
  

Web Service Architecture for e-Learning 
 

Xiaohong Qiu 
EECS Department, Syracuse University 

Community Grids Lab, Indiana University 
501 Morton N. Street, Suite 224 
Bloomington, IN 47404, USA 

 
and 

 
Anumit Jooloor 

CS Department, Indiana University 
Bloomington, IN 47405, USA 

  
 

ABSTRACT 
 

Message-based Web Service architecture provides a 
unified approach to applications and Web Services that 
incorporates the flexibility of messaging and distributed 
components. We propose SMMV and MMMV 
collaboration as the general architecture of collaboration 
based on a Web service model, which accommodates 
both instructor-led learning and participatory learning. 
This approach derives from our message-based Model-
View-Controller (M-MVC) architecture of Web 
applications, comprises an event-driven 
Publish/Subscribe scheme, and provides effective 
collaboration with high interactivity of rich Web content 
for diverse clients over heterogeneous network 
environments. 
 
Keywords: Web Service, Message-based MVC, 
messaging, Publish/Subscribe, SMMV, MMMV, e-
education and collaboration 
 

1. INTRODUCTION 
 
The Internet provides a distributed infrastructure for 
sharing information globally with an estimate that the 
online population will reach 6,330 million users in 2004 
[1].  The very large user market becomes a great 
motivation for new technologies enabling one to build the 
next generation of Web based applications. In particular, 
it is very attractive to develop collaborative applications 
linking of the growing number of diverse clients with rich 
media Web content.  
 
This evolution brings fundamental changes to our society 
in communication and knowledge acquisition pattern ─ 
anytime, anywhere, people no longer have to meet face to 
face to communicate while all information is delivered to 
the client interface online and on demand. The new trend 
comprises innovative technological features: it offers a 
platform facilitating ubiquitous access of desktop, PDA 
and cellular phone  (Windows, MacOS, UNIX, Linux, 

and PalmOS) clients; it supplies an interface with 
services for easier availability to global resources 
including data, text, 2D and 3D graphics, video/audio 
stream, and MP3 music; it promotes an interoperable 
synchronization mechanism that captures interaction 
between participants ─ teacher and student, trainer and 
trainee for real time experience.  
 
Collaboration tools are revolutionizing the training 
industry. Particularly, Web-based e-Learning solutions 
are adopting collaboration environments that enhance 
accessibility to a full range of educational resources 
supporting rich interaction with participating parties in a 
synchronous or asynchronous fashion. Distance education 
has been successful using tools such as Audio/Video 
conferencing and shared curriculum using either shared 
display or shared event architectures. Here we explore a 
richer model with Single Model Multiple View (SMMV) 
and Multiple Model Multiple View (MMMV) 
collaboration as the general architecture of collaboration 
as Web Service [2] model, which can be applied to both 
instructor-led learning and participatory learning. The 
premise of this work is building forward-looking 
architecture of Web applications for scalability, 
reusability, interoperability, pervasive accessibility, and 
automatic collaboration.  

The rest of the paper is organized as follows: in Section 2 
we briefly review technical issues that cover general 
concept of building message-based Web Service 
applications, relationship of our message-based Model-
View-Controller (MVC) [3] architecture of Web 
applications and derived SMMV and MMMV 
collaboration as a Web Service model for e-Learning, and 
methodology of our prototyping. Section 3 summarizes 
collaboration framework and presents SMMV and 
MMMV collaboration as our general architecture of 
collaboration as Web Service model. In section 4, we 
discuss performance issues based on the experiments of 
Scalable Vector Graphics (SVG) applications.  Finally, 
we present our conclusions and propose future work.  



  

