the Dryad Vertex Hierarchy (right) of the DryadLINQ Implementation of SWG Pairwise Distance Calculation Application
[bookmark: _Toc288106622][bookmark: _Toc290885817][bookmark: _Toc310698557]3.1.2 DryadLINQ Implementation
The SWG program runs in two steps. In the map stage input data is divided into partitions being assigned to vertices. A vertex calls external pair-wise distance calculations on each block and runs independently. In the reduce stage, this vertex starts a few merge threads to collect output from the map stage, merges them into one file, and then sends meta data of the file back to the head node. To clarify our algorithm, let’s consider an example of 10,000 gene sequences that produces a pairwise distance matrix of size 10,000 × 10,000. The computation is partitioned into 8 × 8 blocks as a resultant matrix D, where each sub-block contains 1250 × 1250 sequences. Due to the symmetry feature of pairwise distance matrix D(i, j) and D(j, i), only 36 blocks need to be calculated as shown in the upper triangle matrix of Figure 3 (left).
Dryad divides the total workload of 36 blocks into 6 partitions, each of which contains 6 blocks. After the partitions are distributed to available compute nodes an ApplyPerPartition() operation is executed on each vertex. A user-defined PerformAlignments() function processes multiple SWG blocks within a partition, where concurrent threads utilize multicore internal to a compute node. Each thread launches an operating system process to calculate a SWG block in order. Finally, a function calculates the transpose matrix corresponding to the lower triangle matrix and writes both matrices into two output files on local file system. The main program performs another ApplyPerPartition() operation to combine the metadata of files as shown in Figure 3. The pseudo code for our implementation is provided as below:
Map stage:
DistributedQuery<OutputInfo> outputInfo = swgInputBlocks.AsDistributedFromPartitions()
ApplyPerPartition(blocks => PerformAlignments(blocks, swgInputFile, swgSharePath,
outputFilePrefix, outFileExtension, seqAlignerExecName, swgExecName));
Reduce stage:
var finalOutputFiles = swgOutputFiles.AsDistributed().ApplyPerPartition(files => PerformMerge(files, dimOfBlockMatrix, sharepath, mergedFilePrefix, outFileExtension));
[bookmark: _Toc310698558]3.2 Task Granularity Study
This section examines the performance of different task granularities. As mentioned above, SWG is a pleasingly parallel application for dividing the input data into partitions. The task granularity was tuned by saving all SWG blocks into two-dimensional arrays and converting to distributed partitions using AsDistributedFromPartitions operator.

Figure 4: Execution Time for Various SWG Partitions
Executed on Tempest Cluster, with input of 10,000 sequences, and a 128×128 block matrix
[bookmark: _Toc288106625][bookmark: _Toc290885820]The experiment was performed on a 768 core (32 nodes with 24 cores per node) Windows cluster called “TEMPEST” [Appendix B]. The input data of SWG has a length of 8192, which requires about 67 million distance calculations. The sub-block matrix size is set to 128 × 128 while we used AsDistributedFromPartitions() to divide input data into various partition sets {31, 62, 93, 124, 248, 372, 496, 620, 744, 992}. The mean sequence length of input data is 200 with a standard deviation as 10, which gives essentially homogeneous distribution ensuring a good load balance. On a cluster of 32 compute nodes, Dryad job manager takes one node for its dedicated usage and leaves 31 nodes for actual computations. As shown in Figure 4 and Table 1 (in Appendix F), smaller number of partitions delivered better performance. Further, the best overall performance is achieved at the least scheduling cost derived from 31 partitions for this experiment. The job turnaround time increases as the number of partition increases for two reasons: 1) scheduling cost increases as the number of tasks increases, 2) partition granularity becomes finer with increasing number of partitions. When the number of partitions reaches over 372, each partition has less than 24 blocks making resources underutilized on a compute node of 24 cores. For pleasingly parallel applications, partition granularity and data homogeneity are major factors that impact performance.
[bookmark: _Toc310698559]3.2.1 Workload Balancing
The SWG application handled input data by gathering sequences into block partitions. Although gene sequences were evenly partitioned in sub-blocks, the length of each sequence may vary. This causes imbalanced workload distribution among computing tasks. Dryad (2009.11) used a static scheduling strategy binding its task execution plan with partition files, which gave poor performance for skewed/imbalanced input data [2]. We studied the scheduling issue in Dryad CTP using the same application.
	
	

	Figure 5: SWG Execution Time for Skewed and Randomized Distributed Input Data
	Figure 6: SWG Execution Time for Skewed Data with Different Partition Amount

A set of SWG jobs was executed on the TEMPEST cluster with input size of 10000 sequences. The data were randomly generated with an average sequence length of 400, corresponding to a normal distribution with varied standard deviations. We constructed the SWG sub-blocks by randomly selecting sequences from the above data set in contrast to selecting sorted sequences based on their length. Figure 5 has line charts labeled with error bars, where randomized data shows better performance than skewed input data. Similar results were presented in the Dryad (2009.11) report as well. Since sequences were sorted by length for a skewed sample, computational workload in each sub-block was hugely variable, especially when the standard deviation was large. On the other hand, randomized sequences gave a balanced distribution of workload that contributed to better overall performance. Dryad CTP provides an interface for developers to tune partition granularity. The load imbalance issue can be addressed by splitting the skewed distributed input data into many finer partitions.
Figure 6 shows the relationship between number of partitions and performance. In particular, a parabolic chart suggests an initial overhead that drops as partitions and CPU utilization increase. Fine-grained partitions enable load balancing as SWG jobs start with sending small tasks to idle resources. Note that 124 partitions gives best performance in this experiment. With increasing partitions, the scheduling cost outweighs the gains of workload balancing. Figures 5 and 6 imply that the optimal number of partitions also depends on heterogeneity of input data.
DryadLINQ CTP divides input data into partitions by default with twice the number of compute nodes. It does not achieve good load balance for some applications, such as inhomogeneous SWG data. We have shown how to address the load imbalance issue. Firstly, the input data can be randomized and partitioned to increase load balance. However, it depends on the nature of randomness and good performance is not guaranteed. Secondly, a fine-grained partition can help tuning load balance among compute nodes. There’s a trade off in drastically increasing partitions, as the scheduling cost becomes a dominant factor of performance.
We found a bug in AsDistributed() interface, namely a mismatch between partitions and compute nodes in the default setting of Dryad CTP. Dryad provides two APIs to handle data partition, AsDistributed() and AsDistributedFromPartitions(). In our test on 8 nodes (1 head node and 7 compute nodes), Dryad chose one dedicated compute node for the graph manager which left only 6 nodes for computation. Since Dryad assigns each compute node 2 partitions, AsDistributed() divides data into 14 partitions disregarding the fact that the node for the graph manager does no computation. This causes 2 dangling partitions. In the following experiment, input data of 2000 sequences were partitioned into sub blocks of size 128×128 and 8 computing nodes were used from the TEMPEST cluster.

Figure 7: Mismatch between Partitions and Compute Nodes in Default Settings of Dryad CTP
Figure 7 shows the execution time for 12 customized partitions on the left and the default partitions by AsDistributed() on the right. It is observed that input data are divided into 14 partitions over 6 compute nodes. The 2 dangling partitions colored in green slow down the whole calculation by almost 30%.
[bookmark: _Toc290885821][bookmark: _Toc288106626]In summary, Dryad and Hadoop control task granularity by partitioning input data. DryadLINQ CTP has a default partition number twice that of the compute nodes. Hadoop partitions input data into chunks, each of which has a default size of 64MB. Hadoop implements a high-throughput model for dynamic scheduling and is insensitive to load imbalance issues. Dryad and Hadoop provide an interface allowing developers to tune partition and chunk granularity, with Dryad providing a simplified data model and interface on the .NET platform.
[bookmark: _Toc310698560]3.2.2 Scalability Study
Scalability is another key feature for parallel runtimes. The DryadLINQ CTP scalability test includes two sets of experiments conducted on the TEMPEST Cluster of 768 cores. A comparison of parallel efficiency for DryadLINQ CTP and DryadLINQ 2009 are discussed below.
The first experiment has an input size between 5,000 and 15,000 sequences with an average length of 2,500. The sub-block matrix size is 128 × 128 and there are 31 partitions, which is the optimal value found in previous experiments. Figure 8 shows performance results, where the red line represents execution time on 31 compute nodes, the green line represents execution time on a single compute node, and the blue line is parallel efficiency defined as the following:

Parallel efficiency is above 90% for most cases. An input size of 5000 sequences over a 32-node cluster shows a sign of underutilization for a slightly low start. When input data increases from 5000 to 15000, parallel efficiency jumps from 81.23% to 96.65%, as scheduling cost becomes less critical to the overall execution time as the input size increases.

Figure 8: Performances and Parallel Efficiency on TEMPEST
The SWG jobs were also performed on 8 nodes of the MADRID cluster [Appendix D] using Dryad 2009 and 8 nodes on the TEMPEST cluster [Appendix C] using Dryad CTP. The input data is identical for both tests, which are 5,000 to 15,000 gene sequences partitioned into 128×128 sub blocks. Parallel efficiency (Eq. 1) is used as a metric for comparison. By computing 225 million pairwise distances both Dryad CTP and Dryad 2009 showed high utilization of CPUs with parallel efficiency of over 95% as displayed in Figure 9.

Figure 9: Parallel Efficiency on Dryad CTP and Dryad 2009
In the second set of experiments we calculated speed up to 10,000 input sequences (31 partitions with 128×128 sub block size) but varied the number of compute nodes in input sequence numbers 2, 4, 8, 16, and 31 (due to the cluster limitation of 31 compute nodes). The SWG application scaled up well on a 768-core HPC cluster. These results are presented in Table 4 of Appendix F. The execution time ranges between 40 minutes to 2 days. The speedup, as defined in equation 2, is almost linear with respect to the number of compute nodes as shown in Figure 10, which suggests that pleasingly parallel applications perform well on DryadLINQ CTP.

Figure 10: Speedup for SWG on Tempest with Varied Number of Compute Nodes
[bookmark: _Toc290885822][bookmark: _Toc310698561]3.3 Scheduling on an Inhomogeneous Cluster
Adding a new hardware or integrating distributed hardware resources is common but may cause inhomogeneous issues for scheduling. In Dryad 2009, the default execution plan is based on an assumption of a homogeneous computing environment. This motived us to investigate performance issues on an inhomogeneous cluster for Dryad CTP. Task scheduling with attention to load balance is studied in this section.
[bookmark: _Toc310698562]3.3.1 Workload Balance with Different Partition Granularities
An optimal job-scheduling plan needs awareness of resource requirements and CPU time for each task, which is not practical in many applications. One approach is to split the input data set into small pieces and keep dispatching them to available resources.
This experiment was performed on STORM [Appendix A], an inhomogeneous HPC cluster. A set of SWG jobs is scheduled with different partition sizes, where input data contain 2048 sequences being divided into 64×64 sub blocks. These sub blocks are divided by AsDistributedFromPartitions() to form a set of partitions : {6, 12, 24, 48, 96, 192}. A smaller number of partitions implies a large number of sub blocks in each partition. As Dryad job manager keeps dispatching data to available nodes, the node with higher computation capability can process more SWG blocks. The distribution of partitions over compute nodes is shown in Table 5 of Appendix F; when the partition granularity is large, the distribution of SWG blocks among the nodes is proportional to the computational capacity of the nodes.
Dryad CTP assigns a vertex to a compute node and each vertex contains one or more partitions. To study the relationship between partition granularity and load balance, the computation and scheduling time on 6 compute nodes for 3 sample SWG jobs were recorded separately. Results are presented in Figure 11 with compute nodes along the X-axis (e.g. cn01 ~ cn06) and elapsed time from the start of computation along the Y-axis. A red bar marks the time frame of a particular compute node doing computation, and a blue bar refers to the time frame for scheduling a new partition. Here are a few observations:
· When the number of partitions is small, workload is not well balanced, leading to significant variation in computation time on each node. Note that faster nodes stay idle and wait for slower ones to finish, as shown on the left graph in Figure 11.
· When the number of partitions is large, workload is distributed in proportion to the capacity of compute nodes. Too many small partitions cause high scheduling costs, thus slowing down overall computation, as illustrated on the right graph in Figure 11.
· Load balance favors a small number of partitions while scheduling costs favor a large number of jobs. An optimal performance is observed in the center graph in Figure 11.
24 Partitions
6 Partitions
192 Partitions

Figure 11: Scheduling Time vs. Computation Time of the SWG Application on Dryad CTP
The optimal partition is a moderate number with respect to both load balance and scheduling cost. As shown in Figure 12 (middle), the optimal number of partitions is 24. Note that 24 partitions performed better than the default partition number, 14.

Figure 12: SWG Job Turnaround Time for Different Partition Granularities

Figure 13 shows that overall CPU usage drops as the number of partitions increases, due to increasing scheduling and data movement, which do not demand high CPU usage.
[image:]
Figure 13: Cluster CPU Usage for Different SWG Partition Numbers
[bookmark: _Toc310698563]3.4 Evaluation and Findings
SWG is a pleasingly parallel application used to evaluate the performance of Dryad CTP.
a) The scalability test shows that if input data is homogeneous and the workload is balanced, then the optimal setting with low scheduling costs has the same number of partitions as compute nodes.
b) In the partition granularity test where data is inhomogeneous and causes an imbalanced workload, the default Dryad CTP setting of 62 partitions gave better results due to a finer balance between workload distribution and scheduling.
c) A comparison between Dryad CTP and Dryad 2009 shows that Dryad CTP has achieved over 95% parallel efficiency in scale-up tests. Compared to the 2009 version Dryad CTP also presents an improved load balance with a dynamic scheduling function.
d) Our evaluation demonstrates that load balance, task granularity, and data homogeneity are major factors that impact the performance of pleasingly parallel applications using Dryad.
e) Further, we found a bug involving mismatched partitions vs. compute nodes in the default setting of Dryad CTP.
[bookmark: _Toc288106628][bookmark: _Toc310698564]4 Hybrid Parallel Programming Model
[bookmark: _Toc288106629][bookmark: _Toc310698565]4.1 Introduction
Matrix-matrix multiplication is a fundamental kernel [12], which can achieve high efficiency in both theory and practice. The computation can be partitioned into subtasks, which makes it an ideal candidate application in hybrid parallel programming studies using Dryad/DryadLINQ. However, there is not one optimal solution that fits all scenarios. Different trade-offs of partition granularity largely correspond to computation and communication costs and are affected by memory/cache usage and network bandwidth/latency. We investigated the performance of three matrix multiplication algorithms and three multi-core technologies in .NET, which run on both single and multiple cores of HPC clusters. The three matrix multiplication decomposition approaches are: 1) row decomposition, 2) row/column decomposition, and 3) block/block decomposition (Fox-Hey algorithm [13][14]). The multi-core technologies include: PLINQ, TPL [15], and Thread Pool, which correspond to three multithreaded programming models. In a hybrid parallel programming model, Dryad invokes inter-node parallelism while TPL, Threading, and PLINQ support inner-node parallelism. It is imperative to utilize new parallel programming paradigms that may potentially scale up to thousands or millions of multicore processors.

Matrix multiplication is defined as A * B = C (Eq. 3) where Matrix A and Matrix B are input matrices and Matrix C is the result matrix. The p in Equation 3 represents the number of columns in Matrix A and number of rows in Matrix B. Matrices in the experiments are square matrices with double precision elements.
	 		 (Eq. 3)
[bookmark: _Toc310698566]4.2 Parallel Matrix-Matrix Multiplication Algorithms
[bookmark: _Toc310698567]4.2.1 Row-Partition Algorithm
The row-partition algorithm divides Matrix A into row blocks and distributes them onto compute nodes. Matrix B is copied to every compute node. Each Dryad task multiplies row blocks of Matrix A by all of matrix B and the main program aggregates a complete matrix C. The data flow of the Row Partition Algorithm is shown in Figure 14.
[image: C:\Users\Ryan\Pictures\123.png]
Figure 14: Row-Partition Algorithm

The blocks of Matrices A and B are first stored using DistributedQuery and DistributedData objects defined in DryadLINQ. Then an ApplyPerPartition operator invokes a user-defined function rowsXcolumnsMultiCoreTech to perform subtask computations. Compute nodes read file names for each input block and get the matrix remotely. As the row partition algorithm has a balanced distribution of workload over compute nodes, an ideal partition number equals the number of compute nodes. The pseudo code is in Appendix G, 1):
[bookmark: _Toc310698568]4.2.2 Row-Column Partition Algorithm
The Row-Column partition algorithm [16] divides Matrix A by rows and Matrix B by columns. The column blocks of Matrix B are distributed across the cluster in advance. The whole computation is divided into several iterations. In each iteration one row block of Matrix A is broadcast to all compute nodes and multiplies by the one-column blocks of Matrix B. The output of each compute node is sent to the main program to form a row block of Matrix C. The main program then collects the results of multiple iterations to generate the complete output of Matrix C.

