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Abstract 
 

Applying high level parallel runtimes to 

data/compute intensive applications is becoming 

increasingly common. The simplicity of the MapReduce 

programming model and the availability of open 

source MapReduce runtimes such as Hadoop, attract 

more users around MapReduce programming model. 

Recently, Microsoft has released DryadLINQ for 

academic use, allowing users to experience a new 

programming model and a runtime that is capable of 

performing large scale data/compute intensive 

analyses. In this paper, we present our experience in 

applying DryadLINQ for a series of scientific data 

analysis applications, identify their mapping to the 

DryadLINQ programming model, and compare their 

performances with Hadoop implementations of the 

same applications. 

1. Introduction 

Among many applications benefit from cloud 

technologies such as DryadLINQ [1] and Hadoop [2], 

the data/compute intensive applications are the most 

important. The deluge of data and the highly compute 

intensive applications found in many domains such as 

particle physics, biology,  chemistry,  finance, and 

information retrieval,  mandate the use of large 

computing infrastructures and parallel runtimes to 

achieve considerable performance gains. The support 

for handling large data sets, the concept of moving 

computation to data, and the better quality of services 

provided by Hadoop and DryadLINQ made them 

favorable choice of technologies to implement such 

problems. 

Cloud technologies such as Hadoop and Hadoop 

Distributed File System (HDFS), Microsoft 

DryadLINQ, and CGL-MapReduce [3] adopt a more 

data-centered approach to parallel processing. In these 

frameworks, the data is staged in data/compute nodes 

of clusters or large-scale data centers and the 

computations are shipped to the data in order to 

perform data processing.  HDFS allows Hadoop to 

access data via a customized distributed storage system 

built on top of heterogeneous compute nodes, while 

DryadLINQ and CGL-MapReduce access data from 

local disks and shared file systems.  The simplicity of 

these programming models enables better support for 

quality of services such as fault tolerance and 

monitoring. 

Although DryadLINQ comes with standard samples 

such as Terasort, word count, its applicability for large 

scale data/compute intensive scientific applications is 

not studied well. A comparison of these programming 

models and their performances would benefit many 

users who need to select the appropriate technology for 

the problem at hand. 

We have developed a series of scientific 

applications using DryadLINQ, namely, CAP3 DNA 

sequence assembly program [4], High Energy Physics 

data analysis, CloudBurst [5] - a parallel seed-and-

extend read-mapping application, and Kmeans 

Clustering [6]. Each of these applications has unique 

requirements for parallel runtimes. For example, the 

HEP data analysis application requires ROOT [7]  data 

analysis framework to be available in all the compute 

nodes, and in CloudBurst the framework needs to 

process different workloads at map/reduce/vertex 

tasks. We have implemented all these applications 

using DryadLINQ and Hadoop, and used them to 

compare the performance of these two runtimes. CGL-

MapReduce and MPI are used in applications where 

the contrast in performance needs to be highlighted.  

 In the sections that follow, we first present the 

DryadLINQ programming model and its architecture 

on HPC environment, and a brief introduction to 



Hadoop. In section 3, we discuss the data analysis 

applications and the challenges we faced in 

implementing them along with a performance analysis 

of these applications. In section 4, we present the 

related work to this research, and in section 5 we 

present our conclusions and the future works. 

2. DryadLINQ and Hadoop 

A central goal of DryadLINQ is to provide a wide 

array of developers with an easy way to write 

applications that run on clusters of computers to 

process large amounts of data. The DryadLINQ 

environment shields the developer from many of the 

complexities associated with writing robust and 

efficient distributed applications by layering the set of 

technologies shown in Figure 1. 

 

Figure 1. DryadLINQ software stack 

Working at his workstation, the programmer writes 

code in one of the managed languages of the .NET 

Framework using Language Integrated Queries. The 

LINQ operators are mixed with imperative code to 

process data held in collection of strongly typed 

objects. A single collection can span multiple 

computers thereby allowing for scalable storage and 

efficient execution.  The code produced by a 

DryadLINQ programmer looks like the code for a 

sequential LINQ application. Behind the scene, 

however, DryadLINQ translates LINQ queries into 

Dryad computations (Directed Acyclic Graph (DAG) 

based execution flows). While the Dryad engine 

executes the distributed computation, the DryadLINQ 

client application typically waits for the results to 

continue with further processing. The DryadLINQ 

system and its programming model are described in 

details in [1]. 

