
DryadLINQ for Scientific Analyses

Jaliya Ekanayake
1,a

, Atilla Soner Balkir
c
, Thilina Gunarathne

a
, Geoffrey Fox

a,b
, Christophe

Poulain
d
, Nelson Araujo

d
, Roger Barga

d

a
School of Informatics and Computing, Indiana University Bloomington

b
Pervasive Technology Institute, Indiana University Bloomington

c
Department of Computer Science, University of Chicago

d
Microsoft Research

{jekanaya, tgunarat, gcf}@indiana.edu,

soner@uchicago.edu,{cpoulain,nelson,barga}@microsoft.com

Abstract

Applying high level parallel runtimes to

data/compute intensive applications is becoming

increasingly common. The simplicity of the MapReduce

programming model and the availability of open

source MapReduce runtimes such as Hadoop, attract

more users around MapReduce programming model.

Recently, Microsoft has released DryadLINQ for

academic use, allowing users to experience a new

programming model and a runtime that is capable of

performing large scale data/compute intensive

analyses. In this paper, we present our experience in

applying DryadLINQ for a series of scientific data

analysis applications, identify their mapping to the

DryadLINQ programming model, and compare their

performances with Hadoop implementations of the

same applications.

1. Introduction

Among many applications benefit from cloud

technologies such as DryadLINQ [1] and Hadoop [2],

the data/compute intensive applications are the most

important. The deluge of data and the highly compute

intensive applications found in many domains such as

particle physics, biology, chemistry, finance, and

information retrieval, mandate the use of large

computing infrastructures and parallel runtimes to

achieve considerable performance gains. The support

for handling large data sets, the concept of moving

computation to data, and the better quality of services

provided by Hadoop and DryadLINQ made them

favorable choice of technologies to implement such

problems.

Cloud technologies such as Hadoop and Hadoop

Distributed File System (HDFS), Microsoft

DryadLINQ, and CGL-MapReduce [3] adopt a more

data-centered approach to parallel processing. In these

frameworks, the data is staged in data/compute nodes

of clusters or large-scale data centers and the

computations are shipped to the data in order to

perform data processing. HDFS allows Hadoop to

access data via a customized distributed storage system

built on top of heterogeneous compute nodes, while

DryadLINQ and CGL-MapReduce access data from

local disks and shared file systems. The simplicity of

these programming models enables better support for

quality of services such as fault tolerance and

monitoring.

Although DryadLINQ comes with standard samples

such as Terasort, word count, its applicability for large

scale data/compute intensive scientific applications is

not studied well. A comparison of these programming

models and their performances would benefit many

users who need to select the appropriate technology for

the problem at hand.

We have developed a series of scientific

applications using DryadLINQ, namely, CAP3 DNA

sequence assembly program [4], High Energy Physics

data analysis, CloudBurst [5] - a parallel seed-and-

extend read-mapping application, and Kmeans

Clustering [6]. Each of these applications has unique

requirements for parallel runtimes. For example, the

HEP data analysis application requires ROOT [7] data

analysis framework to be available in all the compute

nodes, and in CloudBurst the framework needs to

process different workloads at map/reduce/vertex

tasks. We have implemented all these applications

using DryadLINQ and Hadoop, and used them to

compare the performance of these two runtimes. CGL-

MapReduce and MPI are used in applications where

the contrast in performance needs to be highlighted.

 In the sections that follow, we first present the

DryadLINQ programming model and its architecture

on HPC environment, and a brief introduction to

Hadoop. In section 3, we discuss the data analysis

applications and the challenges we faced in

implementing them along with a performance analysis

of these applications. In section 4, we present the

related work to this research, and in section 5 we

present our conclusions and the future works.

2. DryadLINQ and Hadoop

A central goal of DryadLINQ is to provide a wide

array of developers with an easy way to write

applications that run on clusters of computers to

process large amounts of data. The DryadLINQ

environment shields the developer from many of the

complexities associated with writing robust and

efficient distributed applications by layering the set of

technologies shown in Figure 1.