Figure 15: Row-Column Partition Algorithm
The column blocks of Matrix B are distributed by the AsDistributed() operator across the compute nodes. In each iteration an ApplyPerPartition operator invokes a user-defined function aPartitionMultiplybPartition to multiply one column block of Matrix B by one row block of Matrix A. The pseudo code is provided in Appendix G.2):
[bookmark: _Toc310698569]4.2.3 Block-Block Decomposition in the Fox-Hey Algorithm
The block-block decomposition in the Fox-Hey algorithm divides Matrix A and Matrix B into squared sub-blocks. These sub-blocks are dispatched to a virtual topology on a grid with the same dimensions for the simplest case. For example, to run the algorithm on a 2X2 processes mesh, Matrices A and B are split along both rows and columns to construct a matching 2X2 block data mesh. In each step of computation, every process holds a current block of Matrix A by broadcasting and a current block of Matrix B by shifting upwards and then computing a block of Matrix C. The algorithm is as follows:

	

	For k = 0: s-1
1) The process in row I with A(I, (i+k)mod s) broadcasts it to all other processes I the same row i.
2) Processes in row I receive A(I, (i+k) mod s) in local array T.
3) For I =0;s-1 and j=0:s-1 in parallel
 C(I,j) = c(I,j)+T*B(I,j)
End
4) Upward circular shift each column of B by 1:
 B(I,j) B((i+1)mod s, j)
End

	

	Figure 16 shows the case where Matrices A and B are both divided into a block mesh of 2x2. Correspondingly, 4 compute nodes are divided into a grid labeled C(0,0), C(0,1), C(1,0), C(1,1). In step 0, Matrix A broadcasts the active blocks in column 0 to compute nodes in the same row of the virtual grid of compute nodes (or processes), i.e. A(0,0) to C(0,0), C(0,1) and A(1,0) to C(1,0), C(1,1). The blocks in Matrix B will be scattered onto each compute node. The algorithm computes Cij = AB on each compute node. In Step 1, Matrix A will broadcast the blocks in column 1 to the compute nodes, i.e. A(0,1) to C(0,0), C(0,1) and A(1,1) to C(1,0), C(1,1). Matrix B distributes each block to its target compute node and performs an upward circular shift along each column, i.e. B(0,0) to C(1,0), B(0,1) to C(1,1), B(1,0) to C(0,0), B(1,1) to C(0,1). Then a summation operation on the results of each iteration forms the final result in Cij += AB.

Figure 16: Different Stages of the Fox-Hey Algorithm in 2x2 Block Decompositions
Figure 17 illustrates a one-to-one mapping scenario for Dryad implementation where each compute node has one sub-block of Matrix A and one sub-block of Matrix B. In each step, the sub-blocks of Matrix A and Matrix B will be distributed onto compute nodes. Namely, the Fox-Hey algorithm achieves much better memory usage compared to the Row Partition algorithm which requires one row block of Matrix A and all of Matrix B for multiplication. In our future work, the Fox-Hey algorithm will be implemented in a general and powerful mapping schema to maximize cache usage, where the relationship between sub-blocks and the virtual grid of compute nodes will be many to one.

Figure 17: Structure of the 2D Decomposition Algorithm on Iteration I with n+1 Nodes

[bookmark: _Toc288106631]The pseudo code of basic Fox-Hey algorithm is given in Appendix G.3.1).
The Fox-Hey algorithm was originally implemented with MPI [17], which maintained intermediate status and data in processes during parallel computation. However, Dryad uses a data-flow runtime that does not support intermediate status of tasks during computation. To work around this, new values are assigned to DistributedQuery<T> objects by an updating operation as shown in the following pseudo code in Appendix G.3.2).
The sequential code of Matrix Multiplication is given in Appendix G. In addition, we provide three implementations to illustrate three multithreaded programming models.
[bookmark: _Toc288106632][bookmark: _Toc290627312][bookmark: _Toc310698570]4.3 Performance Analysis in Hybrid Parallel Model
[bookmark: _Toc288106633][bookmark: _Toc290627313][bookmark: _Toc310698571]4.3.1 Performance on Multi Core
The baseline test of Matrix Multiplication was executed on the TEMPEST cluster [Appendix B] with the three multithreaded programming models: Task Parallel Library (TPL), Thread Pool and PLINQ. The comparison of these 3 technologies is shown in Table 2 below:
Table 2. Comparison of three Multicore Technologies
	Technology Name
	API in use
	Optimization
	Description

	Thread Pool
	ThreadPool.QueueUserWorkItem
	User define
	A common setting to use a group of threads. It is already been optimized in .NET 4, however, to further optimize the usage requires more user programming.

	TPL
	Parallel.For
	Moderate Optimized
	Parallel.For is a light weighted API to use maximum number of cores on the target machine using in a given application. It is more optimized than thread pool inside .NET 4. However, the experienced user can still optimize the usage of Parallel.For.

	PLINQ
	AsParallel()
	Highly Optimized
	Parallel LINQ (PLINQ) is a parallel implementation of LINQ to Objects. It is highly optimized and can be used on any LINQ queries which make it suitable for DryadLINQ program. It doesn’t require any optimization from user and it is most light weighted to user compare with thread and TPL.

Figure 18 shows performance results on a 24-core compute node with matrix size between 2,400 and 19,200 dimensions. The speed-up charts were calculated using Equation 3. T(P) standards for job turnaround time for Matrix Multiplication using multi-core technologies, where P is the number of cores across the cluster. T(S) refers to the job turnaround time of sequential Matrix Multiplication on one core.
Speed-Up = T(S)/T(P)		(Eq. 4)

Figure 18: Speedup Charts for TPL, Thread Pool, and PLINQ Implementations of
Matrix Multiplication on One Node
The parallel efficiency remains around 17 to 18 for TPL and Thread Pool. However, TPL outperforms Thread Pool as data size increases. PLINQ consistently achieves the best speed-up with values larger than 22, making parallel efficiency over 90% on 24 cores. We conclude that the main reason is due to PLINQ’s memory/cache usage being optimized for large data size on multicore systems by observing metrics of context switches and system calls of the heat map from the HPC cluster manager.
[bookmark: _Toc288106634][bookmark: _Toc290627314][bookmark: _Toc310698572]4.3.2 Performance on a Cluster
We evaluated 3 different matrix multiplication algorithms implemented with Dryad CTP on 16 compute nodes of the TEMPEST cluster using one core per node. The data size of input matrix ranges from 2400 x 2400 to 19200 x 19200. A variance of the speed-up definition is given in Equation 5 where T(P) stands for job turnaround time on P compute nodes. T(S’) is an approximation of job turnaround time for the sequential matrix multiplication program where a fitting function [Appendix E] is used to calculate CPU time for large input data.
Speed-up = T(S’)/T(P) 		(Eq. 5)
As shown in Figure 19, the performance of the Fox-Hey algorithm is similar to that of the Row Partition algorithm, increasing quickly as the input data size increases. The Row-Column Partition Algorithm performs the worst since it is an iterative algorithm that needs explicit evaluation of DryadLINQ queries in each iteration to collect an intermediate result. In particular, it invokes resubmission of a Dryad task to the HPC job manager during each iteration.
[bookmark: _Toc310698573]4.3.3 Performance of a Hybrid Model with Dryad and PLINQ
Porting multi-core technologies into Dryad tasks can potentially increase the overall performance due to extra processor cores. The hybrid model invokes Dryad for inter-node tasks and spawns concurrent threads through PLINQ. Three matrix multiplication algorithms were executed on 16 compute nodes of the TEMPEST cluster [Appendix B]. Compared to Figure 19, the speed-up charts of Figure 20 show significant performance gains by utilizing multicore technologies like PLINQ, where a factor of 9 is ultimately achieved as data size increases.
	
	

	Figure 19: Speedup of Three Matrix Multiplication Algorithms Using Dryad on a Cluster
	Figure 20: Speedup of Three Matrix Multiplication Algorithms Using a Hybrid Model with Dryad and PLINQ

Since the computational complexity in matrix multiplication is O(n3), which increases faster than that of the growth of communication cost O(n2), Figures 19 and 20 show that the speed-up increases with the size of input data. The Row Partition algorithm delivers the best performance for a hybrid model, as shown in Figure 20. Compared to the other 2 iterative algorithms, job submission occurs only once with the Row Partition algorithm. The Row-Column partition algorithm and the Fox-Hey algorithm both have 4 iterations and finer task granularity, leading to extra scheduling and communication overhead.
[bookmark: _Toc290627315][bookmark: _Toc310698574]4.3.4 Performance Comparison of Three Hybrid Parallel Models
We studied three matrix multiplication algorithms in hybrid parallel programming models with Task Parallel Library (TPL), Thread, and PLINQ on multicore processors. Figure 21 shows the performance results of a 19200 by 19200 matrix on 16 nodes of the TEMPEST cluster with 24 cores on each node. In all 3 matrix multiplication algorithms PLINQ achieves better speed-up than TPL and Thread, which supports earlier performance results shown in Figure 18.

Figure 21: The Speedup Chart of TPL, Thread, and PLINQ for Three Matrix Multiplication Algorithms
[bookmark: _Toc288106636][bookmark: _Toc290627316]When a problem size is fixed, parallel efficiency drops when multicore parallelism is used. This can be illustrated by the Row Partition algorithm running with or without PLINQ on 16 nodes (each has 24 cores), where the parallel efficiency is 17.3/16 = 108.1% when using one core per node (Figure 19), but becomes 156.2/384 = 40.68% over 384 cores (Figure 21). This is because the task granularity of Dryad on each core becomes finer and the node execution time decreases, while the overhead of scheduling, communication, and disk I/O remains the same or even increases.
[image:]
Figure 22: The CPU Usage and Network Activity on One Compute Node for Multiple Algorithms
Figure 22 shows charts of CPU utilization and network activity on one node of the TEMPEST cluster for three 19200 x 19200 matrix multiplication jobs using PLINQ. It is observed that the Row Partition Algorithm with PLINQ can reach a CPU utilization rate of 100% for a longer time than the other two approaches. Further, its aggregated network overhead is less than that of the other two approaches as well. Thus, the Row Partition algorithm with PLINQ has the shortest job turnaround time. The Fox-Hey algorithm delivers good performance in the sequential implementation due to its cache and paging advantage with finer task granularity.
Figure 23 shows the CPU and network utilization of the Fox-Hey algorithm on square matrices of 19,200 and 28,800 dimensions. Not only do they CPU and Network utilization increase with size of input data, but the rate of increase in CPU utilization is faster than that of network utilization, which follows the ratio of computation complexity O(n^3) vs. communication complexity O(n^2). The overall speed-up will continue to increase as we increase the data size. It suggests that when problem size grows large, the For-Hey algorithm will achieve high performance on low latency runtime environments.
[image:]
Figure 23: The CPU Usage and Network Activity for the Fox-Hey Algorithm-DSC with Different Data Sizes
[bookmark: _Toc303857531][bookmark: _Toc310698575]4.4 Timing Analysis for Fox-Hey Algorithm on the Windows HPC cluster
We designed a timing model for the Fox-Hey algorithm to conduct detailed evaluation. Tcomm/Tflops represents the communication overhead per double point operation using Dryad on the TEMPEST cluster. Assume the M*M matrix multiplication jobs are partitioned to run on a mesh of compute nodes. The size of sub-blocks in each node is m*m, where . The “broadcast-multiply-roll” cycle of the algorithm, as shown in Figure 16, is repeated times.
For each such cycle in our initial implementation it takes steps to broadcast subblocks of matrix A to the other nodes in the same row of mesh processors, as the network topology of TEMPEST is simply a star rather than a mesh. In each step the overhead of transferring data between two processors includes: 1) the startup time (latency), 2) the network time to transfer m*m data, and 3) the disk IO time for writing data onto the local disk and reloading data from disk to memory. The extra disk IO overhead is common in cloud runtimes, such as Hadoop [18]. In Dryad, the data transfer usually goes through a file pipe over NTFS. Therefore, the time for broadcasting a sub-block is:
.
Note that in an optimized implementation of pipelining it is possible to remove factor of broadcast time.
Since the process to “roll” sub-blocks of Matrix B can be parallelized to complete within one step, the overhead is:
.
The actual time required to compute the sub-matrix product (include the multiplication and addition) is:
					 2*.
Therefore, the total computation time of the Fox-Hey matrix multiplication is defined as the following:
 .	(1)
By substituting the equation becomes
			(2)
The last term in equation (2) is the expected “perfect linear speedup” while the other terms represent communication overheads. In the following paragraph we investigate and by fitting measured performance as a function of matrix size.

Figure 24: Execution Time of Sequential and PLINQ Execution of the Fox-Hey Algorithm
				(3)
				(4)
				(5)
The timing equation for the sequential algorithm running on a one-core single node is shown in equation (3). Figure 24 and equation (4) represent the timing of the Fox-Hey algorithm running with one core per node on 16 nodes. Figure 24 and equation (5) represent the timing of the Fox-Hey/PLINQ algorithm that executes with 24 cores per node on 16 nodes. Equation (6) is the value of for large matrices. As 26.8 is close to 24, i.e. the number of cores per node, it approximately verifies the correctness of the cubic term coefficient of equation (4) & (5). Equation (7) is the value of for large matrices. The value is 2.08, while the ideal value is expected to be 1.0. We have investigated the differences between the ideal values and the measurements of equations (6) and (7), and find that a dominant issue is the effect of the cache, which improves performance in the parallel 24-core case and is not included in above formulae. The constant term in equation (3), (4), and (5) accounts for the cost of initialization of the computation, such as runtime startup and the allocation of memory for matrices.
					(6)
					(7)
 							(8)
Equation (8) represents the value of for large submatrix sizes. The value illustrates that though the disk IO cost has more effect on communication overhead than does network cost, they are of the same order for large sub-matrix sizes, thus we assign the sum of them as the coefficient of the quadratic term in equation (2). Besides, one must bear in mind that the so-called communication and IO overhead actually include other overheads, such as string parsing and index initialization, which are dependent upon how one writes the code.
[bookmark: _Toc310698576]4.5 Evaluation and Findings
We investigated hybrid parallel programming models with three kernel matrix multiplication applications.
f) We showed how integrating multicore technologies into Dryad tasks can increase the overall utilization of a cluster.
g) Further, different combinations of multicore technologies and parallel algorithms perform differently due to task granularity, caching, and paging issues.
h) We also find that the parallel efficiency of jobs decreases dramatically after integrating these multicore technologies given that the task granularity becomes too small per core. Increasing the scale of input data can alleviate this issue.
[bookmark: _Toc310698577]5 Distributed Grouped Aggregation
[bookmark: _Toc310698578]5.1 Introduction
Distributed Grouped Aggregation is a core primitive operator in many data mining applications, such as sales data summarizations, log data analysis, and social network influence analysis. We investigated the usability and performance of a programming interface for a distributed grouped aggregation in DryadLINQ CTP. Three distributed grouped aggregation approaches were implemented: Hash Partition, Hierarchical Aggregation, and Aggregation Tree.
PageRank is a well-known web graph ranking algorithm. It calculates the numerical value of a hyperlinked set of web pages, which reflects the probability of a random surfer accessing those pages. The process of PageRank can be understood as a Markov Chain that needs recursive calculation to converge. In each iteration the algorithm calculates a new access probability for each web page based on values calculated in the previous computation. The iterations will not stop until the values between two subsequent rank vectors are smaller than a predefined threshold. Our DryadLINQ PageRank implementation uses the ClueWeb09 data set [22], which contains 50 million web pages.
We used the PageRank application to study the features of input data that affect the performance of distributed grouped aggregation implementations. In the end, the performance of Dryad distributed grouped aggregation was compared with four other execution engines: MPI, Hadoop, Haloop [19], and Twister [20][21].
[bookmark: _Toc310698579]5.2 Distributed Grouped Aggregation Approaches
Figure 26 shows the workflow of the three distributed grouped aggregation approaches implemented with DryadLINQ.
The Hash Partition approach uses a hash partition operator to redistribute records to compute nodes so that identical records are stored on the same node and form the group. Then the operator usually aggregates certain values of the records in each group. The hash partition approach is simple in implementation, but causes a lot of network traffic when the number of input records becomes very large.
A common way to optimize this approach is to apply partial pre-aggregation, which first aggregates the records on local compute nodes and then redistributes aggregated partial results across a cluster based on their keys. The optimized approach is better than a direct hash partition because the number of records transferring across a cluster is drastically reduced after the local aggregation operation. Further, there are two ways to implement partial aggregation: hierarchical aggregation and tree aggregation. A hierarchical aggregation usually consists of two or three synchronized aggregation stages. An aggregation tree is a tree graph that guides a job manager to perform partial aggregation for many subsets of input records.