This paper describes results obtained with the so-

called Academic Release of Dryad and DryadLINQ, 

which is publically available [8]. This newer version 

includes changes in the DryadLINQ API since the 

original paper. Most notably, all DryadLINQ 

collections are represented by the 

PartitionedTable<T> type. Hence, the example 

computation cited in Section 3.2 of [1] is now 

expressed as: 
 

var input = 

PartitionedTable.Get<LineRecord>(“file://in.tb

l”); 

var result = MainProgram(input, …); 

var output = 

result.ToPartitionedTable(“file://out.tbl”); 
 

As noted in Figure 1, the Dryad execution engine 

operates on top of an environment which provides 

certain cluster services. In [1][9] Dryad is used in 

conjunction with the proprietary Cosmos environment. 

In the Academic Release, Dryad operates in the context 

of a cluster running Windows High-Performance 

Computing (HPC) Server 2008. While the core of 

Dryad and DryadLINQ does not change, the bindings 

to a specific execution environment are different and 

may lead to differences in performance. 

Table 1. Comparison of features supported by  Dryad 
and Hadoop 

Feature Hadoop Dryad 

Programming 

Model 

MapReduce DAG based 

execution flows 

Data Handling HDFS Shared directories/ 

Local disks 

Intermediate 

Data 

Communication 

HDFS/ 

Point-to-point 

via HTTP 

Files/TCP pipes/ 

Shared memory 

FIFO 

Scheduling Data locality/ 

Rack aware  

Data locality/ 

Network 

topology based 

run time graph 

optimizations 

Failure 

Handling 

Persistence via 

HDFS 

Re-execution 

of map and 

reduce tasks 

Re-execution of 

vertices 

Monitoring Monitoring 

support of 

HDFS, and 

MapReduce 

computations 

Monitoring  

support for 

execution graphs 

Language 

Support 

Implemented 

using Java 

Other 

languages are 

supported via 

Hadoop 

Streaming 

Programmable via 

C#  

DryadLINQ 

Provides LINQ 

programming API 

for Dryad 

 

 Apache Hadoop has a similar architecture to 

Google’s MapReduce runtime, where it accesses data 

via HDFS, which maps all the local disks of the 

compute nodes to a single file system hierarchy 

allowing the data to be dispersed to all the 

data/computing nodes. Hadoop schedules the 

MapReduce computation tasks depending on the data 

locality to improve the overall I/O bandwidth. The 

outputs of the map tasks are first stored in local disks 



until later, when the reduce tasks access them (pull) via 

HTTP connections. Although this approach simplifies 

the fault handling mechanism in Hadoop, it adds 

significant communication overhead to the 

intermediate data transfers, especially for applications 

that produce small intermediate results frequently. The 

current release of DryadLINQ also communicates 

using files, and hence we expect similar overheads in 

DryadLINQ as well.  Table 1 presents a comparison of 

DryadLINQ and Hadoop on various features supported 

by these technologies.  

3. Scientific Applications 

In this section, we present the details of the 

DryadLINQ applications that we developed, the 

techniques we adopted in optimizing the applications, 

and their performance characteristics compared with 

Hadoop implementations. For all our benchmarks, we 

used two clusters with almost identical hardware 

configurations as shown in Table 2. 