Figure 1. DryadLINQ software stack

Working at his workstation, the programmer writes

code in one of the managed languages of the .NET

Framework using Language Integrated Queries. The

LINQ operators are mixed with imperative code to

process data held in collection of strongly typed

objects. A single collection can span multiple

computers thereby allowing for scalable storage and

efficient execution. The code produced by a

DryadLINQ programmer looks like the code for a

sequential LINQ application. Behind the scene,

however, DryadLINQ translates LINQ queries into

Dryad computations (Directed Acyclic Graph (DAG)

based execution flows). While the Dryad engine

executes the distributed computation, the DryadLINQ

client application typically waits for the results to

continue with further processing. The DryadLINQ

system and its programming model are described in

details in [1].

This paper describes results obtained with the so-

called Academic Release of Dryad and DryadLINQ,

which is publically available [8]. This newer version

includes changes in the DryadLINQ API since the

original paper. Most notably, all DryadLINQ

collections are represented by the

PartitionedTable<T> type. Hence, the example

computation cited in Section 3.2 of [1] is now

expressed as:

var input =

PartitionedTable.Get<LineRecord>(“file://in.tb

l”);

var result = MainProgram(input, …);

var output =

result.ToPartitionedTable(“file://out.tbl”);

As noted in Figure 1, the Dryad execution engine

operates on top of an environment which provides

certain cluster services. In [1][9] Dryad is used in

conjunction with the proprietary Cosmos environment.

In the Academic Release, Dryad operates in the context

of a cluster running Windows High-Performance

Computing (HPC) Server 2008. While the core of

Dryad and DryadLINQ does not change, the bindings

to a specific execution environment are different and

may lead to differences in performance.

Table 1. Comparison of features supported by Dryad
and Hadoop

Feature Hadoop Dryad

Programming

Model

MapReduce DAG based

execution flows

Data Handling HDFS Shared directories/

Local disks

Intermediate

Data

Communication

HDFS/

Point-to-point

via HTTP

Files/TCP pipes/

Shared memory

FIFO

Scheduling Data locality/

Rack aware

Data locality/

Network

topology based

run time graph

optimizations

Failure

Handling

Persistence via

HDFS

Re-execution

of map and

reduce tasks

Re-execution of

vertices

Monitoring Monitoring

support of

HDFS, and

MapReduce

computations

Monitoring

support for

execution graphs

Language

Support

Implemented

using Java

Other

languages are

supported via

Hadoop

Streaming

Programmable via

C#

DryadLINQ

Provides LINQ

programming API

for Dryad

 Apache Hadoop has a similar architecture to

Google’s MapReduce runtime, where it accesses data

via HDFS, which maps all the local disks of the

compute nodes to a single file system hierarchy

allowing the data to be dispersed to all the

data/computing nodes. Hadoop schedules the

MapReduce computation tasks depending on the data

locality to improve the overall I/O bandwidth. The

outputs of the map tasks are first stored in local disks

until later, when the reduce tasks access them (pull) via

HTTP connections. Although this approach simplifies

the fault handling mechanism in Hadoop, it adds

significant communication overhead to the

intermediate data transfers, especially for applications

that produce small intermediate results frequently. The

current release of DryadLINQ also communicates

using files, and hence we expect similar overheads in

DryadLINQ as well. Table 1 presents a comparison of

DryadLINQ and Hadoop on various features supported

by these technologies.

3. Scientific Applications

In this section, we present the details of the

DryadLINQ applications that we developed, the

techniques we adopted in optimizing the applications,

and their performance characteristics compared with

Hadoop implementations. For all our benchmarks, we

used two clusters with almost identical hardware

configurations as shown in Table 2.

Table 2. Different computation clusters used for the
analyses

Feature Linux Cluster

(Ref A)

Windows Cluster

(Ref B)

CPU Intel(R) Xeon(R)

CPU L5420

2.50GHz

Intel(R) Xeon(R)

CPU L5420

2.50GHz

CPU

Cores

2

8

2

8

Memory 32GB 16 GB

Disk 1 2

Network Giga bit Ethernet Giga bit Ethernet

Operating

System

Red Hat

Enterprise Linux

Server -64 bit

Windows Server

Enterprise - 64 bit

Nodes 32 32

2.1. CAP3

 CAP3 is a DNA sequence assembly program

developed by X. Huang and A. Madan [4] that

performs several major assembly steps such as

computation of overlaps, construction of contigs,

construction of multiple sequence alignments and

generation of consensus sequences, to a given set of

gene sequences. The program reads a collection of

gene sequences from an input file (FASTA file format)

and writes its output to several output files and to the

standard output as shown below. The input data is

contained in a collection of files, each of which needs

to be processed by the CAP3 program separately.