 [image:]
Figure 26: Three Distributed Grouped Aggregation Approaches
DryadLINQ can automatically translate a distributed grouped aggregation query into an optimized aggregation tree based on data locality information. Further, Dryad can adaptively change the structure of the aggregation tree, which greatly simplifies the programming model and enhances its performance.
[bookmark: _Toc310698580]5.2.1 Hash Partition 	
The implementation of PageRank in Appendix H used GroupBy and Join operators in DyradLINQ.
Page objects are used to store the structure of a web graph. Each element Page <url_id, <destination_url_list>> contains a unique identifier number page.key and a list of identifiers specifying all pages in the web graph that page links to. We construct the DistributedQuery<Page> pages objects from adjacency matrix files with function BuildPagesFromAMFile(). The rank object <url_id, rank_value> is a pair containing the identifier number of a page and its current estimated rank value. In each iteration the program joins the pages with ranks to calculate the partial rank values. Basically, it combines records from pages and ranks tables using a common keyword url_id. Then GroupBy() operator redistributes the calculated partial rank values across cluster nodes and returns the IGrouping objects, DistributedQuery<IGrouping<url_id, rank_value>>, where each IGroup represents a group of partial rank objects with all destination urls from one source URLs. The grouped partial rank values are summed up as the final rank values and are used as input rank values for the next iteration [23].In the above implementation, GroupBy() operator can be replaced by HashPartition() and ApplyPerPartition() as follows[24]:
[bookmark: _Toc310698581]5.2.2 Hierarchical Aggregation
The PageRank implementation using hash partition would not be efficient when the number of output tuples is much less than that of input tuples. In this scenario, we implemented PageRank with hierarchical aggregation, which consists of three synchronized aggregation stages: 1) user-defined Map tasks, 2) DryadLINQ partitions, and 3) final PageRank values. In stage one, each user-defined Map task calculates the partial results of some pages that belong to the sub-web graph represented by the adjacency matrix file. The output of a Map task is a partial rank value table, which is merged into the global rank value table in a later stage.
[image:]
Figure 27: Hierarchical Aggregation in DryadLINQ PageRank
[bookmark: _Toc310698582]5.3.3 Aggregation Tree
The hierarchical aggregation implementation may not perform well in an inhomogeneous computation environment, which varies in network bandwidth, CPU, and memory capacities. As hierarchical aggregation has several global synchronization stages, the overall performance was determined by the slowest task. In this scenario, the aggregation tree approach is a better choice. It can construct a tree graph to guide the aggregation operations for many subsets of input tuples, which reduces intermediate data transfer. In the ClueWeb data set, URLs are stored in alphabetical order. Web pages that belonged to the same domain were likely being saved within one adjacency matrix file. By applying partial grouped aggregation to each adjacency matrix file in the hash partition stage, intermediate data transfer can be greatly reduced. The following implementation of PageRank uses the GroupAndAggregate() operator.
The GroupAndAggregate operator supports optimization of the aggregation tree. To analyze partial aggregation in detail, we simulated GroupAndAggregate with the HashPartition and ApplyPerPartition operators. There are two steps of ApplyPerPartition: one is to perform pre-partial aggregation on each sub-web graph; the other is to aggregate the partially aggregated results for global results.
[bookmark: _Toc310698583]5.3 Performance Analysis
[bookmark: _Toc310698584]5.3.1 Performance in Different Aggregation Strategies
We conducted performance measurements of PageRank with three aggregation approaches: hash partition, hierarchical aggregation, and tree aggregation. In the experiments, we split the entire ClueWeb09 graph into 1,280 partitions, each of which was processed and saved as an adjacency matrix (AM) file. The characteristics of input data are described below:
	No of AM Files
	File Size
	No of Web Pages
	No of Links
	Ave Out-degree

	1,280
	9.7 GB
	49.5 million
	1.40 billion
	29.3

The program ran on 17 compute nodes from the TEMPEST cluster. Figure 28 shows that tree aggregation is faster than hash partition due to the optimization of partial aggregation. Hierarchical aggregation outperforms the other two approaches because of coarse task granularity.

Figure 28: Time to Compute PageRank per Iteration by Three Aggregation Approaches
Using Clue-web09 Data on 17 Compute Nodes of TEMPEST

Figure 29 provides CPU utilization and network utilization information of the three aggregation approaches obtained from the HPC cluster manager. It is apparent that hierarchical aggregation requires much less network bandwidth than the other two.

[image:]
Figure 29 CPU (left) and Network Utilization (right) of Different Aggregation Strategies
The hierarchical aggregation and aggregation tree approaches work well when the number of output tuples was much smaller than input tuples. The hash partition worked well when the number of output tuples was larger than input tuples. To describe how the ratio between input and output tuples affects the performance of different aggregation approaches, we define the data reduction proportion (DRP).
		(Eq. 6)
	
	

	Figure 30: Time required for PageRank Jobs for Two Aggregation Approaches with Different DRP
	Figure 31: Time Per Iteration for Two Aggregation Approaches with Different Numbers of Output Tuples (from 100,000 to 1,000,000) When the Number of Input Tuples is 4.3 Billion

Assume M input tuples are evenly distributed among N compute nodes. In a hash partition approach, tuples with the same key are hashed into one group, which requires M aggregation operations. In a partial aggregation approach, the average number of input tuples with the same key is about M/N on each node, which requires M/N aggregation operations on each node and generates N partial aggregated tuples in total. Further, it needs N more aggregation operations to form the final aggregated tuple. Thus, the total number of aggregation operations for the M tuples is (M/N)*N+N. The average number of aggregation operations of each tuple from the two approaches is as follows:
	 	 (Eq. 7)
In many applications, DRP is much smaller than the number of compute nodes, which suggests that the overhead of applying partial aggregation is small compared to the hash partition. Taking the word count application as an example, documents with millions of words may consist of only several thousand words that occur frequently. Word count is very suitable for applying partial aggregation. In PageRank, as the web graph structure obeys Zipf’s law, DRP is higher. Thus, the partial aggregation approach may not deliver good performance when applied to PageRank [23].
To quantify the impact of DRP on different aggregation approaches, we ran PageRank with web graphs of different DRP values. As shown in Figure 30, when DRP is smaller than 0.017, the partial aggregation performs better than hash partition aggregation. When DRP is bigger than 0.017, there is not much difference between these two aggregation approaches. The results of Figures 30 and 31 indicate the changes in performance when the input tuples are fixed with varying output tuples.
[bookmark: _Toc310698585]5.3.2 Comparison With Other Implementations
We implemented a PageRank application with five runtimes: DryadLINQ, Twister, Hadoop, Haloop, and MPI using ClueWeb data, which is listed in Table 8 of Appendix F. Parallel efficiency T(S)/(P*T(P)) (refer to Eq. 1) is used to compare the performance of five implementations. T(P) stands for job turnaround time of parallel PageRank, where P represents the number of cores. T(S) is the time of sequential PageRank on one core.
Figure 32 shows that all parallel efficiency charts are noticeably smaller than 5%. PageRank is a communication-intensive application, where the computation complexity of PageRank is O(N2) while its communication complexity is O(N2). As the communication overhead per float point calculation of PageRank is high, the bottlenecks of PageRank applications are network, memory, and CPU. Therefore, a major challenge is to reduce synchronization cost among tasks.
MPI, Twister, and Haloop outperform Dryad and Hadoop implementations for the following reasons: 1) MPI, Twister, and Haloop cache static data in memory between iterations; and 2) Haloop uses chained tasks without the need to restart task daemons for each iteration. Dryad is faster than Hadoop, but is slower than MPI and Twister. Dryad can chain DryadLINQ queries together and thereby save in communication cost, but it has higher scheduling overhead for each Dryad vertex. Hadoop has the lowest performance in writing intermediate data to HDFS between interactions.

Figure 32: Parallel Efficiency of Five PageRank Implementations
[bookmark: _Toc310698586]5.3.3 Chaining Tasks Within BSP Jobs
Dryad can chain the execution of multiple DryadLINQ queries together using late evaluation technology. The chained DryadLINQ queries will not get evaluated until the program explicitly accesses queries. Figure 33 shows that after chaining DryadLINQ queries, performance increases by 30% for 1280 adjacency matrix files of PageRank over 10 iterations.
Figure 33: Performance Difference Between Chained and Unchained DryadLINQ Queries
[bookmark: _Toc309155127]Although DryadLINQ chains the execution of queries, it does not support the execution of jobs that consist of Bulk Synchronous Parallel [26] (BSP) style tasks very well. For example, in DryadLINQ hierarchical aggregation PageRank, the program has to be resubmitted to a Dryad job on the HPC scheduler for every synchronization step that calculates the global PageRank value table.
[bookmark: _Toc310698587]5.4 Evaluation and Findings
We investigated three distributed grouped aggregation approaches with DryadLINQ CTP. Programmability and performance of these approaches were studied using the PageRank application. The results show correlations with different ratio of data reduction proportion (DRP).
i) Partial pre-aggregation requires more memory than hash partition.
j) Hash partition has larger communication overhead than partial pre-aggregation.
k) Detailed implementation of partial pre-aggregation such as accumulator fullhash and iterator fullhash/fullsort, has different requirements for memory and network bandwidth.
[bookmark: _Toc310698588]6 Programming Issues in DryadLINQ CTP
[bookmark: _Toc310698589]6.1 Class Path in Working Directory
We found the following issue when running DryadLINQ CTP SWG jobs: Dryad can automatically transfer files required by a user program to remote working directories on each compute node. In order to save storage space in compute nodes, Dryad does not copy all DLL and shared libraries to working directory for each task. Instead, it stores only one copy of shared libraries in the job working directory shared by all Dryad tasks. When running jobs, the Dryad vertex can add the job working directory into the class path of DryadLINQ program. So all Dryad tasks can refer to DLLs and shared libraries without a problem. However, when Dryad tasks invoke a third party executable binary file as process, Dryad process is not aware of the class path that the Dryad vertex maintains, and it throws out an error : “required file cannot be found.”
[bookmark: _Toc310698590]6.2 Late Evaluation in Chained Queries within One Job
DryadLINQ can chain the execution of multiple queries by applying late evaluation technology. This mechanism allows further optimization of the execution plan of DryadLINQ queries. As shown in the following code, DryadLINQ queries within different iterations are chained together and will not get evaluated until the Execute() operator is invoked explicitly. The integer parameter “iterations” is supposed to increase by one at each iteration. However, when applying late evaluation, DryadLINQ only evaluates the iterations parameter at the last iteration (which is nProcess -1 in this case) and uses that value for further execution of all the queries including previous iterations. This imposes an ambiguous variable scope issue, which should be mentioned in the DryadLINQ programming guide.
for (int iterations = 0; iterations < nProcesses; iterations++)
{
 inputACquery = inputACquery.ApplyPerPartition(sublist => sublist.Select(acBlock => acBlock.updateAMatrixBlockFromFile(aPartitionsFile[acBlock.ci], iterations,nProcesses)));
 inputACquery = inputACquery.Join(inputBquery, x => x.key, y => y.key, (x, y) => x.taskMultiplyBBlock(y.bMatrix));
 inputBquery = inputBquery.Select(x => x.updateIndex(nProcesses));
}
inputACquery.Execute();
[bookmark: _Toc310698591]6.3 Serialization for a Two Dimensional Array
DryadLINQ and Dryad Vertex can automatically serialize and unserialize the standard .NET objects. However, when using a two dimensional array, objects in matrix multiplication, and PageRank applications, the program will throw out an error message when a Dryad task tries to access unserialized two dimensional array objects on remote compute nodes. We investigated the serialization code being automatically generated by DryadLINQ and found it may not be able to unserialize two dimensional array objects correctly. The reason for this needs further investigation.
private void SerializeArray_2(Transport transport, double[][]value)
{
 if ((value == null)){
 transport.Write(((byte)(0)));
	return;
 }
 transport.Write(((byte)(1)));
 int count = value.Length;
 transport.Write(count);
 for (int i=0; (i<count);i=(i+1)){
 SerializeArray_4(transport, value[i]);
 }
}
[bookmark: _Toc310698592]6.4 Fault tolerant in DryadLINQ CTP
[bookmark: _Toc310698593]6.4.1 Failures and Fault Tolerance
DryadLINQ supports fault tolerance as it is a major advantage of new parallel frameworks like MapReduce over the traditional parallel runtimes like MPI. We examine Dryad fault tolerance with respects to following types of failure: process level failure, operating system (OS) level failure, node level failure, and multiple node failure as shown in Figure 34. These tests were executed on 7 nodes of TEMPEST Cluster [Appendix B] using SWG application. The input data consists of 2,000 gene sequences that were partitioned into 12 blocks with 64×64 for each sub-block.

	× Failure Point
×
×
×

	Figure 34: SWG Execution Timeline for Different Failure Types

	In Figure 34, X-axis labels compute node (e.g. cn25 ~ cn31) and Y-axis is the elapsed time from the start of computation. A failed note is marked by “x”. A red bar marks the time frame of a particular compute node doing computation, a blue bar refers to the time frame for scheduling a new partition, and a green bar means this is a partition shifted to this node due to the failure.

Dryad usually handles a failure by re-scheduling the failed vertex job to other available compute nodes. Once a failed node is excluded from the list of available nodes, it will not be used again during this job execution, even after the failure is fixed. There are two special node failures − HPC head node and Dryad Job Manager node. Although both are a single point failure, the former doesn’t not have impact current job’s completion while the latter currently has no fault tolerance support from Dryad. A summary of the fault tolerance features for Dryad is listed in Table 3.

Table 3: Fault Tolerance Features of Dryad

	
	Failure types
	Failure Description
	Fault Tolerance Strategy

	1
	Process
	Process HPCDryadVertex.exe failed
Operating system crashed
	The job manager will re-schedule the failed vertex job on this compute node to other available compute nodes.
No new vertexes assignment to this compute node after it is brought back online or the operating system resumes.

	2
	Compute Node
	Compute node offline or crashed
	The job manager will have the same fault tolerance strategy as the Process failure.

	3
	HPC Head Node
	HPC head node offline or crashed
	Once the job is submitted, the status of head node makes no impact on current running Dryad job.

	4
	Dryad Job Manger Node
	Dryad job manager node offline or HPCLinqToDryadJM.exe crashed
	The Dryad job manager is a single point of failure. Currently there is no fault tolerance support for this scenario.

	5
	Multi-Node
	Multiple compute node offline or crashed
	Dryad can handle multi nodes failure by assigning all the failed vertices to other available compute nodes. Figure 1 (rightmost) shows the recovery of 3 out of 6 compute nodes failure

6.4.2 Partition Granularity and Fault Tolerance
Unlike static scheduling used in Dryad 2009, Dryad CTP divides data into a predefined number of partitions, which is twice the number of compute nodes by default. This number is customizable by users. Dryad CTP dispatches the partitions across compute nodes dynamically. We’ve shown in our earlier work [2] that partition granularity has huge impact on load re-balancing in fault tolerance of Dryad. To evaluate the performance of recovery from a failure, we used the same SWG experiment but selected a set of partitions from {6, 12, 24, 48, 96} instead of the default partition. CN-28 was taken offline after 50% workload has been processed to simulate a node failure. The result in Figure 35 (left) suggests that when the partition granularity is large, the shifted workload (colored in green) was re-scheduled to a limited number of node leaving most nodes idle. When the partition granularity is small, the distribution of shifted workload is well balanced. However, fine partition granularity may cause extra scheduling cost that slows down overall computation as in Figure 35 (right).