Table 2. Different computation clusters used for the 
analyses 

Feature Linux Cluster  

(Ref A) 

Windows Cluster 

(Ref B) 

CPU Intel(R) Xeon(R) 

CPU L5420  

2.50GHz 

Intel(R) Xeon(R) 

CPU L5420  

2.50GHz 

# CPU  

# Cores 

2 

8 

2 

8 

Memory 32GB 16 GB 

# Disk 1  2  

Network Giga bit Ethernet Giga bit Ethernet 

Operating 

System 

Red Hat 

Enterprise Linux 

Server -64 bit 

Windows Server 

Enterprise - 64 bit 

# Nodes  32 32 

2.1. CAP3 

 CAP3 is a DNA sequence assembly program 

developed by X. Huang and A. Madan [4] that 

performs several major assembly steps such as 

computation of overlaps, construction of contigs, 

construction of multiple sequence alignments and 

generation of consensus sequences, to a given set of 

gene sequences. The program reads a collection of 

gene sequences from an input file (FASTA file format) 

and writes its output to several output files and to the 

standard output as shown below. The input data is 

contained in a collection of files, each of which needs 

to be processed by the CAP3 program separately.  

Input.fsa -> Cap3.exe -> Stdout + Other output files 

 We developed a DryadLINQ application to perform 

the above data analysis in parallel. The DryadLINQ 

application executes the CAP3 executable as an 

external program, passing an input data file name, and 

the other necessary program parameters to it. Since 

DryadLINQ executes CAP3 as an external executable, 

it must only know the input file names and their 

locations. We achieve the above functionality as 

follows: (i) the input data files are partitioned among 

the nodes of the cluster so that each node of the cluster 

stores roughly the same number of input data files; (ii) 

a “data-partition” (A text file for this application) is 

created in each node containing the names of the 

original data files available in that node; (iii) Dryad 

“partitioned-file” (a meta-data file for DryadLINQ) is 

created to point to the individual data-partitions located 

in the nodes of the cluster. 

 Following the above steps, a DryadLINQ program 

can be developed to read the data file names from the 

provided partitioned-file, and execute the CAP3 

program using the following two DryadLINQ queries. 
 

IQueryable<Line Record> filenames = 

PartitionedTable.Get<LineRecord>(uri); 

IQueryable<int> exitCodes= filenames.Select(s 

=> ExecuteCAP3(s.line)); 
 

 Although we use this program specifically for the 

CAP3 application, the same pattern can be used to 

execute other programs, scripts, and analysis functions 

written using the frameworks such as R and Matlab, on 

a collection of data files. (Note: In this application, we 

assumed that DryadLINQ would process the input data 

files on the same nodes where they are located. 

Although this is not guaranteed by the DryadLINQ 

runtime, if the nodes containing the data are free 

during the execution of the program, it will schedule 

the parallel tasks to the appropriate nodes; otherwise, 

the data will be accessed via the shared directories.) 

 When we first deployed the application on the 

cluster, we noticed a sub-optimal CPU core utilization 

by the application, which is highly unlikely for a 

compute intensive program such as CAP3. A trace of 

job scheduling in the HPC cluster revealed that the 

scheduling of individual CAP3 executables in a given 

node is not optimal in terms of the utilization of CPU 

cores. In a node with 8 CPU cores, we would expect 

DryadLINQ to execute 8 ExecuteCAP3() functions 

simultaneously. However, we noticed that the number 

of parallel executions varies from 8 to 1 with the 

DryadLINQ’s scheduling mechanism. For example, 

with 16 data file names in a data-partition; we noticed 

the following scheduling pattern (of concurrent 

ExecuteCAP3()s)  from PLINQ, 8->4->4, which 

should ideally be 8 ->8. 

 When an application is scheduled, DryadLINQ uses 

the number of data partitions as a guideline to 



determine the number of vertices to run. Then 

DryadLINQ schedules these vertices to the nodes 

rather than individual CPU cores assuming that the 

underlying PLINQ runtime would handle the further 

parallelism available at each vertex and utilize all the 

CPU cores. The PLINQ runtime, which is intended to 

optimize processing of fine grained tasks in multi-core 

nodes, performs optimizations by chunking the input 

data. Since our input for DraydLINQ is only the names 

of the original data files, it has no way to determine 

how much time the ExecuteCAP3() take to process a 

file, and hence the chunking of records at PLINQ 

results sub-optimal scheduling of tasks.  