Input.fsa -> Cap3.exe -> Stdout + Other output files

 We developed a DryadLINQ application to perform

the above data analysis in parallel. The DryadLINQ

application executes the CAP3 executable as an

external program, passing an input data file name, and

the other necessary program parameters to it. Since

DryadLINQ executes CAP3 as an external executable,

it must only know the input file names and their

locations. We achieve the above functionality as

follows: (i) the input data files are partitioned among

the nodes of the cluster so that each node of the cluster

stores roughly the same number of input data files; (ii)

a “data-partition” (A text file for this application) is

created in each node containing the names of the

original data files available in that node; (iii) Dryad

“partitioned-file” (a meta-data file for DryadLINQ) is

created to point to the individual data-partitions located

in the nodes of the cluster.

 Following the above steps, a DryadLINQ program

can be developed to read the data file names from the

provided partitioned-file, and execute the CAP3

program using the following two DryadLINQ queries.

IQueryable<Line Record> filenames =

PartitionedTable.Get<LineRecord>(uri);

IQueryable<int> exitCodes= filenames.Select(s

=> ExecuteCAP3(s.line));

 Although we use this program specifically for the

CAP3 application, the same pattern can be used to

execute other programs, scripts, and analysis functions

written using the frameworks such as R and Matlab, on

a collection of data files. (Note: In this application, we

assumed that DryadLINQ would process the input data

files on the same nodes where they are located.

Although this is not guaranteed by the DryadLINQ

runtime, if the nodes containing the data are free

during the execution of the program, it will schedule

the parallel tasks to the appropriate nodes; otherwise,

the data will be accessed via the shared directories.)

 When we first deployed the application on the

cluster, we noticed a sub-optimal CPU core utilization

by the application, which is highly unlikely for a

compute intensive program such as CAP3. A trace of

job scheduling in the HPC cluster revealed that the

scheduling of individual CAP3 executables in a given

node is not optimal in terms of the utilization of CPU

cores. In a node with 8 CPU cores, we would expect

DryadLINQ to execute 8 ExecuteCAP3() functions

simultaneously. However, we noticed that the number

of parallel executions varies from 8 to 1 with the

DryadLINQ’s scheduling mechanism. For example,

with 16 data file names in a data-partition; we noticed

the following scheduling pattern (of concurrent

ExecuteCAP3()s) from PLINQ, 8->4->4, which

should ideally be 8 ->8.

 When an application is scheduled, DryadLINQ uses

the number of data partitions as a guideline to

determine the number of vertices to run. Then

DryadLINQ schedules these vertices to the nodes

rather than individual CPU cores assuming that the

underlying PLINQ runtime would handle the further

parallelism available at each vertex and utilize all the

CPU cores. The PLINQ runtime, which is intended to

optimize processing of fine grained tasks in multi-core

nodes, performs optimizations by chunking the input

data. Since our input for DraydLINQ is only the names

of the original data files, it has no way to determine

how much time the ExecuteCAP3() take to process a

file, and hence the chunking of records at PLINQ

results sub-optimal scheduling of tasks.

 We found a workaround to this problem by

changing the way we partition the data. Instead of

partitioning input data to a single data-partition per

node, we create data-partitions containing at most 8

(=number of CPU cores) line records (actual input file

names). This way, we used DryadLINQ’s scheduler to

schedule series of vertices corresponding to different

data-partitions in nodes while PLINQ always schedules

8 tasks at once, which gave us 100% CPU utilization.

Figure 2 and 3 show comparisons of performance and

the scalability of the DryadLINQ application, with the

Hadoop and CGL-MapReduce versions of the CAP3

application.

Figure 2. Performance of different implementations
of CAP3 application

 Although the above approach (partitioning data)

works perfectly fine with this application, it does not

solve the underlying problem completely. DryadLINQ

does not schedule multiple concurrent vertices to a

given node, but one vertex at a time. Therefore, a

vertex which uses PLINQ to schedule some non-

homogeneous parallel tasks would have a running time

equal to the task which takes the longest time to

complete. For example, in our application, if one of a

input data file takes longer time to process than the

others, which are assigned to a given vertex (assume a

total of 8 files per vertex), the remaining 7 CPU cores

will be idling while the task that takes longest

completes. In contrast, in Hadoop, the user can set the

maximum and minimum number of map and reduce

tasks to execute concurrently on a given node so that it

will utilize all the CPU cores.