	×
×

	Figure 35: SWG Execution Timeline with Varied Partition Numbers with One Node Failure

The optimal number of partitions is a moderate number with respect to both load balance and scheduling cost. Figure 36 shows that the optimal number of partitions is 24, in between the minimal number of 6 and the maximum number of 96
	

	Figure 36: Average SWG Turnaround Time Different Partition Granularities

6.4.3 Evaluation and Findings
DryadLINQ CTP is able to tolerate up to 50% compute node failure. The job manager node failure is a single point failure that has no fault tolerance support from Dryad. The recovery speed of a failure is in favor of small granularity of partition.
[bookmark: _Toc310698594]7 Classroom Experience with Dryad
[bookmark: _Toc310698595]7.1 Dryad in Eduction
Dryad/DryadLINQ has applicability in a wide range of applications in both industry and academia, which include: image processing in WorldWideTeleScope, data mining in Xbox, High Energy Physics (HEP), SWG, CAP3, and PhyloD in bioinformatics applications. An increasing number of graduate students in the computer science department, especially masters students, have shown interest and a willingness to learn Dryad/DryadLINQ in classes taught by Professor Judy Qiu at Indiana University.
In the CSCI B649 Cloud Computing for Data Intensive Science course, 8 Master’s students selected topics related to Dryad/DryadLINQ as a term-long project. The following are three projects completed by the end of the Fall 2010 semester:
1) Efficiency and Programmability of matrix multiplication with DryadLINQ;
2) The Study of Implementing PhyloD application with DryadLINQ;
3) Large Scale PageRank with DryadLINQ
Projects 2 and 3 were accepted as posters at the CloudCom2010 conference hosted in Indianapolis, IN.
In the 2011 Spring semester, two students in CSCI B534 Distributed Systems studied Dryad/DryadLINQ as a term-long project and contributed small, but solid results for this report.
[bookmark: _Toc310698596]7.2 Concurrent Dryad jobs
These two courses provide an excellent educational setting for us to study how students would utilize a cluster to understand the theories and applications of large-scale computing:
1. Ordinary classes contain 30-40 students, which can form 10 – 15 groups;
2. Student groups do experiments in a simulation environment where each group runs jobs on 1 to 8 compute nodes;
3. Students may not submit jobs until the due date is approaching. In another words, when a deadline is forthcoming, there are many jobs in the queue waiting to be executed while at other times the cluster may be left idle.
Based on the above observations, it is critical to run multiple Dryad jobs simultaneously on a HPC cluster, especially in an educational setting. In the Dryad CTP, we managed to allow each job to reside in a different node group as shown in Figure 37. In this way, a middle-sized cluster with 32 compute nodes can sustain up to 16 concurrent jobs. However, this feature is not mentioned in either Programming or Guides.
[image:]
Figure 37: Concurrent Job Execution in the Dryad CTP Version

Although concurrent jobs are enabled, the overall resource utilization of Dryad is not perfect. Figure 38 shows the CPU usage on each node while the jobs execution is displayed in Figure 37. Dryad jobs are assigned to compute node STORM-CN01 through STORM-CN06. Each compute node group contains 2 compute nodes, where only one of the nodes does actual computation. The reason is that every Dryad job requires an extra node acting as a job manager. CPU usage of this particular node is low and seldom exceeds 3%. In a cluster of 8 nodes, the overall usage of three concurrent jobs is only about 37%.
[image:]
Figure 38: CPU Usage for Concurrent Job Execution
[bookmark: _Toc310698597]8 Comparison between Dryad CTP and Hadoop
[bookmark: _Toc310698598]8.1 Key features that Dryad CTP outperforms Hadoop
Table 4 summarizes highlighted features and comparison between Dryad CTP and Hadoop. We extend the discussion of following five features that Dryad outperforms Hadoop.
1) Higher level programming interface
Hadoop’s Pig is a natural comparison to DryadLINQ. DryadLINQ provides programming model based on LINQ and a rich set of data objects by integrating with .NET. Compared with Pig, DryadLINQ performs better than Pig when processing relational queries and iterative MapReduce tasks (section 8.2.2). One main reason is underlying DAG execution model which is more expressive and flexible than that of Hadoop. Another reason is that Pig translates relational queries to a set of MapReduce circles for execution. YSmart [35] is another SQL-to-MapReduce translator which outperforms Pig by exploring the query correlations.
2) Inter-Task communication
By default, Dryad uses files to transfer data between vertices. But it can take advantage of TCP Pipe, and shared-memory FIFO to set up channels between vertices in some scenarios. These approaches avoid the overhead of materializing intermediate data into disk. In addition, Dryad can compress data based on the data type and compress scheme defined within DryadLINQ optimizer. In Hadoop, reduce tasks use HTTP to fetch the output files of map tasks. This approach causes low data fetching throughput and does not utilize high bandwidth network in data centers. Paper [27, 33] discussed this issue and presented their solution of using RDMA and modified TCP/IP protocol.

3) Data locality aware scheduling
Hadoop utilizes data locality information when scheduling map tasks to TaskTrackers but not for reduce tasks. Dryad can maintain the data locality for processing vertices during different computation stages of Dryad jobs. The new vertex can reuse the static data stored in memory of the previous vertex on same compute node. This feature can significantly accelerate iterative MapReduce applications, such as PageRank. Paper[4] studied DryadLINQ PageRank and it claimed that when joining web graph table with rank table, Dryad vertices on the same compute node in different iteration are able to reuse the graph table stored in the memory of that machine.

4) The Pipelining technology
The pipelining technology can hide network overhead and increase the parallelism of overall computation. Dryad runtime claims to ensure efficient pipelined execution by running asynchronous vertices while still presenting with the simple abstraction of reading and writing a single record at a time. To simply fault tolerance, Hadoop materialized intermediate data into disk and it does not support pipelining for execution between (Map, Shuffle, Merge, Reduce) stages. The Hadoop community is becoming aware of this issue, and papers [27,29,36] showed their effort to pipeline the execution of different Hadoop computation stages.

5) The distributed grouped aggregation
Distributed grouped aggregation is a core primitive of many distributed programming models. Dryad and Hadoop both support this processing pattern with different strategies and implementation details. Dryad supports Hash Partition, Hierarchical Aggregation, and Aggregation Tree strategies. Hadoop does not support the aggregation tree strategy that allows aggregation applications to concurrently perform multiple asynchronous aggregation computation instances. Furthermore, Dryad paper [3] claims to implement distributed grouped aggregation with six different approaches: FullSort, PartialSort, Accumulator-FullHash, Accumulor-PartialHash, Iterator-FullHash, Iterator-PartialHash. Hadoop supports the hierarchical aggregation strategy that performs aggregation within the local combining and reducing stages. Hadoop uses the FullSort approach which is similar to the PartialSort implementation of DryadLINQ due to its fixed size of each input partitions. In Hadoop, a very large number of small input partitions may degrade the performance due to the scheduling overhead of short-lived processes. Figure 42 shows that DryadLINQ outperformed Hadoop for running Kmeans application which needs to aggregate the position of points within the same group.
Table 4 Comparison of Dryad CTP and Hadoop
	
	Key Features
	Dryad CTP
	Hadoop 0.20.0
	Comments

	
	Programming Interface

	1
	Execution model
	DAG of data flowing between operations[3,4,7]
	Map, Shuffle, Merge, Reduce stages[34]
	DAG is more flexible than MapReduce to express data flow processing

	2
	Data Model
	Unified data model defined within .NET and LINQ.
	Defined by Hadoop classes: InputFormat; InputSplit; RecordReader;
	DryadLINQ provides friendly data model by leveraging .NET and LINQ

	3
	Programming Interface
	1) Based on LINQ[4,7] model with an interface extension for Dryad
2) Able to use relational operator defined in LINQ
	1) Map and Reduce class[34]
2) Not natively support relational operations that have multi- heterogeneous input data sets
	There is no public document about Dryad raw API

	4
	Higher Level Programming Language
	2) DryadLINQ supports standard query operations defined within LINQ such as Select, Join.
3) Evaluations of queries are converted into DAG.
	3) Pig allows developers to utilize relational queries in Hadoop.
4) YSmart is another SQL-to_MapReduce translator which outperforms Pig.
	DryadLINQ outperforms Pig when processing relational datasets.

	
	Job scheduling

	5
	Data locality aware scheduling
	Dryad optimizes the execution plan according to data locality information, and it can maintain the data locality for different execution stages[25].
	Hadoop schedules map tasks to TaskTrackers according to data locality information, but not for reduces tasks[18, 38] .
	Dryad provides better data locality aware scheduling implementation than Hadoop.

	6
	Load balance
	1) Dynamic assigning available tasks to idle resources
2) Easy to tune the task granularity by simply changing the parameters within related interface.
	1) Dynamic assigning available tasks to idle resources
2) Tune the task granularity according to NumofMapTasks, Blocksize, InputFormat
	Both Dryad and Hadoop support dynamic scheduling strategy. DryadLINQ provides better interface for developers to tune the task granularity.

	
	Performance Issues

	7
	Data movement; communication
	DryadLINQ provides three channel protocols: File (the default), TCP Pipe, Shared-memory FIFO[3]
Note: RDMA is available in Windows8
	Hadoop uses HTTP to transfer data between Map tasks and Reduce tasks during shuffling[18] .

	Dryad provides better data transferring approaches than Hadoop

	8
	Pipelining within one job.
	The evaluation of DryadLINQ query is split into computation stages whose executions are pipelined.[4, 7, 25] .
	Hadoop doesn not support pipelined execution between (Map, Shuffle, Merge, Reduce) stages, as the intermediate data are materialized into local disks[27, 28]
	Dryad outperforms Hadoop in pipelining the execution.

	9
	Pipelining between Jobs.
(iterative MapReduce)
	Chain the execution of multiple queries by using late evaluation technology, TCP pipe, shared memory FIFO[4,7] .

	 Hadoop cannot pipeline the execution of jobs as it needs materialize output of MapReduce jobs into disk (HDFS) when job is done[27,28] .
	In Dryad, the pipelining can be broken when it explicitly evaluate the queries or materialize output results to disk.

	10
	Aggregation
	Dryad can dynamically build Aggregation Tree[10] based on data locality information. Dryad implements distributed grouped aggregation with six approaches.
	Hadoop supports hierarchical aggregation strategy.
Implementation: FullSort (Iterator based)
	In general, aggregation tree (Dryad) outperforms hierarchical aggregation (Hadoop).

[bookmark: _Toc310698600]8.2 Programming Models Analysis between Dryad CTP and Hadoop
The programming model is critical for runtimes - one reason why Cloud is more popular than Grid is that Cloud has several practical programming models. In this section, we analysis the programming models of Dryad CTP and Hadoop. Table 11 in appendix K shows eleven applications implemented with DryadLINQ by SALSA group. We classify them into three programing models in Table 12 in appendix K which include pleasingly parallel programming model, relational data sets processing, and iterative MapReduce.
[bookmark: _Toc310698601]8.2.1 Pleasingly parallel programming model
Developers can implement pleasingly parallel applications with DryadLINQ and MapReduce without difficulty. DryadLINQ provides a friendly interface compared to Hadoop by utilizing data model and programming interface defined within .NET and LINQ. For some applications, writing DryadLINQ distributed applications are as simple as writing SQL queries.
There is no big performance difference between Dryad and Hadoop for pleasingly parallel applications unless there is a large number of input data. Figure 39&40 shows that Dryad (2009) and Hadoop do not have much performance difference for SWG and Cap3 applications.
[image:][image:]
Figure 39. SWG with Dryad (2009) and Hadoop Figure 40. Cap3 with Dryad CTP and Dryad (2009)
[bookmark: _Toc310698602]8.2.2 Relational Data Sets Processing
DryadLINQ and Pig are high level programming interfaces that allow developers to express data flow of their applications with relational queries on Dryad and Hadoop respectively. The performance difference between DryadLINQ and Pig for relational data processing lies in the underlying DAG and MapReduce execution model. The rigid and flat data processing model of MapReduce prevents MapReduce from efficiently processing multiple, heterogeneous datasets. For example, the classic MapReduce PageRank is very inefficient as the Join step in MapReduce PageRank spawns a very large number of Map and Reduce tasks during processing. Further optimization of MapReduce PageRank, such as map-side join, requires developers to have sophisticated knowledge of the web graph structure. Figure 41 shows the performance of PageRank implemented with different Join approaches with Dryad and Hadoop. Dryad is much faster than Hadoop for time per iteration of PageRank implemented with Map-Side Join approach.

