

Web Service Architecture for e-Learning

Xiaohong Qiu
EECS Department, Syracuse University

Community Grids Lab, Indiana University
501 Morton N. Street, Suite 224
Bloomington, IN 47404, USA

and

Anumit Jooloor

CS Department, Indiana University
Bloomington, IN 47405, USA

ABSTRACT

Message-based Web Service architecture provides a
unified approach to applications and Web Services that
incorporates the flexibility of messaging and distributed
components. We propose SIMD and MIMD collaboration
as the general architecture of collaboration based on a
Web service model, which accommodates both
instructor-led learning and participatory learning. This
approach derives from our message-based Model-View-
Controller architecture of Web applications, comprises an
event-driven Publish/Subscribe scheme, and provides
effective collaboration with high interactivity of rich Web
content for diverse clients over heterogeneous network
environments.

Keywords: Web Service, MVC, messaging,
Publish/Subscribe, SIMD, MIMD, e-education and
collaboration

1. INTRODUCTION

The Internet provides a distributed infrastructure for
sharing information globally with an estimate that the
online population will reach 6,330 million users in 2004
[1]. The very large user market becomes a great
motivation for new technologies enabling one to build the
next generation of Web based applications. In particular,
it is very attractive to develop collaborative applications
linking of the growing number of diverse clients with rich
media Web content.

This evolution brings fundamental changes to our society
in communication and knowledge acquisition pattern ─
anytime, anywhere, people no longer have to meet face to
face to communicate while all information is delivered to
the client interface online and on demand. The new trend
comprises innovative technological features: it offers a
platform facilitating ubiquitous access of desktop, PDA
and cellular phone (Windows, MacOS, UNIX, Linux,
and PalmOS) clients; it supplies an interface with

services for easier availability to global resources
including data, text, 2D and 3D graphics, video/audio
stream, and MP3 music; it promotes an interoperable
synchronization mechanism that captures interaction
between participants ─ teacher and student, trainer and
trainee for real time experience.

Collaboration tools are revolutionizing the training
industry. Particularly, Web-based e-Learning solutions
are adopting collaboration environments that enhance
accessibility to a full range of educational resources
supporting rich interaction with participating parties in a
synchronous or asynchronous fashion. Distance education
has been successful using tools such as Audio/Video
conferencing and shared curriculum using either shared
display or shared event architectures. Here we explore a
richer model with SIMD [2] and MIMD [3] collaboration
as the general architecture of collaboration as Web
Service [4] model, which can be applied to both
instructor-led learning and participatory learning. The
premise of this work is building forward-looking
architecture of Web applications for scalability,
reusability, interoperability, pervasive accessibility, and
automatic collaboration.

The rest of the paper is organized as follows: in Section 2
we briefly review technical issues that cover general
concept of building message-based Web Service
applications, relationship of our message-based Model-
View-Controller (MVC) [5] architecture of Web
applications and derived SIMD and MIMD collaboration
as a Web Service model for e-Learning, and methodology
of our prototyping. Section 3 summarizes collaboration
framework and presents SIMD and MIMD collaboration
as our general architecture of collaboration as Web
Service model. We mention our initial white board
project exploring the interactive MIMD collaborative
architecture. In section 4, we discuss performance issues.
Finally, we present our conclusions and propose future
work.