Figure 3. Scalability of different implementations of
CAP3

 The performance and the scalability graphs shows

that all three runtimes work almost equally well for the

CAP3 program, and we would expect them to behave

in the same way for similar applications with simple

parallel topologies.

2.2. High Energy Physics

 Next, we developed a high energy physics (HEP)

data analysis application and compared it with the

previous implementations of Hadoop and CGL-

MapReduce versions. As in CAP3, in this application

the input is also available as a collection of large

number of binary files, each with roughly 33MB of

data, which will not be directly accessed by the

DryadLINQ program. We manually partition the input

data to the compute nodes of the cluster and generated

data-partitions containing only the file names available

in a given node. The first step of the analysis requires

applying a function coded in ROOT script to all the

input files. The analysis script we used can process

multiple input files at once, therefore we used a

homomorphic Apply (shown below) operation in Dryad

to perform the first stage (corresponds to the map()

stage in MapReduce) of the analysis.

[Homomorphic]

ApplyROOT(string fileName){..}

IQueryable<HistoFile> histograms =

dataFileNames.Apply(s => ApplyROOT (s));

 Unlike the Select operation that processes records

one by one, the Apply operation allows a function to be

applied to an entire data set, and produce multiple

output values. Therefore, in each vertex the program

can access a data partition available in that node

(provided that the node is available for executing this

application – please refer to the “Note” under CAP3

section). Inside the ApplyROOT() method, the program

iterates over the data set and groups the input data files,

and execute the ROOT script passing these files names

along with other necessary parameters. The output of

this operation is a binary file containing a histogram of

identified features of the input data. The ApplyROOT()

method saves the output histograms in a predefined

shared directory and produces its location as the return

value.

 In the next step of the program, we perform a

combining operation to these partial histograms.

Again, we used a homomorphic Apply operation to

combine partial histograms. Inside the function that is

applied to the collection of histograms, we use another

ROOT script to combine collections of histograms in a

given data partition. (Before this step, the main

program generates the data-partitions containing the

histogram file names). The output partial histograms

produced by the previous step will be combined by the

main program to produce the final histogram of

identified features.

 We measure the performance of this application

with different input sizes up to 1TB of data and

compared the results with Hadoop and CGL-

MapReduce implantations that we have developed

previously. The results of this analysis are shown in

Figure 4.

Figure 4. Performance of different implementations
of HEP data analysis applications

 The results in Figure 4 highlight that Hadoop

implementation has a considerable overhead compared

to DraydLINQ and CGL-MapReduce implementations.

This is mainly due to differences in the storage

mechanisms used in these frameworks. DryadLINQ

and CGL-MapReduce access the input from local disks

where the data is partitioned and distributed before the

computation. Currently, HDFS can only be accessed

using Java or C++ clients, and the ROOT – data

analysis framework is not capable of accessing the

input from HDFS. Therefore, we placed the input data

in IU Data Capacitor – a high performance parallel file

system based on Lustre file system, and allowed each

map task in Hadoop to directly access the input from

this file system. This dynamic data movement in the

Hadoop implementation incurred considerable

overhead to the computation. In contrast, the ability of

reading input from the local disks gives significant

performance improvements to both Dryad and CGL-

MapReduce implementations.

 As in CAP3 program, we noticed sub-optimal

utilization of CPU cores by the HEP application as

well. With heterogeneous processing times of different

input files, we were able to correct this partially by

carefully selecting the number of data partitions and

the amount of records accessed at once by the

ApplyROOT() function. Additionally, in the

DryadLINQ implementation, we stored the

intermediate partial histograms in a shared directory

and combined them during the second phase as a

separate analysis. In Hadoop and CGL-MapReduce

implementations, the partial histograms are directly

transferred to the reducers where they are saved in

local file systems and combined. These differences can

explain the performance difference between the CGL-

MapReduce version and the DryadLINQ version of the

program.