Figure 41. Time in seconds per iteration of PageRank with Dryad and Hadoop
[bookmark: _Toc310698603]8.2.3 Iterative MapReduce
New parallel programming models such as MapReduce and Hadoop were successful in processing massive datasets in a distributed environment. Data locality can be implicitly integrated into the runtime platform as the same set of nodes are used for both computation and storage, which instantiates the paradigm of “moving the computation to data”. MapReduce works well for pleasingly parallel applications. However, MapReduce framework has Map only or Map and Reduce phases with disk access which is not suitable for supporting more complicated data analysis or data mining that typically has many iterations.
Intel’s RMS (recognition, mining and synthesis) taxonomy [39] offers a way to describe a class of emerging applications. The technology underlying these applications is likely to have broad applicability from computer vision, rendering, physical simulation, (financial) analysis and data mining. There are common computing kernels at the core of these applications, which require iterative solvers and basic matrix primitives.
These observations suggest that iterative MapReduce will be a runtime important to a spectrum of scientific, industrial and societal applications as the kernel framework for large scale data processing. Open source Java Twister [40,41] and Twister4Azure [42,43] have been released as Iterative MapReduce framework. Twister interpolates between MPI and MapReduce and, suitably configured, can mimic their characteristics, and, more interestingly, can be positioned as a programming model that has the performance of MPI and the fault tolerance and dynamic flexibility of the original MapReduce.
[bookmark: _GoBack]Dryad can build up pipelines to accelerate the execution of iterative MapReduce jobs by using the late evaluation, asynchronous vertices processing, TCP pipe and shared memory FIFO technologies. In addition, Dryad can maintain the data locality for processing vertices during different computation stages of Dryad jobs. Therefore, it is able to reuse static data during iterations. Hadoop cannot pipeline the execution of multiple jobs, as it needs to materialize the output of MapReduce jobs into HDFS. Figure 42 shows the performance results of KMeans implemented with DryadLINQ, Hadoop, Twister, and MPI. The charts suggest that neither Hadoop nor Dryad support iterative MapReduce properly.
[image:]
Figure 42. Kmeans with Dryad (2009)
[bookmark: _Toc310698604]8.3 Evaluation and Findings
We analysis the key features of Dryad and Hadoop, especially those Dryad outperforms Hadoop in programming interface, task scheduling, performance, and applications. We also studied performance related issues between Dryad CTP and Hadoop. A major factor that leads to performance difference between Dryad and Hadoop is the underling execution model of DAG that is more flexible and expressive than that of MapReduce. Other important features that contribute to performance difference between Dryad and Hadoop include fast communication, data locality aware scheduling, pipelining between jobs. In summary, we have following findings when comparing Dryad CTP with Hadoop.
l) DryadLINQ provides more friendly data model and interface by utilizing .NET and LINQ.
m) DryadLINQ performs better than Pig when processing relational queries and iterative MapReduce tasks.
n) Dryad supports advanced inter-task communication technologies such as files, TCP Pipe, and shared-memory FIFO. Hadoop transfers intermediate data via files and http.
o) Dryad can maintain data locality at both Map and Reduce phases while Hadoop only supports Map side data locality.
p) Dryad supports pipelining execution stages for high performance but Hadoop doesn’t.
q) Dryad provides a rich set of distributed group aggregation strategies to reduce data movement but Hadoop has limited support.
r) Neither Hadoop nor Dryad support iterative MapReduce properly.
[bookmark: _Toc310698605]Acknowledgements
This work is partially funded by Microsoft. We want to thank John Naab and Ryan Hartman for system support of the STORM, TEMPEST and MADRID HPC clusters, which were critical for our experiments. Second, we thank Thilina Gunarathne and Stephen Wu for their generosity in sharing the SWG application and data for our task scheduling analysis. We would also like to thank Ratul Bhawal and Pradnya Kakodkar, two Master’s students who enrolled in Professor Qiu’s B534 course in Spring 2011 for their contributions to this report.
[bookmark: _Toc310698606]References	
[1] [bookmark: _Ref307779273]G. Bell, T. Hey, and A. Szalay, "Beyond the data deluge," Science, vol. 323, no. 5919, pp. 1297-1298, 2009
[2] [bookmark: _Ref307779315]Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox, Scott Beason, Jong Youl Choi, Yang Ruan, Seung-Hee Bae, Hui Li. Applicability of DryadLINQ to Scientific Applications, Technical Report. SALSA Group, Indiana University. October 16, 2009.
[3] [bookmark: _Ref307779326]Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly. (2007). Dryad: distributed data-parallel programs from sequential building blocks. SIGOPS Oper. Syst. Rev. 41(3): 59-72.
[4] [bookmark: _Ref307779338]Yu, Y., M. Isard, Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., J., Currey. (2008). DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language. Symposium on Operating System Design and Implementation (OSDI). San Diego, CA.
[5] [bookmark: _Ref307779367]Hui Li, Yang Ruan, Yuduo Zhou, Judy Qiu and Geoffrey Fox, Design Patterns for Scientific Applications in DryadLINQ CTP, to appear in Proceedings of The Second International Workshop on Data Intensive Computing in the Clouds (DataCloud-2) 2011, The International Conference for High Performance Computing, Networking, Storage and Analysis (SC11), Seattle, WA, November 12-18, 2011
[6] [bookmark: _Ref307779375]Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of Molecular Biology 162: 705-708.
[7] [bookmark: _Ref307779391]DryadLINQ and DSC Programmers Guilde. Microsoft Research. 2011
[8] [bookmark: _Ref307779434]Seung-Hee Bae, Jong Youl Choi, Judy Qiu, Geoffrey C. Fox,. (2010). Dimension reduction and visualization of large high-dimensional data via interpolation. Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. Chicago, Illinois, ACM: 203-214.
[9] [bookmark: _Ref307779451]Batzer MA and Deininger PL (2002). Alu repeats and human genomic diversity. Nature Reviews Genetics 3(5): 370-379.
[10] [bookmark: _Ref307779469]JAligner. Retrieved December, 2009, from http://jaligner.sourceforge.net.
[11] [bookmark: _Ref307779480]Smith, T. F. and M. S. Waterman (1981). Identification of common molecular subsequences. Journal of Molecular Biology 147(1): 195-197.
[12] [bookmark: _Ref307779518]Johnsson, S. L., T. Harris, K. K. Mathur. 1989, Matrix Multiplication on the connection machine. Proceedings of the 1989 ACM/IEEE conference on Supercomputing. Reno, Nevada, United States, ACM.
[13] [bookmark: _Ref307779534]Geoffrey Fox, Tony Hey and Steve Otto, Matrix algorithms on a hypercube I: Matrix multiplication, parallel computing, pp. 17-31, 1987.
[14] [bookmark: _Ref307779538]Fox, G. C., What Have We Learnt from Using Real Parallel Machines to Solve Real Problems. Third Conference on Hypercube Concurrent Computers and Applications. G. C. Fox, ACM Press. 2: 897-955. 1988.
[15] [bookmark: _Ref307779543]Daan Leijen and Judd Hall (2007, October). Parallel Performance: Optimize Managed Code For Multi-Core Machinesl. Retrieved November 26, 2010, from http://msdn.microsoft.com/en-us/magazine/cc163340.aspx.
[16] [bookmark: _Ref307779557]Jaliya Ekanayake (2010). Architecture and Performance of Runtime Environments for Data Intensive Scalable Computing. School of Informatics and Computing. Bloomington, Indiana University.
[17] [bookmark: _Ref307779573]Argonne National Laboratory. MPI Message Passing Interface. Retrieved November 27, 2010, from http://www-unix.mcs.anl.gov/mpi
[18] [bookmark: _Ref307779597]Apache Hadoop. Retrieved November 27, 2010, from http://hadoop.apache.org/.
[19] [bookmark: _Ref307779626]Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael D. Ernst,. (2010). HaLoop: Efficient Iterative Data Processing on Large Clusters. The 36th International Conference on Very Large Data Bases. Singapore, VLDB Endowment. 3.
[20] [bookmark: _Ref307779633]J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, G.Fox. Twister: A Runtime for iterative MapReduce. Proceedings of the First International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference June 20-25, 2010. Chicago, Illinois, ACM.
[21] [bookmark: _Ref307779635]Ekanayake, J., S. Pallickara, Shrideep, Fox, Geoffrey. MapReduce for Data Intensive Scientific Analyses. Fourth IEEE International Conference on eScience, IEEE Press: 277-284. 2008.
[22] [bookmark: _Ref307779660]ClueWeb Data: http://boston.lti.cs.cmu.edu/Data/clueweb09/
[23] [bookmark: _Ref307779676]PageRank wiki: http://en.wikipedia.org/wiki/PageRank
[24] [bookmark: _Ref307779844]Y. Yu, M. Isard, D.Fetterly, M. Budiu, U.Erlingsson, P.K. Gunda, J.Currey, F.McSherry, and K. Achan. Technical Report MSR-TR-2008-74, Microsoft.
[25] [bookmark: _Ref307779878]Yu, Y., P. K. Gunda, M. Isard. (2009). Distributed aggregation for data-parallel computing: interfaces and implementations. Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. Big Sky, Montana, USA, ACM: 247-260.
[26] [bookmark: _Ref307779912]BSP, Bulk Synchronous Parallel http://en.wikipedia.org/wiki/Bulk_Synchronous_Parallel
[27] Yangdong Wang, Xianyu Que. (2011). Hadoop Acceleration Through Network Leviated Merge SC11
[28] Dawei jiang, Beng Chin Ooi, Lei Shi (2010). The Performance of MapReduce: An In-depth Study VLDB 2010.
[29] Tyson Condie, Neil Conway, Peter Alvaro. (2010). Online Aggregation and Continuous Query Support in MapReduce SIGMOD’10
[30] Padmashree Ravindra, Seokyong Hong, Hyeong Sik Kim. (2011). Efficient Processing of RDF Graph Pattern Matching on MapReduce Platforms DataCloud-SC-11
[31] Jens Dittrich, Jorge Arnulfo Quiane Ruiz. (2010). Hadoop++: Making a Yellow Elephant Run Like Cheetah VLDB 2010/ PVLDB
[32] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac. (2010) A Comparison of Join Algorithms for Log Processing in MapReduce. SIGMOD’10
[33] Yunhong Gu, Robert Grossman, Sector and Sphere: The Design and Implementation of a High Performance Data Cloud, Theme Issue of the Philosophical Transactions of the Royal Society A: Crossing Boundaries: Computational Science, E-Science and Global E-Infrastructure, 28 June 2009 vol. 367 no. 1897 2429-2445
[34] Jeffrey Dean, Sanjay Ghemawat. (2008). MapReduce: simplified data processing on large clusters
[35] Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang, Yongqiang He, and Xiaodong Zhang. 2011. YSmart: Yet Another SQL-to-MapReduce Translator. In Proceedings of the 2011 31st International Conference on Distributed Computing Systems (ICDCS '11). IEEE Computer Society, Washington, DC, USA, 25-36. DOI=10.1109/ICDCS.2011.26 http://dx.doi.org/10.1109/ICDCS.2011.26
[36] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy, and Russell Sears. 2010. MapReduce online. In Proceedings of the 7th USENIX conference on Networked systems design and implementation (NSDI'10). USENIX Association, Berkeley, CA, USA, 21-21
[37] JIRA ticket https://issues.apache.org/jira/browse/MAPREDUCE-225
[38] JIRA ticket https://issues.apache.org/jira/browse/MAPREDUCE-2038
[39] Dubey, Pradeep. A Platform 2015 Model: Recognition, Mining and Synthesis Moves Computers to the Era of Tera. Compute-Intensive, Highly Parallel Applications and Uses. Volume 09 Issue 02. ISSN 1535-864X. February 2005.
[40] SALSA Group. Iterative MapReduce. Twister Home Page. Available from: http://www.iterativemapreduce.org/
[41] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu, Geoffrey Fox Twister: A Runtime for Iterative MapReduce, in Proceedings of the First International Workshop on MapReduce and its Applications of ACM HPDC 2010 conference, Chicago, Illinois, June 20-25, 2010
[42] SALSA Group. Twister4Azure. Home Page. Available from: http://salsahpc.indiana.edu/twister4azure/
[43] Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, Judy Qiu, Portable Parallel Programming on Cloud and HPC: Scientific Applications of Twister4Azure, in Proceedings of Fourth IEEE International Conference on Utility and Cloud Computing (UCC 2011), Melbourne, Australia, December 5-8, 2011

[bookmark: _Toc310698607]Appendix	
Appendix A
STORM Cluster
8-node inhomogeneous HPC R2 cluster
	
	STORM
	STORM-CN01
	STORM-CN02
	STORM-CN03
	STORM-CN04
	STORM-CN05
	STORM-CN06
	STORM-CN07

	CPU
	AMD 2356
	AMD 2356
	AMD 2356
	AMD 2356
	AMD 8356
	AMD 8356
	Intel E7450
	AMD 8435

	Cores
	8
	8
	8
	8
	16
	16
	24
	24

	Memory
	16G
	16G
	16G
	16G
	16G
	16G
	48G
	32G

	Mem/Core
	2G
	2G
	2G
	2G
	1G
	1G
	2G
	1.33G

	NIC (Enterprise)
	N/a
	N/a
	N/a
	N/a
	N/a
	N/a
	N/a
	N/a

	NIC (Private)
	BCM5708C
	BCM5708C
	BCM5708C
	BCM5708C
	BCM5708C
	BCM5708C
	BCM5708C
	BCM5708C

Appendix B
TEMPEST Cluster
33-node homogeneous HPC R2 cluster
	
	TEMPEST
	TEMPEST-CNXX

	CPU
	Intel E7450
	Intel E7450

	Cores
	24
	24

	Memory
	24.0GB
	50.0 GB

	Mem/Core
	1 GB
	2 GB

	NIC (Enterprise)
	HP NC 360T
	n/a

	NIC (Private)
	HP NC373i
	HP NC373i

	NIC (Application)
	Mellanox IPolB
	Mellanox IPoIB

Appendix C
MADRID Cluster
9-node homogeneous HPC cluster
	
	MADRID-HEADNODE
	MADRID-10X

	CPU
	AMD Opteron 2356 2.29GHz
	AMD Opteron 8356 2.30GHz

	Cores
	8
	16

	Memory
	8GB
	16GB

	Memory/Core
	1GB
	1GB

	NIC
	BCM5708C
	BCM5708C

Appendix D
Binomial fitting function for sequential SWG jobs

Appendix E
Trinomial fitting chart for sequential matrix multiplication jobs

Appendix F
Tables mentioned in the report.
Table 1: Execution Time for Various SWG Partitions on Tempest Cluster
	Partition Number
	31
	62
	93
	124
	248
	372
	496
	620
	744
	992

	Test 1
	1324.54
	1345.41
	1369.01
	1379.01
	1761.09
	1564.79
	1866.14
	2280.37
	2677.57
	3578.50

	Test 2
	1317.45
	1356.68
	1386.09
	1364.43
	1735.46
	1588.92
	1843.70
	2286.76
	2736.07
	3552.58

	Test 3
	1322.01
	1348.89
	1368.74
	1384.87
	1730.47
	1568.59
	1857.00
	2258.25
	2709.61
	3568.21

	Average
	1321.33
	1350.33
	1374.61
	1376.10
	1742.34
	1574.10
	1855.61
	2275.13
	2707.75
	3566.43

Table 2: Execution Time for Skewed and Randomized Data
	Std. Dev.
	1
	50
	100
	150
	200
	250

	Skewed
	2582
	3076
	3198
	3396
	3878
	4488

	Randomized
	2582
	2489
	2458
	2413
	2498
	2622

Table 3: Average Execution Time of Tempest
	No. of Nodes
	Input length

	
	5000
	7500
	10000
	12500
	15000

	1
	13854.71
	31169.03
	55734.36
	89500.57
	131857.4

	32
	550.255
	1096.925
	1927.436
	3010.681
	4400.221

	Parallel
Efficiency
	81.22%
	91.66%
	93.28%
	95.90%
	96.66%

Table 4: Execution Time and Speed-up for SWG on Tempest with Varied Size of Compute Nodes
	Num. of Nodes
	1
	2
	4
	8
	16
	31

	Average Execution Time
	55734.36
	27979.78
	14068.49
	7099.70
	3598.99
	1927.44

	Relative Speed-up
	1
	1.99
	3.96
	7.85
	15.49
	28.92

Table 5: Blocks Assigned to Each Compute Node
	Node Name
	Partition Number

	
	6
	12
	24
	48
	96
	192

	STORM-CN01
	687
	345
	502
	502
	549
	563

	STORM-CN02
	681
	683
	510
	423
	547
	575

	STORM-CN03
	685
	684
	508
	511
	548
	571

	STORM-CN04
	688
	685
	689
	775
	599
	669

	STORM-CN05
	667
	681
	685
	679
	592
	635

	STORM-CN06
	688
	1018
	1202
	1206
	1261
	1083

Table 6 Characteristic of PageRank input data
	No of am files
	File size
	No of web pages
	No of links
	Ave out-degree

	1280
	9.7GB
	49.5million
	1.40 billion
	29.3

Table 7 DRP of different number of AM files of three aggregation approaches
	Input size
	hash aggregation
	partial aggregation
	hierarchical aggregation

	320 files 2.3G
	1: 306
	1:6.6:306
	1:6.6:2.1:306

	640 files 5.1G
	1: 389
	1:7.9:389
	1:7.9:2.3:389

	1280 files 9.7G
	1: 587
	1:11.8:587
	1:11.8:3.7:587

Table 8: Job turnaround time for different PageRank implementations
	Parallel Implementations
	Average job turnaround time for 3 runs

	MPI PageRank on 32 node Linux Cluster (8 cores/node)
	101 sec

	Twister PageRank on 32 node Linux Cluster (8 cores/node)
	271 sec

	Haloop PageRank on 32 node Linux Cluster (8 cores/node)
	1954 sec

	Dryad PageRank on 32 node HPC Cluster (24 cores/node)
	1905 sec

	Hadoop PageRank on 32 node Linux Cluster (8 cores/node)
	3260 sec

	Sequential Implementations
	

	C PageRank on Linux OS (use 1 core)
	831 sec

	Java PageRank on Linux OS (use 1 core)
	3360 sec

	C# PageRank on Windows Server (use 1 core)
	8316 sec

Table 9: Parallel Efficiency of Dryad CTP and Dryad 2009 on same input data
	Dryad CTP

	# of Nodes
	Input size

	
	5000
	7500
	10000
	12500
	15000

	7 Nodes
	2051
	4540
	8070
	12992
	18923

	1 Node
	13855
	31169
	55734
	89501
	131857

	Parallel
Efficiency
	96.50%
	98.07%
	98.66%
	98.41%
	99.54%

	Dryad 2009

	# of Nodes
	Input size

	
	5000
	7500
	10000
	12500
	15000

	7
	2523
	5365
	9348
	14310
	20615

	1
	17010
	36702
	64141
	98709
	142455

	Parallel
Efficiency
	96.31%
	97.73%
	98.02%
	98.54%
	98.72%

Table 10: Execution Time for SWG with Data Partitions
	Number of Partitions
	6
	12
	24
	36
	48
	60
	72
	84
	96

	Execution Time 1
	1105
	1135
	928
	981
	952
	1026
	979
	1178
	1103

	Execution Time 2
	1026
	1063
	868
	973
	933
	1047
	968
	1171
	1146

	Execution Time 3
	1030
	1049
	861
	896
	918
	1046
	996
	1185
	1134

	Execution Time 4
	1047
	1060
	844
	970
	923
	1041
	985
	1160
	1106

	Average Time
	1052
	1076
	875
	955
	931
	1040
	982
	1173
	1122

	Speed-Up
	79.78688
	77.95291
	95.89923
	87.89089
	90.10821
	80.7075
	85.47434
	71.52603
	74.79243

Appendix G
Implementation of different Matrix Multiplication algorithms
1)The Row Partition Algorithm
results = aMatrixFiles.Select(aFilePath => rowsXcolumns(aFilePath, bMatrixFilePath));
2) The Row Column Partition Algorithm
string[] aMatrixPartitionsFiles = splitInputFile(aMatrixPath, numIterations);
string[] bMatrixPartitionsFiles = splitInputFile(bMatrixPath, numComputeNodes);
DistributedQuery<matrixPartition> bMatrixPartitions = bMatrixPartitionsFiles.AsDistributed().HashPartition(x => x, numComputeNodes).
Select(file => buildMatrixPartitionFromFile(file));

for (int iterations = 0; iterations<numIterations;iterations++)
{
 DistributedQuery<matrixBlock> outputs = bMatrixPartitions.ApplyPerPartition(bSubPartitions => bSubPartitions.Select(bPartition => aPartitionMultiplybPartition(aMatrixPartitionsFiles[iterations], bPartition)));
}
3.1)The Fox-Hey Algorithm
string[] aPartitionsFile = splitInputFile(aMatrixPath, nProcesses);
string[] bPartitionsFile = splitInputFile(bMatrixPath, nProcesses);
IEnumerable<aMatrixCMatrixInput> inputAC = buildBlocksInputOfAMatrixCMatrix(rowNum, colNum, 0, nProcesses);
DistributedQuery<aMatrixCMatrixInput> inputACquery = inputAC.AsDistributed().HashPartition(x => x, nProcesses * nProcesses);
DistributedQuery<bMatrixInput> inputBquery = bPartitionsFile.AsDistributed().Select(x => buildBMatrixInput(x, 0, nProcesses)).SelectMany(x => x);

for (int iterations = 0; iterations < nProcesses; iterations++){
 inputACquery = inputACquery.ApplyPerPartition(sublist => sublist.Select(acBlock => acBlock.updateAMatrixBlockFromFile(aPartitionsFile[acBlock.ci], iterations,nProcesses)));
 inputACquery = inputACquery.Join(inputBquery, x => x.key, y => y.key, (x, y) => x.taskMultiplyBBlock(y.bMatrix));
 inputBquery = inputBquery.Select(x => x.updateIndex(nProcesses));
}
3.2)
DistributedQuery<Type> inputData = inputObjects.AsDistributed();
inputData = inputData.Select(data=>update(data));