Figure1 SVG browser derived from message-based MVC

View

GVTGVT

RendererRenderer

Rendering as messages Event as messages

Client User Interface

desktop cellular
phone

PDA

JavaScriptJavaScript

SVG DOMSVG DOM

PortFacing
Resource

Model
Computation core as service

Messages contain control information

Figure1 SVG browser derived from message-based MVC

View

GVTGVT

RendererRenderer

Rendering as messages Event as messages

Client User Interface

desktopdesktopdesktop cellular
phone
cellular
phone
cellular
phone

PDAPDAPDA

JavaScriptJavaScript

SVG DOMSVG DOM

PortFacing
Resource

Model
Computation core as service

Messages contain control information

2. TECHNICAL ISSUES

2.1 Message-based Web Service model and messaging
infrastructure

The history of Internet and Web technology saw the
evolution of Web applications with architectures
dominated by centralized client-server system with
traditional point-to-point (unicast) connection,
decentralized self-organizing peer-to-peer (P2P) system
that evolved to overlay network with application level
multicast mechanism, and RPC-model (e.g. CORBA)
derives from method-based system calls for tightly
coupled single CPU system (e.g. desktop applications)
but with remote procedure calls to support the distributed
objects. Client-server and P2P models are suitable for
solving problems with features applicable to their patterns
but real world problems can be arbitrarily complicated.
Examples can be seen in parallel applications with
decomposition in high dimensionality. On the other hand,
RPC-like model deals well with distributed objects or
components for reusability but do not scale well.
Message-based Web Service model provides a unified
approach that incorporates messaging flexibility with
components distribution. It accommodates to the diverse
and scaling nature of the Internet and also promotes Web
applications development with Web Services for
reusability, interoperability, and scalability.

The messaging approach decomposes a Web system into
three layers: physical networks or Internet, messaging
infrastructure, and Web application. This separation can
greatly improve applications’ portability by reducing
their dependency on underlying connection topologies
and platforms. It also reduces deployment overhead of
Web applications. On the other hand, it requires a
powerful messaging infrastructure on TCP/IP network
stack providing a variety of communication services that
reconcile the differences between underlying connection
topologies and deployment of high-level applications. In
our lab, we have developed an open source messaging
infrastructure NaradaBrokering [6] that supports a
publish/subscribe paradigm. It provides Java Messaging
Service (JMS) [7] compliance and JXTA [8] interaction
and has been applied to a suite of collaboration tools
(Audio/Video conferencing [9], Carousel [10] and
Anabas e-Learning platform [11]). NaradaBrokering
supports multiple protocols (including TCP/IP, UDP,
HTTP, and multicast), firewall tunneling, security, and
heterogeneous services (e.g. messaging services and grid
services).

2.2 Web application and Internet collaboration

Web application deployment shows diversified directions
but have common features ─ namely, user interfaces and
services for the sharing of information and resources over
Internet infrastructure. The “sharing” can be done

asynchronously and synchronously at every possible
stage along the deployment pipeline. The objects that
need to be synchronized may range from Web contents
(e.g. video, audio and raw data streams), user interactions
(e.g. editing operations on shared whiteboard document),
distributed programs (e.g. distributed large-scale
simulation components), to team participants who involve
in development or management. The “sharing” can be
organized through unicast or multicast style of group
communication. Therefore, in the most general sense,
collaboration is the core problem and service of Web
applications of “sharing” although people usually refer
the terminology “collaboration” to real-time synchronous
Web applications with compelling time issue or
constraints. As key objective of our approach, design and
implementation of a uniform architecture for Web
applications with automatic collaboration capability has
general importance.

We have looked at several examples as part of systematic
exploration of our design concepts: We proposed an
“explicit message-based MVC” paradigm (MMVC) [12]
as the general architecture for Web applications. It is built
around systematic use of Web services and an event
driven message-based separation between model and view
in the MVC pattern. We have carried out initial
“collaboration as a Web Service” [13] experiments to test
viability of our architecture in supporting of interoperable
applications with rich graphical contents and tight time
constraints through examples of teacher-student scenario
and multi-player online game. As an extension to our
research scope, we converted desktop application to
distributed system at architectural level. This is done
through replacing conventional method-based MVC with
message-based MVC in Publish/Subscribe scheme [14]
for maximum reusability of existing software assets. We
have in-depth discussions of performance issues for Web-
based applications [15] that help to investigate the
process of message-based Web application deployment

and supply feedback for the construction of underlying
messaging infrastructure, which is indicative especially
when this area is still immature and one expects
substantial evolution. Finally, as discussed in this paper,
we define collaboration with SIMD and MIMD model
derived from our uniform Web Service architecture of
MMVC that converge desktop and Web applications.

2.3 SVG and DOM

As key challenge of a new approach with systematic
utilizing Web Service for building message-based
applications, many subtle factors may not be addressed
by general architectural consideration. So, we choose to
build a prototype with a forward-looking architecture and
conduct systematic experiments to explore and identify
general principles and key implementation issues
associated with this approach. Multimedia with rich
graphics and media stream composition forms an
important feature of new general Web applications. We
select a presentational style desktop application with two-

dimensional Scalable Vector Graphics (SVG) [16]
contents ─ Batik SVG browser [17] from Apache as our
testing case for further experiments and evaluations. We
have restructured the open source Batik software in the
explicit message-based MVC model as illustrated in fig.1.
The SVG document is parsed as a Document Object
Model (DOM) [18] tree with nodes representing
document fragments and graphics objects. Graphical
Vector Toolkit (GVT) tree reflects DOM structure and is
used for rendering convenience. In this approach,
NaradaBrokering supplies all messaging services
(interaction between clients, events and rendering within
a client) with its Publish/Subscribe architecture.