2.3. CloudBurst

CloudBurst is an open source Hadoop application

that performs a parallel seed-and-extend read-mapping

algorithm optimized for mapping next generation

sequence data to the human genome and other

reference genomes. It reports all alignments for each

read with up to a user specified number of differences

including mismatches and indels [5].

It parallelizes execution by seed, so that the

reference and query sequences sharing the same seed

are grouped together and sent to a reducer for further

analysis. It is composed of a two stage MapReduce

workflow: The first stage is to compute the alignments

for each read with at most k differences where k is a

user specified input. The second stage is optional, and

it is used as a filter to report only the best unambiguous

alignment for each read rather than the full catalog of

all alignments. The execution time is typically

dominated by the reduce phase.

An important characteristic of the application is that

the variable amount of time it spent in the reduction

phase. Seeds composed of a single DNA character

occur a disproportionate number of times in the input

data and therefore reducers assigned to these “low

complexity” seeds spend considerably more time than

the others. CloudBurst tries to minimize this effect by

emitting redundant copies of each “low complexity”

seed in the reference and assigning them to multiple

reducers to re-balance the workload. However,

calculating the alignments for a “low complexity” seed

in a reducer still takes more time compared to the

others. This characteristic can be a limiting factor to

scale, depending on the scheduling policies of the

framework running the algorithm.

We developed a DryadLINQ application based on

the available source code written for Hadoop. The

Hadoop workflow can be expressed as:

Map -> Shuffle -> Reduce -> Identity Map ->

Shuffle -> Reduce

The identity map at the second stage is used for

grouping the alignments together and sending them to

a reducer. In DryadLINQ, the same workflow is

expressed as follows:
Map -> GroupBy -> Reduce -> GroupBy -> Reduce

 Notice that we omit the identity map by doing an

on-the-fly GroupBy right after the reduce step.

Although these two workflows are identical in terms of

functionality, DryadLINQ runs the whole computation

as one large query rather than two separate MapReduce

jobs followed by one another.

 The reduce function takes a set of reference and

query seeds sharing the same key as input, and

produces one or more alignments as output. For each

input record, query seeds are grouped in batches, and

each batch is sent to an alignment function sequentially

to reduce the memory limitations. We developed

another DryadLINQ implementation that can process

each batch in parallel assigning them as separate

threads running at the same time using .NET Parallel

Extensions.

Figure 5. Figure5. Scalability of CloudBurst with
different implementations.

 We compared the scalability of these three

implementations by mapping 7 million publicly

available Illumina/Solexa sequencing reads [10] to the

full human genome chromosome1.

 The results in Figure 5 show that all three

implementations follow a similar pattern although

DryadLINQ is not fast enough especially with small

number of nodes. As we mentioned in the previous

section, DryadLINQ assigns vertices to nodes rather

than cores and PLINQ handles the core level

parallelism automatically by assigning records to

separate threads running concurrently. However, we

observed that the cores were not utilized completely,

and the total CPU utilization per node varied

continuously between 12.5% and 90% during the

reduce step due to the inefficiencies with the PLINQ

scheduler. Conversely, in Hadoop, we started 8 reduce

tasks per node and each task ran independently by

doing a fairly equal amount of work.

 Another difference between DryadLINQ and

Hadoop implementations is the number of partitions

created before the reduce step. For example, with 32

nodes (with 8 cores each), Hadoop creates 256

partitions, since there are 256 reduce tasks.

DryadLINQ, on the other hand, creates 32 vertices and

assigns each vertex to a node (if we start the

computation with 32 partitions initially). Notice that

the partitions are created using a hash function, and

they are not necessarily the same size. Creating more

partitions results in having smaller groups and thus

decreases the overall variance in the group size. The

total time spent in the reduce function is equal to the

maximum time spent in the longest reduce task. Since

Hadoop creates more partitions, it balances the

workload among reducers more equally. If the PLINQ

scheduler worked as expected, this would not be a

problem as it would keep the cores busy and thus yield

a similar load balance to Hadoop.

 As a work around to this problem, we tried starting

the computation with more partitions. In the 32 node

example, we created 256 partitions aiming to schedule

8 vertices per node. However, DryadLINQ runs the

tasks in order, so it is impossible to start 8 vertices at

once in one node with the current academic release.