Appendix H
Implementation of the Matrix Multiplication utilizing multi-core technology.
while (localRows.MoveNext())
{
double[] row_result = newdouble[colNum];
for (int i = 0; i < colNum; i++)
 {
 double tmp = 0.0;
 for (int j = 0; j < rowNum; j++)
 tmp += localRows.Current.row[j] * columns[i][j];
 row_result[i] = tmp;
 }
yieldreturn row_result;
}

1) The Parallel.For version of Matrix Multiplication
while (localRows.MoveNext())
{
 blockWrapper rows_result = new blockWrapper(size,colNum,rowNum);
 Parallel.For(0, size, (int k) =>
 {
 for (int i = 0; i < colNum; i++)
 {
 double tmp = 0.0;
 for (int j = 0; j < rowNum; j++)
 tmp += localRows.Current.rows[k * rowNum + j] * columns[i][j];
 rows_result.block[k * colNum + i] = tmp;
 }
 });
 yieldreturn rows_result;
}

2) The ThreadPool version of Matrix Multiplication
while (localRows.MoveNext())
{
 blockWrapper rows_result = new blockWrapper(size, rowNum, colNum);
 ManualResetEvent signal = new ManualResetEvent(false);
 for (int n = 0; n < size; n++)
 {
int k = n;
ThreadPool.QueueUserWorkItem(_ =>
 {
 for (int i = 0; i < colNum; i++)
 {
 double tmp = 0;
 for (int j = 0; j < rowNum; j++)
 tmp += localRows.Current.rows[k * rowNum + j] * columns[i][j];
 rows_result.block[k * colNum + i] = tmp;
 }
 if (Interlocked.Decrement(ref iters) == 0)
 signal.Set();
 });
 }
 signal.WaitOne();
 yieldreturn rows_result;
}

3) The PLINQ version of Matrix Multiplication
while (localRows.MoveNext())
{
 double[][] rowsInput = initRows(localRows.Current.block);
 IEnumerable<double[]> results = rowsInput.AsEnumerable().AsParallel().AsOrdered()
 .Select(x => oneRowMultiplyColumns(x, columns));
 blockWrapper outputResult = new blockWrapper(size,rowNum,colNum, results);
 yieldreturn outputResult;
}
Appendix I
PageRank implementation code sample.
GroupBy() and Join()
for (int i = 0; i < iterations; i++)
{
 newRanks = pages.Join(ranks, page => page.source, rank => rank.source,
 //join page objects with rank objects where they have the same source url
 (page, rank) => page.links.Select(dest =>newRank(dest, rank.value / (double)page.numLinks)))
 //calculate the partial rank value for each destination url to which the source url points
.SelectMany(list => list).GroupBy(rank => rank.source)
 //group partial rank objects by their url id across a cluster
.Select(group =>newRank(group.Key, group.Select(rank => rank.value).Sum() * 0.85 + 0.15 / (double)_numUrls));
 //aggregate partial rank values for each url for final rank values
 ranks = newRanks;
}
HashPartition() and ApplyPerPartition()
for (int i = 0; i < _iteration; i++)
{
 newRanks = pages.Join(ranks, page => page.source, rank =>rank.source,
 // join page objects with rank objects where they have the same source url
 (page, rank) => page.links.Select(dest =>new Vertex(dest, rank.value / (double)page.numLinks)))
 //calculate the partial rank value for each destination url which the source url points to
 .SelectMany(list => list).HashPartition(record => record.source)
 //hash partition partial rank objects so that the objects with same url are sent to same node
 .ApplyPerPartition(list => list.GroupBy(record => record.source))
 //group partial rank objects by their url id on local machine
 .Select(group =>newRank(group.Key, group.Select(rank =>rank.value).Sum() * 0.85 + 0.15 / (double)_numUrls));
 //aggregate grouped partial rank values for each url for final rank values
 ranks = newRanks.Execute();
}
Hierarchical Aggregation with User Defined Aggregation function
DistributedQuery<amPartition> webgraphPartitions = Directory.GetFiles(inputDir).AsDistributed().Select(fileName => buildWebGraphPartition(fileName));
//construct partial rank values using adjacency matrixfiles stored in inputDir
for (int i = 0; i < numIteration; i++)
{
 DistributedQuery<double[]> partialRVTs = null;
 partialRVTs = webgraphPartitions.ApplyPerPartition(subWebGraphPartitions =>
 calculateMultipleWebgraphPartitionsWithPLINQ(subWebGraphPartitions, rankValueTable, numUrls));
	//calculate partial rank values with user-defined function
 rankValueTable = mergeResults(partialRVTs);
	//merge calculated parital rank values with user-defined aggregation function
 //synchronized step to merge all partial rank value tables
}
GroupAndAggregate
for (int i = 0; i < numIteration; i++)
{
newRanks = pages.Join(ranks, page => page.source, rank =>rank.source,(page, rank) =>
// join page objects with rank objects where they have the same source url
page.links.Select(targetPage =>newRank(targetPage, rank.value / (double)page.numLinks)))
// calculate the partial rank value for each destination url which the source url points to
.SelectMany(list => list).GroupAndAggregate(partialRank =>partialRank.source, g =>
newRank(g.Key, g.Sum(x => x.value)*0.85+0.15 / (double)numUrls));
group calculated partial rank values by the url id and aggregate the grouped partial ranks values
ranks = newRanks;
}
Two steps of ApplyPerPartition
for (int i = 0; i < numIteration; i++)
{
newRanks = pages.Join(ranks, page => page.source, rank =>rank.source,
// join page objects with rank objects where they have the same source url
(page, rank) => page.links.Select(dest =>newVertex(dest, rank.value / (double)page.numLinks)))
.SelectMany(list => list)
// calculate the partial rank value for each destination url which the source url points to
.ApplyPerPartition(subGroup => subGroup.GroupBy(e => e.source))
.Select(subGroup =>new Tuple<int, double>(subGroup.Key,subGroup.Select(rank =>rank.value).Sum()))
// group the partial rank objects by their url id on local machine
.HashPartition(e => e.Item1)
.ApplyPerPartition(subGroup => subGroup.GroupBy(e => e.Item1))
// group the partial rank objects by their url id over the cluster
.Select(subGroup =>newRank(subGroup.Key, subGroup.Select(e => e.Item2).Sum() * 0.85 + 0.15 / (double)_numUrls));
// aggregate the grouped partial rank value for each url for final rank values
ranks = newRanks.Execute();
}

Appendix K
Table 11. Applications implemented with different DryadLINQ versions by SALSA Group
	DryadLINQ versions
	Applications
	Comments

	DryadLINQ (2009. 11)
	Kmeans, SWG, Cap3, Blast, MDS, GTM, High Energy Physics, PhyloD
	

	DryadLINQ CTP
	SWG, Matrix Multiplication, PageRank
	Matrix Multiplication and PageRank were implemented with 3 approaches respectively.

	LINQtoHPC
	Matrix Multiplication Fox algorithm
	

Table 12. Different programming models supported by Dryad and Hadoop
	Programming model
	DryadLINQ applications
	Hadoop applications

	Pleasingly Parallel Programming
	SWG, Cap3, Blast, High Energy Physics, PhyloD
	SWG, Cap3, Blast, High Energy Physics,

	Relational DataSets Processing
	Parallel Join
	Matrix Multiply Fox algorithm, PageRank
	PageRank (map side join)

	
	Distributed Aggregation
	Kmeans, PageRank (aggregation tree)
	Kmeans, PageRank (within map aggregation, local combiner)

	Iterative MapReduce
	Kmeans, Matrix Multiply Fox, PageRank
	Kmeans, PageRank

Execution Time	2.9439202887759501	4.6427960923947058	8.2596744622425682	8.4983658559879736	13.589211407093	10.498677165349079	9.4633797110522604	12.0369800568452	24.11546299691457	10.70825226947267	2.9439202887759501	4.6427960923947058	8.2596744622425682	8.4983658559879736	13.589211407093	10.498677165349079	9.4633797110522604	12.0369800568452	24.11546299691457	10.70825226947267	31	62	93	124	248	372	496	620	744	992	1321	1349.666666666667	1374.333333333333	1375.666666666667	1742	1573.333333333333	1855.333333333333	2274.6666666666601	2707.3333333333399	3566	Number of Partitions

Exectution Time (second)

Skewed	42.366968265383292	21.052018905558679	33	25.72072229848057	64	42	42.366968265383292	21.052018905558679	33	25.72072229848057	64	42	1	50	100	150	200	250	2757.8	3049.25	3231	3412.6666666666551	3942	4446	Randomized	42.366968265383292	5.5	15.5	27	27.788886667555111	19.5	42.366968265383292	5.5	15.5	27	27.788886667555111	19.5	2757.8	2586.5	2631.5	2581	2819.6666666666551	3008.5	Standard Deviation

Exectuion Time (Seconds)

Std. Dev. = 50	27.5	39	21.052018905558679	2	9	27.5	39	21.052018905558679	2	9	31	62	124	186	248	3414.5	3002	3034	2899	3392	Std. Dev. = 100	3	273.5	24.169971038460101	21.249836600678961	2	3	273.5	24.169971038460101	21.249836600678961	2	31	62	124	186	248	5452	4056.5	3392	3408	3700	Std. Dev. = 250	32	127	62.168230543332101	19.136933459209779	9	32	127	62.168230543332101	19.136933459209779	9	31	62	124	186	248	8626	6582	4336	4382	4592	Number of Partitions

Execution Time (Seconds)

CN25	CN27	CN28	CN29	CN30	CN31	4.2034944000000003	4.3094912000000001	4.1432960000000003	4.3406976000000004	4.2891007999999999	0	CN25	CN27	CN28	CN29	CN30	CN31	204.75000320000001	203.09640959999999	206.93269760000001	208.0715008	205.3883008	204.764096	CN25	CN27	CN28	CN29	CN30	CN31	1.1075968	1.0763904	1.0452096	1.2636031999999999	1.8875903999999999	1.0083968000000001	CN25	CN27	CN28	CN29	CN30	CN31	210.3036032	204.01680640000001	190.98959360000001	201.5819008	205.04510719999999	191.00870399999999	Node Name (Left)

Execution Time (second)

CN25	CN27	CN28	CN29	CN30	CN31	5.8756095999999998	5.9504000000000001	5.819712	6.0639103999999886	5.8875007999999918	0	CN25	CN27	CN28	CN29	CN30	CN31	177.99599359999999	180.07080959999999	178.16648960000001	182.37839360000001	176.01370879999999	176.7491072	CN25	CN27	CN28	CN29	CN30	CN31	1.3260032000000019	1.1699968000000069	1.0919039999999991	1.9343999999999819	1.2478976000000159	1.0743936000000081	CN25	CN27	CN28	CN29	CN30	CN31	175.11000319999991	173.08199680000001	176.1229056	175.4676992	162.7382016	171.6813056	CN25	CN27	CN28	CN29	CN30	CN31	2.9483903999999939	2.60700159999999	CN25	CN27	CN28	CN29	CN30	CN31	175.2493055999999	160.41919999999999	Node Name (Right)

31 Nodes	5000	7500	10000	12500	15000	550.255	1096.925	1927.4359999999999	3010.681	4400.2209999999995	1 Node	5000	7500	10000	12500	15000	13854.709000000001	31169.028666666662	55734.357499999998	89500.565000000002	131857.35500000001	Efficiency	5000	7500	10000	12500	15000	0.81221633019998596	0.91661010336568904	0.93278453863059496	0.95895745846205604	0.96664759895380903	Input Size

Execution Time (Thousand Second)

Parallel Efficiency

Dryad2009	5000	7500	10000	12500	15000	0.96313912009512503	0.97728664625216299	0.98020967051775798	0.98541479484875705	0.98717993139530902	DryadCTP	5000	7500	10000	12500	15000	0.96500574000674	0.98070347315038897	0.98664812569392402	0.98410217708966297	0.99544758179370896	Input Size

Speed up	1	2	4	8	16	31	1	1.991951170025241	3.9616451675546061	7.850246735951333	15.486098853630651	28.91632069754845	Number of Computer Nodes

Speed up

cn01	cn02	cn03	cn04	cn05	cn06	0.59879680000000002	0.77429760000000003	0.60359680000000004	0.90289920000000001	0.43710719999999997	0	cn01	cn02	cn03	cn04	cn05	cn06	990.06289919999801	1006.7651072	986.18630399999995	504.76230399999992	499.84340479999997	355.50880000000001	
Elapsed Time (in second)