Figure1 SVG browser derived from message-based MVC

View

GVTGVT

RendererRenderer

Rendering as messages Event as messages

Client User Interface

desktop cellular 
phone

PDA

JavaScriptJavaScript

SVG DOMSVG DOM

PortFacing
Resource

Model
Computation core as service

Messages contain control information

Figure1 SVG browser derived from message-based MVC

View

GVTGVT

RendererRenderer

Rendering as messages Event as messages

Client User Interface

desktopdesktopdesktop cellular 
phone
cellular 
phone
cellular 
phone

PDAPDAPDA

JavaScriptJavaScript

SVG DOMSVG DOM

PortFacing
Resource

Model
Computation core as service

Messages contain control information

2. TECHNICAL ISSUES 
 
2.1 Message-based Web Service model and messaging 
infrastructure 
 
The history of Internet and Web technology saw the 
evolution of Web applications with architectures 
dominated by centralized client-server system with 
traditional point-to-point (unicast) connection, 
decentralized self-organizing peer-to-peer (P2P) system 
that evolved to overlay network with application level 
multicast mechanism, and RPC-model (e.g. CORBA) 
derives from method-based system calls for tightly 
coupled single CPU system (e.g. desktop applications) 
but with remote procedure calls to support the distributed 
objects. Client-server and P2P models are suitable for 
solving problems with features applicable to their patterns 
but real world problems can be arbitrarily complicated. 
Examples can be seen in parallel applications with 
decomposition in high dimensionality. On the other hand, 
RPC-like model deals well with distributed objects or 
components for reusability but do not scale well. 
Message-based Web Service model provides a unified 
approach that incorporates messaging flexibility with 
components distribution. It accommodates to the diverse 
and scaling nature of the Internet and also promotes Web 
applications development with Web Services for 
reusability, interoperability, and scalability. 
 
The messaging approach decomposes a Web system into 
three layers: physical networks or Internet, messaging 
infrastructure, and Web application. This separation can 
greatly improve applications’ portability by reducing 
their dependency on underlying connection topologies 
and platforms. It also reduces deployment overhead of 
Web applications. However, it requires a powerful 
messaging infrastructure on TCP/IP network stack 
providing a variety of communication services that 
reconcile the differences between underlying connection 
topologies and deployment of high-level applications. In 
our lab, we have developed an open source messaging 
infrastructure NaradaBrokering [4] that supports a 
publish/subscribe paradigm. It provides Java Messaging 
Service (JMS) [5] compliance and JXTA [6] interaction 
and has been applied to a suite of collaboration tools 
(Audio/Video conferencing [7], Carousel [8] and Anabas 
e-Learning platform [9]). NaradaBrokering supports 
multiple protocols (including TCP/IP, UDP, HTTP, and 
multicast), firewall tunneling, security, and 
heterogeneous services (e.g. messaging services and grid 
services).  
 
2.2 Web application and Internet collaboration 
 
Web application deployment shows diversified directions 
but have common features ─ namely, user interfaces and 
services for the sharing of information and resources over 
Internet infrastructure. The “sharing” can be done 

asynchronously and synchronously at every possible 
stage along the deployment pipeline. The objects that 
need to be synchronized may range from Web contents 
(e.g. video, audio and raw data streams), user interactions 
(e.g. editing operations on shared whiteboard document), 
distributed programs (e.g. distributed large-scale 
simulation components), to team participants who involve 
in development or management. The “sharing” can be 
organized through unicast or multicast style of group 
communication. Therefore, in the most general sense, 
collaboration is the core problem and service of Web 
applications of “sharing” although people usually refer 
the terminology “collaboration” to real-time synchronous 
Web applications with compelling time issue or 
constraints. As key objective of our approach, design and 
implementation of a uniform architecture for Web 
applications with automatic collaboration capability has 
general importance. 

 
We have looked at several examples as part of systematic 
exploration of our design concepts: We proposed an 
“explicit message-based MVC” paradigm (M-MVC) [10] 
as the general architecture for Web applications. It is built 
around systematic use of Web services and an event 
driven message-based separation between model and view 
in the MVC pattern. We have carried out initial 
“collaboration as a Web Service” [11] experiments to test 
viability of our architecture in supporting of interoperable 
applications with rich graphical contents and tight time 
constraints through examples of teacher-student scenario 
and multi-player online game. As an extension to our 
research scope, we converted desktop application to 
distributed system at architectural level. This is done 
through replacing conventional method-based MVC with 
message-based MVC in Publish/Subscribe scheme [12] 
for maximum reusability of existing software assets. We 
have in-depth discussions of performance issues for Web-
based applications [13] that help to investigate the 
process of message-based Web application deployment 



  

and supply feedback for the construction of underlying 
messaging infrastructure, which is indicative especially 
when this area is still immature and one expects 
substantial evolution. Finally, as discussed in this paper, 
we define collaboration with SMMV and MMMV model 
derived from our uniform Web Service architecture of M-
MVC that converge desktop and Web applications.  
 
2.3 SVG and DOM  
 
As key challenge of a new approach with systematic 
utilizing Web Service for building message-based 
applications, many subtle factors may not be addressed 
by general architectural consideration. So, we choose to 
build a prototype with a forward-looking architecture and 

conduct systematic experiments to explore and identify 
general principles and key implementation issues 
associated with this approach. Multimedia with rich 
graphics and media stream composition forms an 
important feature of new general Web applications. We 
select a presentational style desktop application with two-
dimensional Scalable Vector Graphics (SVG) [14] 
contents ─ Batik SVG browser [15] from Apache as our 
testing case for further experiments and evaluations. We 
have restructured the open source Batik software in the 
explicit message-based MVC model as illustrated in 
figure1. The SVG document is parsed as a Document 
Object Model (DOM) [16] tree with nodes representing 
document fragments and graphics objects. Graphical 
Vector Toolkit (GVT) tree reflects DOM structure and is 
used for rendering convenience. In this approach, 
NaradaBrokering supplies all messaging services 
(interaction between clients, events and rendering within 
a client) and provides Publish/Subscribe architecture. 
 