 We found a workaround to this problem by 

changing the way we partition the data. Instead of 

partitioning input data to a single data-partition per 

node, we create data-partitions containing at most 8 

(=number of CPU cores) line records (actual input file 

names). This way, we used DryadLINQ’s scheduler to 

schedule series of vertices corresponding to different 

data-partitions in nodes while PLINQ always schedules 

8 tasks at once, which gave us 100% CPU utilization. 

Figure 2 and 3 show comparisons of performance and 

the scalability of the DryadLINQ application, with the 

Hadoop and CGL-MapReduce versions of the CAP3 

application.  

 

Figure 2. Performance of different implementations 
of CAP3 application 

 Although the above approach (partitioning data) 

works perfectly fine with this application, it does not 

solve the underlying problem completely. DryadLINQ 

does not schedule multiple concurrent vertices to a 

given node, but one vertex at a time. Therefore, a 

vertex which uses PLINQ to schedule some non-

homogeneous parallel tasks would have a running time 

equal to the task which takes the longest time to 

complete. For example, in our application, if one of a 

input data file takes longer time to process than the 

others, which are assigned to a given vertex (assume a 

total of 8 files per vertex), the remaining 7 CPU cores 

will be idling while the task that takes longest 

completes. In contrast, in Hadoop, the user can set the 

maximum and minimum number of map and reduce 

tasks to execute concurrently on a given node so that it 

will utilize all the CPU cores. 

 

Figure 3. Scalability of different implementations of 
CAP3 

 The performance and the scalability graphs shows 

that all three runtimes work almost equally well for the 

CAP3 program, and we would expect them to behave 

in the same way for similar applications with simple 

parallel topologies. 

2.2. High Energy Physics 

 Next, we developed a high energy physics (HEP) 

data analysis application and compared it with the 

previous implementations of Hadoop and CGL-

MapReduce versions. As in CAP3, in this application 

the input is also available as a collection of large 

number of binary files, each with roughly 33MB of 

data, which will not be directly accessed by the 

DryadLINQ program. We manually partition the input 

data to the compute nodes of the cluster and generated 

data-partitions containing only the file names available 

in a given node. The first step of the analysis requires 

applying a function coded in ROOT script to all the 

input files. The analysis script we used can process 

multiple input files at once, therefore we used a 

homomorphic Apply (shown below) operation in Dryad 

to perform the first stage (corresponds to the map() 

stage in MapReduce) of the analysis.  
 

[Homomorphic] 

ApplyROOT(string fileName){..} 
 

IQueryable<HistoFile> histograms = 

dataFileNames.Apply(s => ApplyROOT (s)); 
 

 Unlike the Select operation that processes records 

one by one, the Apply operation allows a function to be 

applied to an entire data set, and produce multiple 

output values. Therefore, in each vertex the program 

can access a data partition available in that node 



(provided that the node is available for executing this 

application – please refer to the “Note” under CAP3 

section).  Inside the ApplyROOT() method, the program 

iterates over the data set and groups the input data files, 

and execute the ROOT script passing these files names 

along with other necessary parameters. The output of 

this operation is a binary file containing a histogram of 

identified features of the input data. The ApplyROOT() 

method saves the output histograms in a predefined 

shared directory and produces its location as the return 

value. 

 In the next step of the program, we perform a 

combining operation to these partial histograms. 

Again, we used a homomorphic Apply operation to 

combine partial histograms. Inside the function that is 

applied to the collection of histograms, we use another 

ROOT script to combine collections of histograms in a 

given data partition. (Before this step, the main 

program generates the data-partitions containing the 

histogram file names). The output partial histograms 

produced by the previous step will be combined by the 

main program to produce the final histogram of 

identified features. 

 We measure the performance of this application 

with different input sizes up to 1TB of data and 

compared the results with Hadoop and CGL-

MapReduce implantations that we have developed 

previously. The results of this analysis are shown in 

Figure 4. 

 

Figure 4. Performance of different implementations 
of HEP data analysis applications 

 The results in Figure 4 highlight that Hadoop 

implementation has a considerable overhead compared 

to DraydLINQ and CGL-MapReduce implementations. 