Building collaborative tools on SVG has some important
general features:
a) SVG is an open source standard for 2D vector

graphics of World Wide Web Consortium (W3C). It
is an important technology for visualization. XML
content format and scalable vector graphics feature
make it an ideal choice of intermediate

transportation and high-resolution rendering. It has
been applied to various applications including
mapping services in Geological Information System
(GIS) and authoring tools (e.g. SVG viewer plug-in
from Adobe and Corel). The latter feature is
especially important for universal access from small
wireless devices.

b) Batik SVG browser has full support of SVG 1.0
specification. The openness of both standard and
implementation provides us valuable experience of a
complete analysis of system structure and
components interaction, which is unavailable from
similar commercial tools (such as Microsoft
PowerPoint, Macromedia Flash, Adobe Photoshop
and Illustrator, and Corel Draw) with proprietary
implementation and data format.

c) SVG is built on the W3C DOM [18], which is the
natural description of all desktop documents used in
Office applications of the type built by Microsoft,
Macromedia and OpenOffice. Thus our work can
naturally generalize to a new Web service

architecture for a next generation of desktop
applications including those used for curriculum
authoring. The DOM events specification provides a
generic event model that propagates changes in
nodes (objects) of the tree structure. This allows
this style of application to have a common web
service core that drives a variety of client interfaces
which can either be standalone or collaborative.

3. COLLABORATION FRAMEWORK

3.1 Event-based collaboration with Publish/Subscribe
scheme

Event-based programming has become a widely used
programming style that supports interrupt-handling
mechanisms for user input-device interactions. Compared
with previous interrupt processing procedures, it
promotes system modularity and asynchronous response.
Most of modern desktop systems, including Microsoft
Windows and their applications use MVC paradigm. The

Subscribe to event class

Broker

Set up an event class (to
pic)

publish an event class Send event
Component

A
Component

B

Figure2 Event-driven message-based Publish/Subscribe scheme

Figure3 Shared Input Port of Collaborative SVG

BrokerBroker

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Rendering as
messages Event as messages

Model

Master client

Set up an event
class (topic)

Publish
an event

to collaborative
clients

Subscribe to
the topic

Facing

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

Port
Resource

Rendering as
messages

Model

Participating client

Facing

Facing
Facing

Subscribe to event class

Broker

Set up an event class (to
pic)

publish an event class Send event
Component

A
Component

B

Figure2 Event-driven message-based Publish/Subscribe scheme

Subscribe to event class

Broker

Set up an event class (to
pic)

publish an event class Send event
Component

A
Component

B

Figure2 Event-driven message-based Publish/Subscribe scheme

Subscribe to event class

Broker

Set up an event class (to
pic)

publish an event class Send event
Component

A
Component

A
Component

B
Component

B

Figure2 Event-driven message-based Publish/Subscribe scheme

Figure3 Shared Input Port of Collaborative SVG

BrokerBroker

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Rendering as
messages Event as messages

Model

Master client

Set up an event
class (topic)

Publish
an event

to collaborative
clients

Subscribe to
the topic

Facing

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

Port
Resource

Rendering as
messages

Model

Participating client

Facing

Facing
Facing

Figure3 Shared Input Port of Collaborative SVG

BrokerBroker

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Rendering as
messages Event as messages

Model

Master client

Set up an event
class (topic)

Publish
an event

to collaborative
clients

Subscribe to
the topic

Facing

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

Port
Resource

Rendering as
messages

Model

Participating client

Facing

Facing
Facing

BrokerBroker

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Rendering as
messages Event as messages

Model

Master client

Set up an event
class (topic)

Publish
an event

to collaborative
clients

Subscribe to
the topic

Facing

Input port Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

Port
Resource

Rendering as
messages

Model

Participating client

Facing

Facing
Facing

system is decomposed into triads of Model, View, and
Controller, which is comparable to computation core
(including data structure), visual components, and the
communication between those two within a separate class
or inherited in either of them. In conventional event-
driven method-based MVC, messaging is hidden at
system level, whose differences with our method-based
MVC approach are discussed in depth in Ref. [14].
Method-based event approach is also extensively used in
distributed systems including Java AWT, Swing and their
applications. As a common mechanism of event-based
programming, event listener components subscribe to
event producer component and get notification of event
occurrences. In the MVC cases of Swing and Batik SVG
browser, visual components (view) form the observers of
data structure (model) with rendering updating
corresponding to model changes.