Building collaborative tools on SVG has some important 
general features: 
a) SVG is an open source standard for 2D vector 

graphics of World Wide Web Consortium (W3C). It 
is an important technology for visualization. XML 
content format and scalable vector graphics feature 
make it an ideal choice of intermediate 
transportation and high-resolution rendering. It has 

been applied to various applications including 
mapping services in Geological Information System 
(GIS) and authoring tools (e.g. SVG viewer plug-in 
from Adobe and Corel). The latter feature is 
especially important for universal access from small 
wireless devices. 

b) Batik SVG browser has full support of SVG 1.0 
specification. The openness of both standard and 
implementation provides us valuable experience of a 
complete analysis of system structure and 
components interaction, which is unavailable from 
similar commercial tools (such as Microsoft 
PowerPoint, Macromedia Flash, Adobe Photoshop 
and Illustrator, and Corel Draw) with proprietary 
implementation and data format.  

c) SVG is built on the W3C DOM [16], which is the 
natural description of all desktop documents used in 
Office applications of the type built by Microsoft, 
Macromedia and OpenOffice. Thus our work can 
naturally generalize to a new Web service 
architecture for a next generation of desktop 
applications including those used for curriculum 
authoring. The DOM events specification provides a 
generic event model that propagates changes in 
nodes (objects) of the tree structure.   This allows 
this style of application to have a common web 
service core that drives a variety of client interfaces 
which can either be standalone or collaborative. 

 
3. COLLABORATION FRAMEWORK 

 
3.1 SMMV collaborative Web Service  
 
In the message-based MVC framework, one can classify 
collaboration in a way very familiar from parallel 
computing. In this case we are very familiar with Flynn's 
taxonomy [17] which includes the two key architectures 
SIMD (Single Instruction Multiple Data) [18] and MIMD 
(Multiple Instruction Multiple Data) [19]. We show that 
the model of figure 5 can be thought of like SIMD and 
that of figure 6 as MIMD.  
 

Subscribe to event class

Broker

Set up an event clas
s (to

pic)

publish an event clas
s Send event

Component

A
Component

B

Figure2 Event-driven message-based Publish/Subscribe scheme

Figure3 Shared Input Port of Collaborative SVG

BrokerBroker

Output port               Input port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Rendering as
messages Event as messages

Model

Master client

Set up an event 
class (topic)

Publish
an event 

to collaborative 
clients

Subscribe to 
the topic

Facing

Input port               Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortResource

Rendering as 
messages

Model

Participating client

Facing

Facing
Facing

Subscribe to event class

Broker

Set up an event clas
s (to

pic)

publish an event clas
s Send event

Component

A
Component

B

Figure2 Event-driven message-based Publish/Subscribe scheme

Subscribe to event class

Broker

Set up an event clas
s (to

pic)

publish an event clas
s Send event

Component

A
Component

B

Figure2 Event-driven message-based Publish/Subscribe scheme

Subscribe to event class

Broker

Set up an event clas
s (to

pic)

publish an event clas
s Send event

Component

A
Component

A
Component

B
Component

B

Figure2 Event-driven message-based Publish/Subscribe scheme

Figure3 Shared Input Port of Collaborative SVG

BrokerBroker

Output port               Input port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Rendering as
messages Event as messages

Model

Master client

Set up an event 
class (topic)

Publish
an event 

to collaborative 
clients

Subscribe to 
the topic

Facing

Input port               Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortResource

Rendering as 
messages

Model

Participating client

Facing

Facing
Facing

Figure3 Shared Input Port of Collaborative SVG

BrokerBroker

Output port               Input port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Rendering as
messages Event as messages

Model

Master client

Set up an event 
class (topic)

Publish
an event 

to collaborative 
clients

Subscribe to 
the topic

Facing

Input port               Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortResource

Rendering as 
messages

Model

Participating client

Facing

Facing
Facing

BrokerBroker

Output port               Input port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortFacing
Resource

Rendering as
messages Event as messages

Model

Master client

Set up an event 
class (topic)

Publish
an event 

to collaborative 
clients

Subscribe to 
the topic

Facing

Input port               Output port

View

GVTGVT

RendererRenderer

User Port

JavaScriptJavaScript

SVG DOMSVG DOM

Application as Web Service

PortResource

Rendering as 
messages

Model

Participating client

Facing

Facing
Facing



  

Single Model Multiple View (SMMV) shown in figure 5 
corresponds to Flynn's SIMD parallel computing case 
with multiple clients sharing a single Model component. 
For the parallel computing analogy we find a single 
instruction stream shared by multiple data elements. The 
SMMV collaboration model can be used for lecturing in 
distance education and is common in client/server Web 
applications with multiple Web browsers sharing a Web 
Server. 
 