This is mainly due to differences in the storage 

mechanisms used in these frameworks. DryadLINQ 

and CGL-MapReduce access the input from local disks 

where the data is partitioned and distributed before the 

computation. Currently, HDFS can only be accessed 

using Java or C++ clients, and the ROOT – data 

analysis framework is not capable of accessing the 

input from HDFS.  Therefore, we placed the input data 

in IU Data Capacitor – a high performance parallel file 

system based on Lustre file system, and allowed each 

map task in Hadoop to directly access the input from 

this file system. This dynamic data movement in the 

Hadoop implementation incurred considerable 

overhead to the computation. In contrast, the ability of 

reading input from the local disks gives significant 

performance improvements to both Dryad and CGL-

MapReduce implementations. 

 As in CAP3 program, we noticed sub-optimal 

utilization of CPU cores by the HEP application as 

well. With heterogeneous processing times of different 

input files, we were able to correct this partially by 

carefully selecting the number of data partitions and 

the amount of records accessed at once by the 

ApplyROOT() function. Additionally, in the 

DryadLINQ implementation, we stored the 

intermediate partial histograms in a shared directory 

and combined them during the second phase as a 

separate analysis. In Hadoop and CGL-MapReduce 

implementations, the partial histograms are directly 

transferred to the reducers where they are saved in 

local file systems and combined. These differences can 

explain the performance difference between the CGL-

MapReduce version and the DryadLINQ version of the 

program.  

2.3. CloudBurst 

CloudBurst is an open source Hadoop application 

that performs a parallel seed-and-extend read-mapping 

algorithm optimized for mapping next generation 

sequence data to the human genome and other 

reference genomes. It reports all alignments for each 

read with up to a user specified number of differences 

including mismatches and indels [5]. 

It parallelizes execution by seed, so that the 

reference and query sequences sharing the same seed 

are grouped together and sent to a reducer for further 

analysis. It is composed of a two stage MapReduce 

workflow: The first stage is to compute the alignments 

for each read with at most k differences where k is a 

user specified input. The second stage is optional, and 

it is used as a filter to report only the best unambiguous 

alignment for each read rather than the full catalog of 

all alignments. The execution time is typically 

dominated by the reduce phase.  

An important characteristic of the application is that 

the variable amount of time it spent in the reduction 

phase. Seeds composed of a single DNA character 

occur a disproportionate number of times in the input 

data and therefore reducers assigned to these “low 

complexity” seeds spend considerably more time than 

the others. CloudBurst tries to minimize this effect by 



emitting redundant copies of each “low complexity” 

seed in the reference and assigning them to multiple 

reducers to re-balance the workload. However, 

calculating the alignments for a “low complexity” seed 

in a reducer still takes more time compared to the 

others. This characteristic can be a limiting factor to 

scale, depending on the scheduling policies of the 

framework running the algorithm.  

We developed a DryadLINQ application based on 

the available source code written for Hadoop. The 

Hadoop workflow can be expressed as:  

Map -> Shuffle -> Reduce -> Identity Map -> 

Shuffle -> Reduce  

The identity map at the second stage is used for 

grouping the alignments together and sending them to 

a reducer. In DryadLINQ, the same workflow is 

expressed as follows: 
Map -> GroupBy -> Reduce -> GroupBy -> Reduce 

 Notice that we omit the identity map by doing an 

on-the-fly GroupBy right after the reduce step. 

Although these two workflows are identical in terms of 

functionality, DryadLINQ runs the whole computation 

as one large query rather than two separate MapReduce 

jobs followed by one another. 

 The reduce function takes a set of reference and 

query seeds sharing the same key as input, and 

produces one or more alignments as output. For each 

input record, query seeds are grouped in batches, and 

each batch is sent to an alignment function sequentially 

to reduce the memory limitations. We developed 

another DryadLINQ implementation that can process 

each batch in parallel assigning them as separate 

threads running at the same time using .NET Parallel 

Extensions.  

 

Figure 5. Figure5. Scalability of CloudBurst with 
different implementations. 

 We compared the scalability of these three 

implementations by mapping 7 million publicly 

available Illumina/Solexa sequencing reads [10] to the 

full human genome chromosome1. 