Instead, DryadLINQ waits for one vertex to finish

before scheduling the second vertex, but the first vertex

may be busy with only one record, and thus holding

the rest of the cores idle. We observed that scheduling

too many vertices (of the same type) to a node is not

efficient for this application due to its heterogeneous

record structure.

 Our main motivation behind using the .NET

parallel extensions was to reduce this gap by fully

utilizing the idle cores, although it is not identical to

Hadoop’s level of parallelism.

 Figure 6 shows the performance comparison of

DryadLINQ and Hadoop with increasing data size.

Both implementations scale linearly, and the time gap

is mainly related to the current limitations with PLINQ

and DryadLINQ’s job scheduling policies explained

above. Hadoop shows a non linear behavior with the

last data set and we will do further investigations with

larger data sets to better understand the difference in

the shapes.

Figure 6. Performance comparison of DryadLINQ and
Hadoop for CloudBurst.

2.4. Kmeans Clustering

 We implemented a Kmeans Clustering application

using DryadLINQ to evaluate its performance under

iterative computations. We used Kmeans clustering to

cluster a collection of 2D data points (vectors) to a

given number of cluster centers. The MapReduce

algorithm we used is shown below. (Assume that the

input is already partitioned and available in the

compute nodes). In this algorithm, Vi refers to the i
th

vector, Cn,j refers to the j
th

 cluster center in n
th

iteration, Dij refers to the Euclidian distance between i
th

vector and j
th

cluster center, and K is the number of

cluster centers.

K-means Clustering Algorithm for MapReduce

do

Broadcast Cn

[Perform in parallel] –the map() operation

for each Vi

 for each Cn,j

Dij <= Euclidian (Vi,Cn,j)

Assign point Vi to Cn,j with minimum Dij

for each Cn,j

 Cn,j <=Cn,j/K

[Perform Sequentially] –the reduce() operation

Collect all Cn

Calculate new cluster centers Cn+1

Diff<= Euclidian (Cn, Cn+1)

while (Diff <THRESHOLD)

The DryadLINQ implementation uses an Apply

operation which will be performed in parallel in terms

of the data vectors, to calculate the partial cluster

centers. Another Apply operation, which works

sequentially, calculates the new cluster centers for the

n
th

 iteration. Finally, we calculate the distance between

the previous cluster centers and the new cluster centers

using a Join operation to compute the Euclidian

distance between the corresponding cluster centers.

DryadLINQ support “unrolling loops”, using which

multiple iterations of the computation can be

performed as a single DryadLINQ query. In

DryadLINQ programming model, the queries are not

evaluated until a program accesses their values.

Therefore, in the Kmeans program, we accumulate the

computations performed in several iterations (we used

4 as our unrolling factor) as queries and “materialize”

the value of the new cluster centers only at each 4
th

iteration. In Hadoop’s MapReduce model, each

iteration is represented as a separate MapReduce

computation. Notice that without the loop unrolling

feature in DryadLINQ, each iteration would be

represented by a separate execution graph as well.

Figure 7 shows a comparison of performances of

different implementations of Kmeans clustering.

Figure 7. Performance of different implementations
of Kmeans clustering algorithm

Although we used a fixed number of iterations, we

changed the number of data points from 500k to 20

millions. Increase in the number of data points triggers

the amount of computation. However, it was not

sufficient to load the 32 node cluster we used. As a

result, the graph in Figure 7 mainly shows the

overhead of different runtimes. The use of file system

based communication mechanisms and the loading of

static input data at each iteration (in Hadoop) and in

each unrolled loop (in Dryad) has resulted in higher

overheads compared to CGL-MapReduce and MPI.

Iterative applications which perform more

computations or access large volumes of data may

produce better results for Hadoop and Dryad, and

ameliorate the higher overhead induced by these

runtimes.

4. Related Work

 Various scientific applications have been

previously adapted to the MapReduce model for the

past few years and Hadoop gained significant attention

from the scientific research community. Kang et al.

studied [11] efficient map reduce algorithms for

finding the diameter of very large graphs and applied

their algorithm to real web graphs. Dyer et al.

described [12] map reduce implementations of

parameter estimation algorithms to use in word

alignment models and a phrase based translation

model. Michael Schatz introduced CloudBurst [5] for

mapping short reads from sequences to a reference

genome. In our previous works [3][13], we have

discussed the usability of MapReduce programming

model for data/compute intensive scientific

applications and the possible improvements to the

programming model and the architectures of the

runtimes. Our experience suggests that most

composable applications can be implemented using

MapReduce programming model either by directly

exploiting their data/task parallelism or by adopting

different algorithms compared to the algorithms used

in traditional parallel implementations.