We have explained how one can make message-based 
network applications collaborative in two modes – shared 
input port and shared output port [20]. In each case one 
multicasts the messages – either those arriving at a shared 
input port or those produced by shared output port. Note 
that in each case a client assigned with “master” token 
has “master role”. Requests for switching between 
different roles (e.g. “master” vs. “nonmaster” and player 
vs. observer) can be done dynamically. Figure 3 and 
figure 5 illustrate SMMV collaborative Web Service 
architecture with the shared input port model. 

 
3.2 MMMV collaborative Web Service 
 
MMMV is a generalization of SMMV, which enables 
ubiquity with the customization done from the Model at 
server side and is shown in figure 6. Now we have 
multiple models each driving its own separate view. This 
corresponds to Flynn's MIMD with multiple instruction 
units each driving its own data. We see model maps into 
CPU and view maps into data as we compare 
collaboration and parallel computing. Furthermore, we 
could have hybrid models which can mix SMMV and 
MMMV. Thus we can have replicated models as in 
MMMV but with some or all models driving in SMMV 
fashion more than one view. 
 
A rather deeper issue comes from the many tiers present 
in most web service (distributed) applications. We can in 
fact have a general workflow (pipeline) with several 
model and view components as illustrated in figure 6. As 
one example consider JavaServer Faces (JSF) [21], which 
extends JavaServer Pages (JSP) [22] and Java Servlet [23] 

technology. This allows a multi-tier Model component 
with a JSP Web tier and backend business logic. This 
illustrates that our classification is incomplete as often the 
Web tier has multiple models even if there is only single 
business logic. One would classify these systems as 
SMMV or MMMV depending on the relative importance 
of Web tier and business logic. Of course there are also 
confusing cases with multiple services (resources) in the 
business logic.  
 
Turning to education for examples where we noted that 
SMMV was the natural distance education paradigm, we 
see that MMVC is the natural architecture for developing 
applications such as participatory learning tools. 
 
The utilization of messaging services provided by 
NaradaBrokering in our collaboration system comprises 
two cases: one is registration for Publish/Subscribe 
service in the monolithic, SMMV and MMMV 
(interfaces among SVG DOM Web Services); the other is 
the communication between separated view and model 

within each application component. In the latter case, the 
“Brokers” shown in figure 6 run in NaradaBrokering’s 
point-to-point mode supplying transport services such as 
security, firewall and NAT traversal, protocol choices and 
compression. 
 
3.3 Event-based collaboration with Publish/Subscribe 
scheme 
 
Event-based programming has become a widely used 
programming style that supports interrupt-handling 
mechanisms for user input-device interactions. Compared 
with previous interrupt processing procedures, it 
promotes system modularity and asynchronous response. 
Most of modern desktop systems, including Microsoft 
Windows and their applications use MVC paradigm. The 
system is decomposed into triad of Model, View, and 
Controller, which is comparable to computation core 
(including data structure), visual components, and the 
communication between those two within a separate class 
or inherited in either of them. In conventional event-
driven method-based MVC, messaging is hidden at 

NaradaBrokeringNaradaBrokering

Figure 4 Monolithic collaboration

Identical programs receiving identical events

master 

SVG
browser

client
master master 

SVG
browser

client
other master 

SVG
browser

client
other master 

SVG
browser

client
other

SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

master 

SVG

client
master
View

master 

SVG

client
other
View

master 

SVG

client
other
View

master 

SVG

client
other
View

Figure 5 SMMV collaborative Web Service

Share output port

NaradaBrokeringNaradaBrokering

Figure 4 Monolithic collaboration

Identical programs receiving identical events

master 

SVG
browser

client
master master 

SVG
browser

client
other master 

SVG
browser

client
other master 

SVG
browser

client
other

NaradaBrokeringNaradaBrokering

Figure 4 Monolithic collaboration

Identical programs receiving identical events

master 

SVG
browser

client
mastermaster 

SVG
browser

client
master master 

SVG
browser

client
othermaster 

SVG
browser

client
other master 

SVG
browser

client
othermaster 

SVG
browser

client
other master 

SVG
browser

client
othermaster 

SVG
browser

client
other

SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

master 

SVG

client
master
View
master 

SVG

client
master
View
SVG

client
master
View

master 

SVG

client
other
View
master 

SVG

client
other
View
SVG

client
other
View

master 

SVG

client
other
View
master 

SVG

client
other
View
SVG

client
other
View

master 

SVG

client
other
View
master 

SVG

client
other
View
SVG

client
other
View

Figure 5 SMMV collaborative Web Service

Share output port



  