cn01	cn02	cn03	cn04	cn05	cn06	0.65410559999999995	0.67610879999999995	0.77859840000000002	0.30810880000000002	0.29550080000000001	0	cn01	cn02	cn03	cn04	cn05	cn06	249.78399999999999	269.81579520000003	269.63910399999992	142.1718912	137.09370879999989	94.009804799999998	cn01	cn02	cn03	cn04	cn05	cn06	2.2151039999999971	2.2931968000000329	2.3086976000000168	3.4688000000000159	4.4062976000000171	6.365094399999994	cn01	cn02	cn03	cn04	cn05	cn06	257.8178944	254.6684032	253.493504	135.23430400000001	138.6406016	94.259404799999984	cn01	cn02	cn03	cn04	cn05	cn06	6.6299008000000237	8.8606976000000994	7.4098047999999608	11.687500800000009	6.2811904000000141	9.4385024000000008	cn01	cn02	cn03	cn04	cn05	cn06	262.31069439999999	257.5856	255.13149440000001	134.49999360000001	135.4219008	93.884992000000011	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	3.4063103999999949	3.3750015999999601	3.5881087999999872	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	137.20309760000001	135.343808	93.401395200000024	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	21.656192000000029	13.18260479999998	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	136.2813056	93.354598399999873	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	2.730099200000041	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	92.215795199999846	
cn01	cn02	cn03	cn04	cn05	cn06	0.54840319999999998	0.56791040000000004	0.47370240000000002	0.470912	0.50540799999999997	0	cn01	cn02	cn03	cn04	cn05	cn06	44.989798400000012	45.348889599999993	47.531903999999997	23.546892799999991	23.343795199999999	20.8893056	cn01	cn02	cn03	cn04	cn05	cn06	4.1028095999999916	4.2431999999999954	4.2898944000000014	4.1719039999999978	4.2030976000000004	2.9330048	cn01	cn02	cn03	cn04	cn05	cn06	45.832191999999999	45.458099200000007	45.176499200000002	23.62499840000001	23.7812096	20.624089599999991	cn01	cn02	cn03	cn04	cn05	cn06	4.1027071999999976	4.0403072000000009	4.0715008000000097	6.7344000000000008	2.4688000000000021	5.6630015999999896	cn01	cn02	cn03	cn04	cn05	cn06	44.599795200000003	46.331801599999892	45.784806400000001	23.531199999999991	23.71869439999999	21.310604800000011	cn01	cn02	cn03	cn04	cn05	cn06	4.1651968000000039	2.0903040000000042	4.0247039999999856	4.1250047999999966	6.1406975999999958	2.9016960000000012	cn01	cn02	cn03	cn04	cn05	cn06	44.428198400000007	44.350592000000013	44.7239936	24.156287999999989	22.953100800000001	20.9049984	cn01	cn02	cn03	cn04	cn05	cn06	4.1652095999999874	6.0059007999999956	4.1495040000000074	2.953100800000001	2.5625088000000029	8.0031104000000006	cn01	cn02	cn03	cn04	cn05	cn06	44.365798400000017	44.194496000000001	44.302899199999977	23.406207999999989	23.51559679999999	21.045388799999991	cn01	cn02	cn03	cn04	cn05	cn06	2.1216000000000008	4.0560000000000116	4.1339008000000206	6.1563007999999968	6.1563007999999968	2.043699200000006	cn01	cn02	cn03	cn04	cn05	cn06	46.580992000000009	51.635699199999983	47.594393600000018	23.375001600000019	22.796800000000019	21.731711999999991	cn01	cn02	cn03	cn04	cn05	cn06	5.9903103999999976	2.106009599999993	4.149503999999979	3.6718975999999941	3.046899199999983	7.2075904000000151	cn01	cn02	cn03	cn04	cn05	cn06	44.45939199999998	46.331699200000003	46.174796799999967	23.34369280000001	23.468800000000019	20.7177088	cn01	cn02	cn03	cn04	cn05	cn06	2.0904064000000062	6.1150976000000066	4.0871040000000036	6.1719039999999836	6.0936959999999942	3.946995200000003	cn01	cn02	cn03	cn04	cn05	cn06	45.800998400000033	47.657702400000012	44.692800000000041	23.328102400000009	24.281305599999989	21.045299199999981	cn01	cn02	cn03	cn04	cn05	cn06	6.2555007999999894	2.8236031999999791	2.0903935999999712	4.1405951999999973	2.2030976000000071	2.5741055999999962	cn01	cn02	cn03	cn04	cn05	cn06	43.5702912	50.949299200000041	51.338304000000008	23.140697599999982	23.046899199999981	21.62259199999999	cn01	cn02	cn03	cn04	cn05	cn06	4.0559104000000064	8.9542912000000001	10.155302400000039	2.2187008000000219	6.5624960000000074	5.6006016000000054	cn01	cn02	cn03	cn04	cn05	cn06	47.984998400000002	45.473702399999979	45.316800000000001	23.609408000000009	23.51559679999999	21.388608000000001	cn01	cn02	cn03	cn04	cn05	cn06	4.1651967999999799	2.6207999999999751	2.449203199999999	6.1561983999999894	4.1562111999999729	2.6208895999999982	cn01	cn02	cn03	cn04	cn05	cn06	44.896204800000021	49.482905599999981	51.213491199999957	24.312499199999991	23.906291199999991	21.575807999999991	cn01	cn02	cn03	cn04	cn05	cn06	2.0903935999999712	6.2087936000000381	5.9902080000000524	4.6249983999999689	2.7187072000000398	5.6317952	cn01	cn02	cn03	cn04	cn05	cn06	46.237798399999981	44.459699200000053	45.379289599999993	24.078195200000039	23.85939200000001	21.37300479999999	cn01	cn02	cn03	cn04	cn05	cn06	6.0215040000000446	4.1806975999999167	4.0402047999999704	6.1406079999999861	6.218803199999968	2.7144959999999969	cn01	cn02	cn03	cn04	cn05	cn06	46.206604800000036	45.660902400000062	47.48519680000004	24.703091200000021	24.062502400000021	21.98140160000003	cn01	cn02	cn03	cn04	cn05	cn06	4.009100799999942	5.3820031999999864	6.0215039999999362	3.0625023999999712	2.4530943999999981	5.6786943999999826	cn01	cn02	cn03	cn04	cn05	cn06	44.303487999999973	47.735692800000052	47.5320064	24.45310720000003	23.250009599999981	22.13740799999999	cn01	cn02	cn03	cn04	cn05	cn06	2.9171072000000322	5.9592063999999709	6.0681984000000284	6.6093951999999954	6.1093887999999774	3.6192896000000001	cn01	cn02	cn03	cn04	cn05	cn06	45.411097599999849	45.052505600000018	48.34319359999995	24.1563008	22.984307199999989	21.669401600000011	cn01	cn02	cn03	cn04	cn05	cn06	13.368998400000009	2.1371904000000099	2.5271040000000098	3	2.203200000000038	5.6162047999999887	cn01	cn02	cn03	cn04	cn05	cn06	46.5497984	45.442508799999928	46.907993600000047	25.234304000000009	23.218700799999962	21.85660160000003	cn01	cn02	cn03	cn04	cn05	cn06	4.0403072000000302	9.3598976000000693	5.959001599999965	10.9531904	6.1405951999999973	4.8518015999999866	cn01	cn02	cn03	cn04	cn05	cn06	47.002201600000028	45.926092799999999	46.642803200000003	24.406207999999989	23.828198400000019	21.59139840000001	cn01	cn02	cn03	cn04	cn05	cn06	4.0247935999999456	2.1372031999999308	2.152793599999995	4.2030975999999782	2.296806399999979	5.6007040000000057	cn01	cn02	cn03	cn04	cn05	cn06	48.15659519999997	48.344102400000097	47.875200000000063	25.281305600000049	23.265702400000009	22.527398399999981	cn01	cn02	cn03	cn04	cn05	cn06	4.0715008000000807	6.333593599999972	7.0822015999999621	2.2030975999999778	6.6717952000000187	4.1654015999999832	cn01	cn02	cn03	cn04	cn05	cn06	45.489011199999943	47.283302400000032	46.580403199999978	24.57809919999999	22.906303999999921	21.71609599999999	cn01	cn02	cn03	cn04	cn05	cn06	2.49599999999998	2.1371007999999851	2.1059072000000469	8.7969024000000182	4.1405951999999973	5.6007040000000057	cn01	cn02	cn03	cn04	cn05	cn06	46.284595200000012	49.451699199999872	44.817689599999873	24.39059199999997	24.24999680000008	22.19979520000004	cn01	cn02	cn03	cn04	cn05	cn06	6.3959039999999696	5.9904000000001361	6.1150079999999791	2.468799999999987	4.281305599999996	3.8221952000000101	cn01	cn02	cn03	cn04	cn05	cn06	45.286195199999952	44.974502399999899	53.225894400000023	23.734400000000051	24.062502399999879	22.38700799999992	cn01	cn02	cn03	cn04	cn05	cn06	2.3244032000000061	2.199603199999955	2.5271040000000098	6.5937023999999838	2.531200000000013	1.996902400000067	cn01	cn02	cn03	cn04	cn05	cn06	46.097395200000172	44.584499199999946	45.784793600000057	23.203097599999971	23.609395200000009	21.95009279999999	cn01	cn02	cn03	cn04	cn05	cn06	6.052697599999874	6.6611968000001882	6.3959039999999696	2.1563008000000541	7.2655999999999494	6.0999039999999241	cn01	cn02	cn03	cn04	cn05	cn06	48.04739840000002	48.031999999999933	46.518003199999839	24.156198400000001	23.24999680000008	21.404198400000041	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	13.35939839999992	4.2344064000000117	3.8689024000000241	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	22.796902400000029	22.859391999999961	21.419801600000039	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.3124992000000471	2.4218111999999792	2.028096000000005	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	24.31249919999993	23.70319360000008	21.716198399999939	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	24.046899199999981	6.2343039999999519	6.0530048000000436	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	24.29680640000004	24.859391999999961	22.043788799999891	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.2343935999999762	2.2969087999999829	6.1779072000000399	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.937510400000061	24.140595200000011	22.32459519999998	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	6.15630079999994	7.2656000000000631	3.9625984000000471	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.874995200000061	25	22.340211199999999	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	4.1874943999999807	2.2344064000000121	18.65839359999995	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.500006399999961	23.421887999999971	21.87220480000008	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.2812032000000499	16.562508800000039	5.7723007999999272	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.15630079999994	23	20.390092800000041	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	6.2187008000000787	4.2030975999999782	2.3245055999999522	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.609395200000009	23.71879679999995	21.48220160000005	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	4.1561983999999894	2.3281024000000339	6.8018943999999237	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.859404799999989	23.937497600000029	21.01410559999999	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.3905919999999692	6.2969087999999829	3.8221952000000101	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.796902400000029	23.031193599999931	22.23100160000002	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	13.17190399999993	2.2344064000000121	2.0436991999999918	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.515596800000029	23.453094400000051	21.62250240000003	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	4.2030975999999782	22.515596800000029	5.6318976000000021	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.562508800000039	23.281305599999989	21.45089280000002	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.2812928000000738	4.2343935999999758	4.0718080000000327	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.98439680000001	22.671808000000059	21.154598399999941	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	6.9062015999998101	4.156300799999828	3.0577024000000388	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.453107200000201	23.484390400000169	21.232601599999949	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	2.765695999999934	2.4531071999999772	6.24019199999998	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	23.59370239999998	22.499993599999922	21.326208000000069	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	6.3281024000000343	6.1250047999999344	1.996902399999954	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	24.10938880000003	23.343705600000021	21.060889599999989	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	4.2031871999999986	5.5851008000000766	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	23.71870720000015	21.263705599999859	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	2.3244928000001441	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	5.9594879999999648	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	21.669311999999991	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	2.1372928000000679	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	20.733401599999979	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	6.5833983999998509	cn01	cn02	cn03	cn04	cn05	cn06	0	0	0	0	0	20.98300160000008	
31.59905061864993	34.032153913615282	31.68102744546016	13.0096118312577	18.280795934531831	19.76107284536948	31.59905061864993	34.032153913615282	31.68102744546016	13.0096118312577	18.280795934531831	19.76107284536948	6	12	24	48	96	192	1053.5	1038	842	883	975	1265.5	Number of Partitions

Execution Time (Second)

TPL	2400	4800	7200	9600	12000	14400	16800	19200	17.909583028231889	18.950793977366779	19.1582506457124	19.17551678087656	19.364823281881829	19.39374659767871	19.469020744386199	19.462727046941989	Thread	2400	4800	7200	9600	12000	14400	16800	19200	17.730019109452499	17.46901300801245	17.447878712215569	17.405519478369211	17.623892643003408	17.603372495256401	17.644446200486989	17.62407630258863	PLINQ	2400	4800	7200	9600	12000	14400	16800	19200	23.76891761266841	23.598238843924079	23.09741387609143	23.235128702537299	23.042051979986329	23.08806094473978	22.9921043349763	22.795576908766929	Scale of Square Matrix

Speed-up

RowPartition	2400	4800	7200	9600	12000	14400	16800	19200	7.3403649175860206	12.6	13.545525899999999	15.44864497	15.28984625	15.506797479999999	17.5	17.3	RowColumnPartition	2400	4800	7200	9600	12000	14400	16800	19200	3.1802254335390332	6.7617737298070564	7.8672337357721096	8.2693117876581255	8.4453349532225506	8.5502216058139684	8.6870528956023705	9.7941424385035969	Fox-Hey	2400	4800	7200	9600	12000	14400	16800	19200	2.6394683626605882	9.663142389392755	12.32218104345012	13.50616746143047	14.084096153163561	14.46393708026846	16.221049689327032	16.38888418733859	

RowPartition	2400	4800	7200	9600	12000	14400	16800	19200	14.88172356624546	53.703540610351951	90.356481299358308	119.8448090745925	124.88929885212551	138.7566392124875	148.99560304230039	156.20546122705471	RowColumnPartition	2400	4800	7200	9600	12000	14400	16800	19200	3.2044389630743431	21.916249230883579	46.547877379109757	68.283987657583864	76.460392255064576	88.07989862869853	98.311727901893704	104.6966587754716	Fox-Hey	2400	4800	7200	9600	12000	14400	16800	19200	3.8422240669284728	21.849173556707829	45.511307100563492	71.580040727490811	89.852705056035163	98.933907813786064	116.6545991017498	128.81144853198529	

TPL	RowPartition	RowColumnPartition	Fox-Hey	131.7710302121595	93.700142514590311	85.635797227228892	Thread	RowPartition	RowColumnPartition	Fox-Hey	139.4501354490076	95.130928777762449	83.570319347378671	PLINQ	RowPartition	RowColumnPartition	Fox-Hey	156.20546122705471	104.6966587754716	128.81144853198529	Different Input Model

Speed-up

Fox-Hey Algorithm
Fox Algorithm	19200	28800	128.81144853198529	153.75906092368709	Input Size

Speed up

Seq	2400	4800	7200	9600	12000	14400	16800	19200	83	244.5	673	1476	2794	4718	7315	10675	PLINQ	2400	4800	7200	9600	12000	14400	16800	19200	21600	24000	26400	66	98.4	184	265.3	348	503	749	991	1317	1627	2061	Matrix Size

Execution Time (Second)

Aggregation Tree	320	480	640	800	960	1120	1280	110	122	135	149	156	159	165	Hash Partition	320	480	640	800	960	1120	1280	150	157	175	189	201	211	221	Hierarchical Aggregation	320	480	640	800	960	1120	1280	36	48	52	59	65	72	77	

Hash Partition Aggregation	6.8000000000000005E-2	3.4000000000000002E-2	1.7000000000000001E-2	1.6999999999999999E-3	8.4000000000000104E-5	267	1030	2022	6923	15189	Partial Aggregation	6.8000000000000005E-2	3.4000000000000002E-2	1.7000000000000001E-2	1.6999999999999999E-3	8.4000000000000104E-5	247	1065	2141	5192	10533	

Hash Partition	100000	200000	300000	400000	500000	600000	700000	800000	900000	1000000	1130	1047	957	943	866	816	810	843	831	843	Aggregation Tree	100000	200000	300000	400000	500000	600000	700000	800000	900000	1000000	791	812	822	833	859	870	923	925	930	948	

MPI	4.8000000000000001E-2	Twister	3.6999999999999998E-2	Haloop	6.7000000000000002E-3	Dryad	5.5999999999999999E-3	Hadoop	4.0000000000000001E-3	

not chained execution	GroupAndAggregate	TwoApplyPerPartition	ApplyPerPartition	GroupBy	2485	2463	2782	2823	chained execution	GroupAndAggregate	TwoApplyPerPartition	ApplyPerPartition	GroupBy	1543	1646	2139	1940	

Process Level Failure
CN25	CN27	CN28	CN29	CN30	CN31	4.7584	4.9451007999999996	0	4.9783936000000004	4.7620991999999998	0	CN25	CN27	CN28	CN29	CN30	CN31	186.20160000000001	178.6355968	191.3171968	186.0443904	186.7460992	CN25	CN27	CN28	CN29	CN30	CN31	1.2479999999999905	1.1543935999999917	1.1231999999999971	1.0764032000000157	0.99519999999998277	CN25	CN27	CN28	CN29	CN30	CN31	185.82719999999998	179.4624	176.01360639999999	177.1213056	177.50239999999999	CN25	CN27	CN28	CN29	CN30	CN31	2.7768063999999981	4.4926975999999854	CN25	CN27	CN28	CN29	CN30	CN31	176.15520000000004	178.63449600000001	
Elapsed TIme (seconds)

 OS level failure
CN25	CN27	CN28	CN29	CN30	CN31	4.7096064000000002	4.8494976000000003	0	4.8541055999999996	4.7314048	0	CN25	CN27	CN28	CN29	CN30	CN31	183.45599999999999	183.48720639999999	0	179.74199039999999	185.8416	175.07220480000001	CN25	CN27	CN28	CN29	CN30	CN31	1.1075968000000103	1.0451968000000136	0	24.023910400000005	1.1855999999999938	1.1076991999999848	CN25	CN27	CN28	CN29	CN30	CN31	191.13119999999998	176.49840639999999	0	175.20249600000002	173.87649279999999	178.17679360000002	CN25	CN27	CN28	CN29	CN30	CN31	7.3943936000000008	1.0607104000000049	CN25	CN27	CN28	CN29	CN30	CN31	187.21560320000003	175.46769920000003	
 Node Level Failure
CN25	CN27	CN28	CN29	CN30	CN31	5.5464064000000004	5.7019007999999998	5.7272959999999999	5.5577984000000002	0	CN25	CN27	CN28	CN29	CN30	CN31	177.15360000000001	192.28560640000001	186.51240960000001	183.79800320000001	185.8379008	CN25	CN27	CN28	CN29	CN30	CN31	20.950796800000006	5.8343935999999985	11.621990399999987	14.367500799999988	11.724096000000003	CN25	CN27	CN28	CN29	CN30	CN31	178.60440320000001	176.59200000000001	179.57040640000002	179.99170560000002	180.5158016	CN25	CN27	CN28	CN29	CN30	CN31	2.7299967999999808	2.7768063999999981	CN25	CN27	CN28	CN29	CN30	CN31	186.93479679999996	175.62479359999998	
Multi Node Failure
CN25	CN27	CN28	CN29	CN30	CN31	13.84	12.623808	12.433996799999999	12.748608000000001	12.4681984	0	CN25	CN27	CN28	CN29	CN30	CN31	178.15199999999999	190.52279039999999	182.28600320000001	187.02720000000002	175.9981056	182.50929919999999	CN25	CN27	CN28	CN29	CN30	CN31	1.0763903999999798	1.0608000000000004	1.0286976000000152	CN25	CN27	CN28	CN29	CN30	CN31	177.41770240000002	186.0131968	172.90740480000002	CN25	CN27	CN28	CN29	CN30	CN31	130.82069759999996	133.25429759999997	136.10590719999999	CN25	CN27	CN28	CN29	CN30	CN31	180.58449919999998	177.19930879999998	175.28058880000003	
6 Partitions
CN25	CN27	CN28	Cn29	CN30	CN31	4.6276096000000004	4.8923008000000001	4.9198079999999997	4.7347071999999999	0	CN25	CN27	CN28	Cn29	CN30	CN31	357.25559039999996	344.33880320000003	345.64700160000001	347.05099519999999	363.43480319999998	CN25	CN27	CN28	Cn29	CN30	CN31	1.5912063999999759	CN25	CN27	CN28	Cn29	CN30	CN31	350.40719360000003	Compute Nodes

Elapsed Time (second)