Our approach of event-driven message-based
collaboration with Publish/Subscribe scheme (see fig. 2
and fig. 3) has following implications:

 An “event” defines the incremental change of
system state. We have given a complete analysis
of events and classify them as UI event,
SVG/DOM event, and semantic event categories
in our collaboration experiments with SVG [13].
Event-based collaboration system works through
timely synchronization with updated event
information communicated among participatory
parties. Moreover, events can be queued and
stored as record for retrieval and replay and we
have these services in our messaging
infrastructure for supporting system reliability,
Quality-of-Service and functionality.

 The event workflow of a presentation style
application can be illustrated by its propagation
along a pipeline with stages consisting of objects
(constituent system components). As shown in
fig. 1, the “U-turn” trip for Batik SVG browser
starts from user interaction triggering a mouse
event to the completion of update rendering in
image buffer. Each stage forms the natural
synchronization point for collaboration. In a
SVG Web Service model (fig. 3), “Input port”

and “Output port” are refer to interfaces between
view and user facing port of Web Service in
input leg and output/rendering leg of the pipeline.

 Event-based collaboration can be implemented
in method-based fashion such as those built on
top of RPC-like system (e.g. CORBA). However,
we adopt a different approach of event-driven
message-based Web Service model with details
of underlying platforms hidden in the
implementation of the messaging infrastructure
level. We have elaborated this in the context of
our general approach of Web applications
deployment in section 2.1. In our approach,
communication among distributed components
is conducted indirectly through messaging
brokers.

 Publish/Subscribe schemes present the
capability of handling complex topologies with
multiple topics and multiple clients. Our
messaging infrastructure provides topic
management service and registration (for
Publish/Subscribe) service so that the
collaboration system can host virtual
collaborative community activities (e.g. shared
browsers, multiplayer online game, and share
whiteboard) in dynamic and parallel fashion.

 Building on top of the collaboration framework,
one can develop SVG applications of instructor-
led (SIMD) and participatory (MIMD)
programming models with Java and JavaScript.
One can expect this approach be applied to other
presentation style application and programming
languages, and we have in our laboratory other
initiatives on OpenOffice and PowerPoint.

3.2 Monolithic collaboration and Web Service
collaboration

In this paper, we discuss two ways of building an event-
based collaboration system: monolithic and Web service.

Monolithic collaboration (see fig. 4), is obtained when all
participating components are formed as replications of an
existing application without explicit break up into a

NaradaBrokeringNaradaBrokering

Figure 4 Monolithic collaboration

Identical programs receiving identical events

master

SVG
browser

client
master master

SVG
browser

client
other master

SVG
browser

client
other master

SVG
browser

client
other

SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

master

SVG

client
master
View

master

SVG

client
other
View

master

SVG

client
other
View

master

SVG

client
other
View

Figure 5 SIMD collaborative Web Service

Share output port

NaradaBrokeringNaradaBrokering

Figure 4 Monolithic collaboration

Identical programs receiving identical events

master

SVG
browser

client
master master

SVG
browser

client
other master

SVG
browser

client
other master

SVG
browser

client
other

NaradaBrokeringNaradaBrokering

Figure 4 Monolithic collaboration

Identical programs receiving identical events

master

SVG
browser

client
mastermaster

SVG
browser

client
master master

SVG
browser

client
othermaster

SVG
browser

client
other master

SVG
browser

client
othermaster

SVG
browser

client
other master

SVG
browser

client
othermaster

SVG
browser

client
other

SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

master

SVG

client
master
View

master

SVG

client
other
View

master

SVG

client
other
View

master

SVG

client
other
View

Figure 5 SIMD collaborative Web Service

Share output port

SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

master

SVG

client
master
View
master

SVG

client
master
View
SVG

client
master
View

master

SVG

client
other
View
master

SVG

client
other
View
SVG

client
other
View

master

SVG

client
other
View
master

SVG

client
other
View
SVG

client
other
View

master

SVG

client
other
View
master

SVG

client
other
View
SVG

client
other
View

Figure 5 SIMD collaborative Web Service

Share output port

separate model and view component as required by the
Web service architecture. This approach works through
interception of the events on a master application and
allows messaging broker to multicast them to the
collaborating clients. It is a common strategy for
collaboration systems built on top of vendor’s APIs with
event exposure with either proprietary or open source
implementations. We have demonstrated this in our