 The results in Figure 5 show that all three 

implementations follow a similar pattern although 

DryadLINQ is not fast enough especially with small 

number of nodes. As we mentioned in the previous 

section, DryadLINQ assigns vertices to nodes rather 

than cores and PLINQ handles the core level 

parallelism automatically by assigning records to 

separate threads running concurrently. However, we 

observed that the cores were not utilized completely, 

and the total CPU utilization per node varied 

continuously between 12.5% and 90% during the 

reduce step due to the inefficiencies with the PLINQ 

scheduler. Conversely, in Hadoop, we started 8 reduce 

tasks per node and each task ran independently by 

doing a fairly equal amount of work. 

 Another difference between DryadLINQ and 

Hadoop implementations is the number of partitions 

created before the reduce step. For example, with 32 

nodes (with 8 cores each), Hadoop creates 256 

partitions, since there are 256 reduce tasks. 

DryadLINQ, on the other hand, creates 32 vertices and 

assigns each vertex to a node (if we start the 

computation with 32 partitions initially). Notice that 

the partitions are created using a hash function, and 

they are not necessarily the same size. Creating more 

partitions results in having smaller groups and thus 

decreases the overall variance in the group size. The 

total time spent in the reduce function is equal to the 

maximum time spent in the longest reduce task. Since 

Hadoop creates more partitions, it balances the 

workload among reducers more equally. If the PLINQ 

scheduler worked as expected, this would not be a 

problem as it would keep the cores busy and thus yield 

a similar load balance to Hadoop.  

 As a work around to this problem, we tried starting 

the computation with more partitions. In the 32 node 

example, we created 256 partitions aiming to schedule 

8 vertices per node. However, DryadLINQ runs the 

tasks in order, so it is impossible to start 8 vertices at 

once in one node with the current academic release. 

Instead, DryadLINQ waits for one vertex to finish 

before scheduling the second vertex, but the first vertex 

may be busy with only one record, and thus holding 

the rest of the cores idle. We observed that scheduling 

too many vertices (of the same type) to a node is not 

efficient for this application due to its heterogeneous 

record structure. 

 Our main motivation behind using the .NET 

parallel extensions was to reduce this gap by fully 

utilizing the idle cores, although it is not identical to 

Hadoop’s level of parallelism. 

 Figure 6 shows the performance comparison of 

DryadLINQ and Hadoop with increasing data size. 

Both implementations scale linearly, and the time gap 

is mainly related to the current limitations with PLINQ 



and DryadLINQ’s job scheduling policies explained 

above. Hadoop shows a non linear behavior with the 

last data set and we will do further investigations with 

larger data sets to better understand the difference in 

the shapes. 

 

Figure 6. Performance comparison of DryadLINQ and 
Hadoop for CloudBurst. 

2.4. Kmeans Clustering 

 We implemented a Kmeans Clustering application 

using DryadLINQ to evaluate its performance under 

iterative computations. We used Kmeans clustering to 

cluster a collection of 2D data points (vectors) to a 

given number of cluster centers. The MapReduce 

algorithm we used is shown below. (Assume that the 

input is already partitioned and available in the 

compute nodes). In this algorithm, Vi refers to the i
th

 

vector, Cn,j refers to the j
th

  cluster center in n
th

 

iteration, Dij refers to the Euclidian distance between i
th

 

vector and j
th 

cluster center, and K is the number of 

cluster centers. 
 

K-means Clustering Algorithm for MapReduce 

do 

Broadcast Cn  

[Perform in parallel] –the map() operation 

for each Vi 

 for each Cn,j 

Dij <= Euclidian (Vi,Cn,j) 

Assign point Vi to Cn,j with minimum Dij 
 

for each Cn,j 

 Cn,j <=Cn,j/K 
 

[Perform Sequentially] –the reduce() operation 

Collect all Cn 

Calculate new cluster centers Cn+1 

Diff<= Euclidian (Cn, Cn+1) 

while (Diff <THRESHOLD) 
 

The DryadLINQ implementation uses an Apply 

operation which will be performed in parallel in terms 

of the data vectors, to calculate the partial cluster 

centers. Another Apply operation, which works 

sequentially, calculates the new cluster centers for the 

n
th

 iteration. Finally, we calculate the distance between 

the previous cluster centers and the new cluster centers 

using a Join operation to compute the Euclidian 

distance between the corresponding cluster centers. 