24 Partitions
CN25	CN27	CN28	CN29	CN30	CN31	6.4620031999999998	6.5092992000000001	6.5271936000000004	6.5201023999999999	6.5945983999999997	0	CN25	CN27	CN28	CN29	CN30	CN31	97.013900800000002	95.167103999999995	94.862399999999994	91.984396799999999	96.095398400000008	93.111500800000002	CN25	CN27	CN28	CN29	CN30	CN31	2.1527935999999954	1.2321919999999977	1.0763007999999985	1.0140031999999906	0.98200319999999408	CN25	CN27	CN28	CN29	CN30	CN31	93.286796800000005	94.188710400000005	0	87.855398399999999	87.749401600000013	92.288998399999997	CN25	CN27	CN28	CN29	CN30	CN31	1.0296064000000058	2.7611904000000038	0	2.792294400000003	2.6988031999999862	2.699097600000016	CN25	CN27	CN28	CN29	CN30	CN31	90.260403200000013	86.811199999999985	0	92.036403200000024	91.688089600000012	89.901900799999993	CN25	CN27	CN28	CN29	CN30	CN31	2.6675967999999557	1.1230975999999941	0	1.1388031999999839	1.1383040000000051	1.0227967999999805	CN25	CN27	CN28	CN29	CN30	CN31	89.620902400000034	89.572403199999997	0	88.448601600000018	90.314598399999966	86.670297600000026	CN25	CN27	CN28	CN29	CN30	CN31	2.7923072000000388	0	2.6987007999999832	2.5449087999999733	CN25	CN27	CN28	CN29	CN30	CN31	0	96.187596799999994	0	89.884799999999984	0	91.521395200000029	Compute Nodes

96 Partitions
CN25	CN27	CN28	CN29	CN30	CN31	8.1579008000000002	8.1428992000000004	8.1624960000000009	8.1297920000000001	8.0602879999999999	0	CN25	CN27	CN28	CN29	CN30	CN31	24.351590399999999	24.429593599999997	24.8662016	26.2859008	24.007807999999997	24.8309888	CN25	CN27	CN28	CN29	CN30	CN31	1.0451967999999994	1.0296063999999987	1.0451967999999994	1.9499007999999947	1.0295936000000054	1.0031999999999996	CN25	CN27	CN28	CN29	CN30	CN31	25.4124032	23.462400000000002	24.133094399999997	23.743104000000002	24.678502399999999	24.082700799999998	CN25	CN27	CN28	CN29	CN30	CN31	2.6675967999999983	2.6675967999999983	2.8392064000000019	1.0139903999999973	2.6675967999999983	2.6736000000000004	CN25	CN27	CN28	CN29	CN30	CN31	23.010009600000004	23.7744	25.022195199999999	23.446604800000003	24.241702400000001	23.482303999999999	CN25	CN27	CN28	CN29	CN30	CN31	1.3884031999999991	1.0295935999999983	1.0764032000000014	2.6675967999999983	1.2947968000000003	0.99200000000000443	CN25	CN27	CN28	CN29	CN30	CN31	23.321996799999994	24.772800000000004	24.491801600000002	26.363904000000005	25.131007999999994	25.661503999999994	CN25	CN27	CN28	CN29	CN30	CN31	2.6208000000000027	2.6520064000000048	2.9328000000000003	1.0295040000000029	2.7454976000000073	2.615795200000008	CN25	CN27	CN28	CN29	CN30	CN31	24.913190399999991	24.741593600000002	23.696294399999999	25.17829119999999	24.194995199999994	25.444198399999991	CN25	CN27	CN28	CN29	CN30	CN31	1.0296064000000058	1.0920064000000025	1.3728000000000122	2.6676095999999916	1.0608000000000004	0.9824000000000126	CN25	CN27	CN28	CN29	CN30	CN31	24.242406400000021	24.741593599999987	25.381004799999999	24.897395200000005	25.754905600000001	25.645606399999991	CN25	CN27	CN28	CN29	CN30	CN31	2.714393599999994	2.7144064000000014	3.166796799999986	1.014003200000019	2.6674944000000096	2.6294015999999942	CN25	CN27	CN28	CN29	CN30	CN31	26.083200000000005	24.273599999999988	24.538598400000012	24.585395199999994	25.053004799999997	25.173094399999997	CN25	CN27	CN28	CN29	CN30	CN31	1.0296063999999774	1.014003200000019	1.4508031999999957	2.8703999999999894	1.1075967999999818	0.98539519999999925	CN25	CN27	CN28	CN29	CN30	CN31	24.897587200000004	25.927193599999981	23.431104000000005	23.555903999999998	24.709708800000016	24.280806400000017	CN25	CN27	CN28	CN29	CN30	CN31	2.9796096000000034	2.6832000000000278	3.1510911999999962	1.0295935999999983	2.6987008000000117	2.5858944000000008	CN25	CN27	CN28	CN29	CN30	CN31	24.024000000000001	24.335999999999984	26.317107199999981	24.257804800000002	24.4291968	24.735001600000004	CN25	CN27	CN28	CN29	CN30	CN31	1.0451968000000136	1.1544063999999992	2.714393599999994	1.0295935999999983	1.11900159999999	CN25	CN27	CN28	CN29	CN30	CN31	23.181606399999964	23.275200000000012	23.43100160000003	23.805299200000007	23.6758016	CN25	CN27	CN28	CN29	CN30	CN31	2.7299968000000376	2.6987904000000071	1.0764031999999588	2.6676095999999916	2.6030976000000123	CN25	CN27	CN28	CN29	CN30	CN31	23.665190399999972	24.164403199999981	24.679103999999995	24.398092799999972	23.011097599999971	CN25	CN27	CN28	CN29	CN30	CN31	1.0296064000000342	0.99840000000000373	2.7923968000000059	1.0451072000000181	1.0370048000000338	CN25	CN27	CN28	CN29	CN30	CN31	22.385996799999987	21.839999999999975	25.708595200000047	23.633689600000025	23.131494400000008	CN25	CN27	CN28	CN29	CN30	CN31	2.8548096000000101	2.9016064000000483	1.0296063999999774	2.6988031999999862	2.6871039999999766	CN25	CN27	CN28	CN29	CN30	CN31	23.961599999999976	24.164390400000002	23.602598399999977	24.491699199999971	24.018803199999979	CN25	CN27	CN28	CN29	CN30	CN31	50.029196800000022	50.216409599999963	46.799705600000038	45.411008000000038	50.516198400000007	CN25	CN27	CN28	CN29	CN30	CN31	23.743193599999984	23.088000000000022	23.97710079999996	24.335692800000004	23.335795200000007	CN25	CN27	CN28	CN29	CN30	CN31	2.9327999999999861	2.7299967999999808	1.045196800000042	2.714406399999973	2.6020096000000308	CN25	CN27	CN28	CN29	CN30	CN31	23.8836096	23.602803199999983	22.900595199999998	22.760089600000015	23.302399999999977	CN25	CN27	CN28	CN29	CN30	CN31	1.0295935999999983	1.0295935999999983	2.6051967999999874	1.0296063999999774	1.1073920000000044	CN25	CN27	CN28	CN29	CN30	CN31	23.945996799999989	23.00999680000001	24.289100799999972	23.446502399999986	25.161100799999986	CN25	CN27	CN28	CN29	CN30	CN31	2.6832000000000562	3.0732032000000231	1.0452096000000211	2.7298944000000347	2.6050048000000174	CN25	CN27	CN28	CN29	CN30	CN31	24.382809599999973	24.538803200000018	22.994201599999997	24.803699199999983	24.400691199999983	CN25	CN27	CN28	CN29	CN30	CN31	1.0295935999999983	2.714393599999994	CN25	CN27	CN28	CN29	CN30	CN31	23.977203199999963	23.009804799999984	Compute Nodes

Without Failure	
6	12	24	48	96	386.74599999999998	393.41849999999999	405.71249999999998	429.76750000000004	499.55250000000001	1 Node Failure	
701	586	476	493	521	Number of Partitions

Execution Time (second)

Dryad(map-side-join)	320	480	640	800	960	1120	1280	79.3	93.3	103.9	123.8	139.1	148	163.69999999999999	Hadoop(map-side-join)	320	480	640	800	960	1120	1280	171.2	202.3	251.1	273.10000000000002	310.2	331.7	353.1	

50	100	150	200	250	300	46.217200000000012	188.86200000000011	425.34339999999952	770.69240000000002	1221.6282000000001	1755.4356	Input Sequence Number
Execution Time
trinomial fitting function	4800	6000	7200	8400	9600	2567.66	5002.1200000000008	8628.5	13684.46	20407.66	29035.759999999991	
Execution Time

40

image1.png
Applications
SW-G, Matrix Multiplication, PageRank

DryadLINQCTP
Interface, DryadLINQ Provider

Dryad
Vertex, Channel, Job Manager

Distributed Storage Catalog
DSC interface, NTFS

Windows HPC Cluster
HeadNode, BrokerNode, ComputeNode

image2.png
Input Data Input Data

Partition Partition
Local
Aggregation
Map Map
Stage Stage
Aggregation
Tree
Reduce Reduce
Stage Stage

Pleasing Parallel Programming Model Hybrid Parallel Programming Model Partial PreAggregation Programming Model

image3.png
Upper triangle

0 1 7
0 0 1 7
1

s oo |1
.
.
p-1 | [Blocks in Iuwermaggi
are not calculated irectly || 3¢

Blocks In Upper Triangle
[sTe]- [u [. [|

|
‘ |
(oriton 1) (Fanivonz) - (raritions)
DryadUiNQ |

m. 0,
DryadLING
vertices.

1000 x 1000 matrix broken down fo 88 blocks

Each D consecativo blocks are mevged toforma
sot of row blocks oach with 8 eloments.

image4.png
e

TSR AT T AT

image5.emf

image6.wmf
å

=

=

p

k

kj

ik

ij

B

A

C

1

image7.png
B Matrix

B Matrix

B Matrix

B Matrix

Row Block 1

Row Block 2

Row Block 3

Row Block m

image8.emf
Row Block 1

Row Block 2

Row Block 3

Row Block m

...

Node 2 Node 3 Node 1

Node n

...

A

Matrix

C

o

l

u

m

n

B

l

o

c

k

1

C

o

l

u

m

n

B

l

o

c

k

2

C

o

l

u

m

n

B

l

o

c

k

3

C

o

l

u

m

n

B

l

o

c

k

n

.

.

.

B

Matrix

1

2

3

…

m

I

t

e

r

a

t

i

o

n

s

C

Matrix

Block

(2,1)

Block

(2,2)

Block

(2,n)

Block

(m,0)

Block

(m,1)

Block

(m,n)

Block

(1,1)

Block

(1,2)

Block

(1,n)

Block

(1,3)

Block

(1,3)

Block

(m,3)

...

...

...

Block

(m,0)

Block

(m,1)

Block

(m,n)

Block

(m,3)

...

...

image9.emf
Block

(1,1)

Block

(0,0)

Block

(1,0)

Block

(1,1)

Block

(0,0)

Block

(0,1)

Block

A(1,1)

B(1,0)

Block

A(1,1)

B(1,1)

Block

A(0,0)

B(0,0)

Block

A(0,0)

B(0,1)

Block

(0,1)

Block

(1,0)

Block

(1,1)

Block

(0,0)

Block

(0,1)

Block

A(1,0)

B(0,0)

Block

A(1,0)

B(0,1)

Block

A(0,1)

B(1,0)

Block

A(0,1)

B(1,1)

Matrix B Matrix A

Matrix C

Step 0

Step 1

Block

(1,0)

Block

(1,1)

Block

(0,0)

Block

(0,1)

Block

(1,0)

Block

(1,1)

Block

(0,0)

Block

(0,1)

Preparing

stage

Compute

Node

(1,0)

Compute

Node

(1,1)

Compute

Node

(0,0)

Compute

Node

(0,1)

Compute nodes

Node 1

Node 2

Node 3

Node 4

Block

(1,0)

oleObject1.bin
Block
A(1,1)
B(1,0)

Block
A(1,1)
B(1,1)

Block
A(0,0)
B(0,0)

Block
A(0,0)
B(0,1)

Block
(0,1)

Block
(1,0)

Block
(1,1)

Block
(0,0)

Block
(0,1)

Block
A(1,0)
B(0,0)

Block
A(1,0)
B(0,1)

Block
A(0,1)
B(1,0)

Block
A(0,1)
B(1,1)

Matrix B

Matrix A

Matrix C

Step 0

Step 1

Block
(1,0)

Block
(1,1)

Block
(0,0)

Block
(0,1)

Block
(1,0)

Block
(1,1)

Block
(0,0)

Block
(0,1)

Preparing
stage

Block
(1,0)

Block
(0,0)

Block
(1,1)

Block
(1,0)

Block
(1,1)

Block
(0,0)

Block
(0,1)

Compute Node
(1,0)

Compute Node
(1,1)

Compute Node
(0,0)

Compute Node
(0,1)

Compute nodes

Node 2

image10.emf
…

.

.

.

… ...

Node 1

Node m

Node 0

Node n

...

Block

(1,0)

Block

(1,1)

Block

(1,m)

Block

(m,0)

Block

(m,1)

Block

(m,m)

Block

(0,0)

Block

(0,1)

Block

(0,m)

…

.

.

.

… ...

Block

(1,0)

Block

(1,1)

Block

(1,m)

Block

(m,0)

Block

(m,1)

Block

(m,m)

Block

(0,0)

Block

(0,1)

Block

(0,m)

Matrix A

Matrix B

...

Node m+1

A

Block

(0,i)

A

Block

(0,i)

A

Block

(0,i)

A

Block

(1,i+1)

A

Block

(m,(i+m

)%m)

B

Block

(i,1)

B

Block

(i,0)

B

Block

(i,m)

B

Block

((i+1)

%m,0)

B

Block

((i+m)

%m,m)

C

Block

(0,1)

C

Block

(0,0)

C

Block

(0,m)

C

Block

(1,0)

C

Block

(m,m)

...

...

…

.

.

.

… ...

Block

(1,0)

Block

(1,1)

Block

(1,m)

Block

(m,0)

Block

(m,1)

Block

(m,m)

Block

(0,0)

Block

(0,1)

Block

(0,m)

Matrix C

oleObject2.bin
Block
(1,0)

Block
(1,1)

Block
(1,m)

image11.jpg
CPU Usage (%)

Fox-Hey |

77172011 1202 PM

Fox-Hey

120
Row Partitiion Row Column Partitiion

100 —| = —

80 —|

60

40 |

20 —

0 72011 11:14 AM 712011 11:30 AM 712011 11:46 AM
Sloan Digital Sky Survey
Network Us
3 B age (Bytes/second)
25000000 -
20000000
J Row Partitiion|
15000000 - Row Column Partitiion
10000000 - |
5000000 -
0 | A

7112011 11:14 AM

77112011 11:30 AM

71172011 11:46 AM

71172011 12:02 PM

image12.png
o minutes): [130 Yo [8 - Autoscdle | 2 Refresh

size 19200 CPUUsage () size 28800

100

E

E

)

E

s (minues): [130 Vas: [[RUGRESR) | 2 Refresh

Network Usage (Bytes/second)

o size 28800 P NC73 atunchon Gigabt
‘Server Adapter

image13.png
Hash
Partition

Local
Aggregation

Local
Aggregation

Synchronized
Aggregation
Stage

Local
Aggregation

Aggregation
Tree

image14.png
main program

Iterations

‘each Map task

image15.png
16—

16—

HA Hierarchical Aggregation
2AP TwoApplyPerPartition

GA GroupAndAggregation

GB GroupBy

AP OneApplyPerPartition

HA-640
24P-640 AP-320

CPU Usage (%)

GA-320 HA-320

HA Hierarchical Aggregation o=
Usage (Bytes/second) 2AP TwoApplyPerPartition =
GA GroupAndAggregation e
GB GroupBy e
AP OneApplyPerPartition e
Ge-540
ap-640
209320

4172011 315.AM 47011 441 AM

4172017 607 AM

47011 73380

GB-640 2AP-640 AP-320 GA-320 HA-320

image16.png
JobID - | JobName | Ouer | state | equested Resaurces | Elapsed Time. | Progress | Submit Time

11243 PLNGMMMPRLIS0_ 160 ADS\yenguan Runring 22 Nodes o 471872011 227
{11288 PageRankMP-LING ADSiui Furring 22 Nodes [LTRTS G, —4/15/2011 224
11245 5w Map 500012831 ADSyudio Runring 22Nodes 011808 1o - 47172011 1:07

image17.png
08 019
00 100 100 100

TR STORM-CNOT STORM-CND2 STORM-CND3
00 00 00
100 100 100 00

STORM-CND4 STORM-CS STORM-CNDG STORM-CND?

image18.png
Time per Actual Caleulation (ms)
21

0019
0017 §
0015 \‘\
0013 - —
0011 —e— Hadoop SW-G
—+— DryadLINQ SW-G

0.009

10000 20000 30000 40000

No. of Sequences

image19.png
Per Core per File Time (s)
120

ue 4.\'\0‘.*.

0

—s
80
—+— Dryadling
70 3
—=— Hadloop
60

300 800 1300

1800 2300 2800
Nurmber of Files

3300 3800 4300

image20.png
Average time for 16 iterations (Seconds)
Log Scale

1000

100
L. "
10 -
v
-
'
01 Hadeop <.
DryadliNG —5—
Run using 256 CPU cores Twiter 2
001
512000 51201006 1.02464007 204804007

Number of 2D Data Points