laboratory with PowerPoint and OpenOffice [20].

We have already described the idea of “Collaboration as
a Web Service” although at that time we demonstrated
collaboration features through monolithic SVG
experiments [13]. We presented already preliminary
result on a collaborative SVG browser and JavaScript
multiplayer chess game as a prototype to explore a
general approach of collaborative Web Services. We then
separated SVG into model and view components [14] and
convert desktop SVG application into a distributed
system. In this paper, we are rebuilding the collaboration
environment with explicit Web Service models and
demonstrate both SIMD and MIMD models.

3.3 SIMD collaborative Web Service

We have explained how one can make message-based
network applications collaborative in two modes – shared
input port and shared output port [19]. In each case one
multicasts the messages – either those arriving at a shared
input port or those produced by shared output port. Note
that in each case a client assigned with “master” token
has “master role”. Requests for switching between
different roles (e.g. “master” vs. “nonmaster” and player
vs. observer) can be done dynamically. Fig. 3 illustrates
the shared input port model in our architecture.

3.4 MIMD collaborative Web Service

The utilization of messaging services provided by
NaradaBrokering fin our collaboration system comprises
two cases: one is registration for Publish/Subscribe
service in the monolithic, SIMD and MIMD (interfaces

among SVG DOM Web Services); the other is the
communication between separated view and model within
each application component. In the latter case, the
“Brokers” shown in fig. 6 run in NaradaBrokering’s point
to point mode supplying transport services such as
security, firewall and NAT traversal, protocol choices and
compression.

3.5 Example of Whiteboard

We have presented a unified collaborative architecture,
which supports the above variety of SVG applications.
We are applying it to an interactive whiteboard that
supports SVG and Java applet interoperability with a
common web service architecture. It is integrated with
our existing NaradaBrokering enabled tools (shared
display and audio/video conferencing) to provide
interactive education system. This whiteboard illustrates
the ability to tailor applications in the NaradaBrokering
enabled architecture. The two views (Java and JavaScript
driven SVG) with a common backend Web service
illustrate the support of universal clients.

4. PERFORMANCE MEASUREMENTS

The advantages of this modular design imply
performance overheads coming from the replacement of
method calls by explicit messages. We have started
extensive performance tests [15] with encouraging results
but we still need further optimization to minimize thread
scheduling and transport overheads. If the Web Service
model and view are placed on nearby machines with the
message broker on one of these computers, we get an
overhead of about 10 milliseconds in the transport from
view (user input) to broker to model and back again for
rendering at the view. This overhead is the same for both
the collaborative and standalone cases.

5. CONCLUSIONS

master

SVG

client
master
View

master

SVG

client
other
View

master

SVG

client
other
View

master

SVG

client
other
View

BrokerBroker

Figure 6 MIMD collaborative Web Service

Share input port

SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service

BrokerBroker BrokerBroker BrokerBroker

master

SVG

client
master
View
master

SVG

client
master
View
SVG

client
master
View

master

SVG

client
other
View
master

SVG

client
other
View
SVG

client
other
View

master

SVG

client
other
View
master

SVG

client
other
View
SVG

client
other
View

master

SVG

client
other
View
master

SVG

client
other
View
SVG

client
other
View

BrokerBrokerBrokerBroker

Figure 6 MIMD collaborative Web Service

Share input port

SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service

BrokerBrokerBrokerBroker BrokerBrokerBrokerBroker BrokerBrokerBrokerBroker

The SIMD collaboration model can be used for lecturing
in distance education; the MIMD collaboration model
would support participatory learning. Education requires
different mode of interaction ranging from rather passive
fashion lecturing to highly interactive and collaborative in
participatory learning such as joint projects. A
whiteboard represent a good example for interactive
project-based learning. It allows multiple people to
participate interactively together. Joint modeling projects
have the same structure as the whiteboard although using
different detailed tools.