5. Conclusions and Future Works

We have applied DryadLINQ to a series of

data/compute intensive applications with unique

requirements. The applications range from simple map-

only operations such as CAP3 to multiple stages of

MapReduce jobs in CloudBurst and iterative

MapReduce in Kmeans clustering. We showed that all

these applications can be implemented using the DAG

based programming model of DryadLINQ, and their

performances are comparable to the MapReduce

implementations of the same applications developed

using Hadoop.

We also observed that cloud technologies such as

DryadLINQ and Hadoop work well for many

applications with simple communication topologies.

The rich set of programming constructs available in

DryadLINQ allows the users to develop such

applications with minimum programming effort.

However, we noticed that higher level of abstractions

in DryadLINQ model sometimes makes fine-tuning the

applications more challenging.

The current scheduling behavior of PLINQ hinders

the performance of DryadLINQ applications. We

would expect a fix to this problem would simply

increase performance of DryadLINQ applications.

The features such as loop unrolling let DryadLINQ

perform iterative applications faster, but still the

amount of overheads in DryadLINQ and Hadoop is

extremely large for this type of applications compared

to other runtimes such as MPI and CGL-MapReduce.

As our future work, we plan to investigate the use

of DryadLINQ and Hadoop on commercial cloud

infrastructures.

6. Acknowledgements

We would like to thank the Dryad team at

Microsoft Research, including Michael Isard, Mihai

Budiu, and Derek Murray for their support in

DryadLINQ applications, and Joe Rinkovsky from IU

UITS for his dedicated support in setting up the

compute clusters.

References

[1] Y.Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P.

Gunda, and J. Currey, “DryadLINQ: A System for General-

Purpose Distributed Data-Parallel Computing Using a High-

Level Language,” Symposium on Operating System Design

and Implementation (OSDI), CA, December 8-10, 2008.

[2] Apache Hadoop, http://hadoop.apache.org/core/

[3] J. Ekanayake and S. Pallickara, “MapReduce for Data

Intensive Scientific Analysis,” Fourth IEEE International
Conference on eScience, 2008, pp.277-284.

[4] X. Huang and A. Madan, “CAP3: A DNA Sequence

Assembly Program,” Genome Research, vol. 9, no. 9, pp.

868-877, 1999.

[5] M. Schatz, "CloudBurst: highly sensitive read mapping

with MapReduce", Bioinformatics. 2009 June 1; 25(11):
1363–1369.

[6] J. Hartigan. Clustering Algorithms. Wiley, 1975.

[7] ROOT Data Analysis Framework,
http://root.cern.ch/drupal/

[8] http://research.microsoft.com/en-
us/downloads/03960cab-bb92-4c5c-be23-ce51aee0792c/

[9] Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib,

D., Weaver, S., and Zhou, J. 2008. SCOPE: easy and

efficient parallel processing of massive data sets. Proc.
VLDB Endow. 1, 2 (Aug. 2008), 1265-1276.

[10] The 1000 Genomes Project, “A Deep Catalog of Human

Genetic Variation”, January 2008,
_http://www.1000genomes.org/page.php

[11] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, J.

Leskovec, “HADI: Fast Diameter Estimation and Mining in

Massive Graphs with Hadoop”, CMU ML Tech Report

CMU-ML-08-117, 2008.

[12] C. Dyer, A. Cordova, A. Mont, J. Lin, “Fast, Easy, and

Cheap: Construction of Statistical Machine Translation

Models with MapReduce”, Proceedings of the Third

Workshop on Statistical Machine Translation at ACL 2008,

Columbus, Ohio.

[13] G. Fox, S. Bae, J. Ekanayake, X. Qiu, and H. Yuan,

“Parallel Data Mining from Multicore to Cloudy Grids,”
High Performance Computing and Grids workshop, 2008.

http://hadoop.apache.org/core/