DryadLINQ support “unrolling loops”, using which 

multiple iterations of the computation can be 

performed as a single DryadLINQ query. In 

DryadLINQ programming model, the queries are not 

evaluated until a program accesses their values. 

Therefore, in the Kmeans program, we accumulate the 

computations performed in several iterations (we used 

4 as our unrolling factor) as queries and “materialize” 

the value of the new cluster centers only at each 4
th

 

iteration. In Hadoop’s MapReduce model, each 

iteration is represented as a separate MapReduce 

computation. Notice that without the loop unrolling 

feature in DryadLINQ, each iteration would be 

represented by a separate execution graph as well. 

Figure 7 shows a comparison of performances of 

different implementations of Kmeans clustering.  

 

Figure 7. Performance of different implementations 
of Kmeans clustering algorithm 

Although we used a fixed number of iterations, we 

changed the number of data points from 500k to 20 

millions. Increase in the number of data points triggers 

the amount of computation. However, it was not 

sufficient to load the 32 node cluster we used. As a 

result, the graph in Figure 7 mainly shows the 

overhead of different runtimes. The use of file system 

based communication mechanisms and the loading of 

static input data at each iteration (in Hadoop) and in 

each unrolled loop (in Dryad) has resulted in higher 

overheads compared to CGL-MapReduce and MPI. 

Iterative applications which perform more 

computations or access large volumes of data  may 

produce better results for Hadoop and Dryad, and 

ameliorate the higher overhead induced by these 

runtimes. 



4. Related Work 

 Various scientific applications have been 

previously adapted to the MapReduce model for the 

past few years and Hadoop gained significant attention 

from the scientific research community. Kang et al. 

studied [11] efficient map reduce algorithms for 

finding the diameter of very large graphs and applied 

their algorithm to real web graphs. Dyer et al. 

described [12] map reduce implementations of 

parameter estimation algorithms to use in word 

alignment models and a phrase based translation 

model. Michael Schatz introduced CloudBurst [5] for 

mapping short reads from sequences to a reference 

genome. In our previous works [3][13], we have 

discussed the usability of MapReduce programming 

model for data/compute intensive scientific 

applications and the possible improvements to the 

programming model and the architectures of the 

runtimes. Our experience suggests that most 

composable applications can be implemented using 

MapReduce programming model either by directly 

exploiting their data/task parallelism or by adopting 

different algorithms compared to the algorithms used 

in traditional parallel implementations.  

5. Conclusions and Future Works 

We have applied DryadLINQ to a series of 

data/compute intensive applications with unique 

requirements. The applications range from simple map-

only operations such as CAP3 to multiple stages of 

MapReduce jobs in CloudBurst and iterative 

MapReduce in Kmeans clustering. We showed that all 

these applications can be implemented using the DAG 

based programming model of DryadLINQ, and their 

performances are comparable to the MapReduce 

implementations of the same applications developed 

using Hadoop.  

We also observed that cloud technologies such as 

DryadLINQ and Hadoop work well for many 

applications with simple communication topologies. 

The rich set of programming constructs available in 

DryadLINQ allows the users to develop such 

applications with minimum programming effort. 

However, we noticed that higher level of abstractions 

in DryadLINQ model sometimes makes fine-tuning the 

applications more challenging. 

The current scheduling behavior of PLINQ hinders 

the performance of DryadLINQ applications. We 

would expect a fix to this problem would simply 

increase performance of DryadLINQ applications. 

The features such as loop unrolling let DryadLINQ 

perform iterative applications faster, but still the 

amount of overheads in DryadLINQ and Hadoop is 

extremely large for this type of applications compared 

to other runtimes such as MPI and CGL-MapReduce. 

As our future work, we plan to investigate the use 

of DryadLINQ and Hadoop on commercial cloud 

infrastructures. 
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