We have proposed a universal modular design with
messaging linkage service model that unifies support of
desktop applications, Web applications, and Internet
collaboration. This approach allows maximum reusability
of existing components; use of a flexible messaging
scheme with high scalability; automatic and effective
collaboration with interactivity of rich Web content for
diverse clients over heterogeneous network environments;
finally it suggests a uniform interface for the next
generation Web client with ubiquitous accessibility.
Applied to education, our architecture enables new
participatory education tools and a richer distance
education environment.

The architecture presented here is being used in our
laboratory in several related projects looking at
collaborative desktop and visualization tools [20] and
together these could enhance the e-education
environment.

6. REFERENCES

[1] Global Internet Statistic
http://www.glreach.com/globstats/index.php3

[2] Single Instruction Multiple Data (SIMD) at
http://en.wikipedia.org/wiki/SIMD

[3] Multiple Instruction Multiple Data (MIMD) at
http://en.wikipedia.org/wiki/MIMD

[4] W3C Web Service Description Language at
http://www.w3.org/TR/wsdl

[5] G. Lee, Object oriented GUI application
development, Prentice Hall, 1994. ISBN: 0-13-
363086-2.

[6] Community Grids Lab NaradaBrokering system
at http://www.naradabrokering.org

[7] Sun Microsystems Java Message Service at
http://www.hostj2ee.com/specs/jms1_0_2-
spec.pdf

[8] Sun Microsystems JXTA at http://www.jxta.org/
[9] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan

Bulut, Shrideep Pallickara, “A Web Services
Framework for Collaboration and
Videoconferencing”, WACE 2003 Workshop on
Advanced Collaborative Environments Seattle
June 22 2003

http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/wace-submissionjune-03.pdf

[10] Community Grids Lab Carousel project at
http://grids.ucs.indiana.edu/ptliupages/projects/c
arousel/

[11] Anabas Conferencing system
http://www.anabas.com

[12] Xiaohong Qiu, Bryan Carpenter and Geoffrey C.
Fox, “Internet Collaboration using the W3C
Document Object Model”, Proceedings of the
2003 International Conference on Internet
Computing, Las Vegas June 2003
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/collaborative_dom_conference_2003_Int_IC
_font10_without_title_page.pdf

[13] Xiaohong Qiu, Bryan Carpenter and Geoffrey C.
Fox, “Collaborative SVG as A Web Service”,
Proceedings of SVG Open, Vancouver, Canada,
July 2003
http://www.svgopen.org/2003/papers/Collaborat
iveSVGasAWebService/#S.Bibliography
(requires SVG viewer plug-in
http://www.adobe.com/svg/viewer/install/main.h
tml for displaying figures)

[14] Xiaohong Qiu, “Building Desktop Applications
with Web Service in a Message-based MVC
Paradigm”, to appear in IEEE International
Conference on Web Services, San Diego,
California, July 2004

[15] Xiaohong Qiu, Shrideep Pallickara, and Ahmet
Uyar, "Making SVG a Web Service in a
Message-based MVC Architecture”, submitted
for publication

[16] W3C Scalable Vector Graphics (SVG) version
1.0 Specification http://www.w3.org/TR/SVG/.

[17] Apache Batik SVG Toolkit
http://xml.apache.org/batik/

[18] W3C Document Object Model (DOM) level 1
specification http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001/

[19] Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko,
Sangmi Lee, Shrideep Pallickara, Marlon Pierce,
Xiaohong Qiu, Xi Rao, Ahmet Uyar, Minjun
Wang, Wenjun Wu, “Peer-to-Peer Grids”,
Chapter 18 of Grid Computing: Making the
Global Infrastructure a Reality edited by Fran
Berman, Geoffrey Fox and Tony Hey, John
Wiley & Sons, Chichester, England, ISBN 0-
470-85319-0, March 2003.
http://www.grid2002.org]

[20] Minjun Wang, Geoffrey Fox and Shrideep
Pallickara, “A Demonstration of Collaborative
Web Services and Peer-to-Peer Grids” to appear
in proceedings of IEEE ITCC2004 International,
Las Vegas April 5-7 2004.
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/wangm_collaborative.pdf