system level, whose differences with our message-based 
MVC approach are discussed in depth in Ref. [12].  
Method-based event approach is also extensively used in 
distributed systems including Java AWT, Swing and their 
applications. As a common mechanism of event-based 
programming, event listener components subscribe to 
event producer component and get notification of event 
occurrences. In the MVC cases of Swing and Batik SVG 
browser, visual components (view) form the observers of 
data structure (model) with rendering updating 
corresponding to model changes. 
 
Our approach of event-driven message-based 
collaboration with Publish/Subscribe scheme (see figures 
2 and 3) has following implications: 

 An “event” defines the incremental change of 
system state. We have given a complete analysis 
of events and classify them as UI event, 
SVG/DOM event, and semantic event categories 
in our collaboration experiments with SVG [11]. 
Event-based collaboration system works through 
timely synchronization with updated event 
information communicated among participatory 
parties. Moreover, events can be queued and 
stored as record for retrieval and replay and we 

have these services in our messaging 
infrastructure for supporting system reliability, 
Quality-of-Service and functionality.   

 The event workflow of a presentation style 
application can be illustrated by its propagation 
along a pipeline with stages consisting of objects 
(constituent system components). As shown in 
figure 1, the “U-turn” trip for Batik SVG 
browser starts from user interaction triggering a 
mouse event to the completion of update 
rendering in image buffer. Each stage forms the 
natural synchronization point for collaboration. 
In a SVG Web Service model (figure 3), “Input 
port” and “Output port” are refer to interfaces 
between view and user facing port of Web 

Service in input leg and output/rendering leg of 
the pipeline.  

 Event-based collaboration can be implemented 
in method-based fashion such as those built on 
top of RPC-like system (e.g. CORBA). However, 
we adopt a different approach of event-driven 
message-based Web Service model with details 
of underlying platforms hidden in the 
implementation of the messaging infrastructure 
level. We have elaborated this in the context of 
our general approach of Web applications 
deployment in section 2.1. In our approach, 
communication among distributed components 
is conducted indirectly through messaging 
brokers.  

 Publish/Subscribe schemes present the 
capability of handling complex topologies with 
multiple topics and multiple clients. Our 
messaging infrastructure provides topic 
management service and registration (for 
Publish/Subscribe) service so that the 
collaboration system can host virtual 
collaborative community activities (e.g. shared 
browsers, multiplayer online game, and share 
whiteboard) in dynamic and parallel fashion.  

 Building on top of the collaboration framework, 
one can develop SVG applications of instructor-
led (SMMV) and participatory (MMMV) 
programming models with Java and JavaScript. 
One can expect this approach be applied to other 
presentation style application and programming 
languages, and we have in our laboratory other 
initiatives on OpenOffice and PowerPoint. 

 
3.4 Monolithic collaboration and Web Service 
collaboration  
 
In this paper, we discuss two ways of building an event-
based collaboration system: monolithic and Web service.  
 

master 

SVG

client
master
View

master 

SVG

client
other
View

master 

SVG

client
other
View

master 

SVG

client
other
View

BrokerBroker

Figure 6 MMMV collaborative Web Service

Share input port

SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service

BrokerBroker BrokerBroker BrokerBroker

master 

SVG

client
master
View
master 

SVG

client
master
View
SVG

client
master
View

master 

SVG

client
other
View
master 

SVG

client
other
View
SVG

client
other
View

master 

SVG

client
other
View
master 

SVG

client
other
View
SVG

client
other
View

master 

SVG

client
other
View
master 

SVG

client
other
View
SVG

client
other
View

BrokerBrokerBrokerBroker

Figure 6 MMMV collaborative Web Service

Share input port

SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service

NaradaBrokeringNaradaBrokering

SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service
SVG DOM
Model

as Web Service

BrokerBrokerBrokerBroker BrokerBrokerBrokerBroker BrokerBrokerBrokerBroker



  

Monolithic collaboration (see figure 4), is obtained when 
all participating components are formed as replications of 
an existing application without explicit break up into a 
separate model and view component as required by the 
Web service architecture. This approach works through 
interception of the events on a master application and 
allows messaging broker to multicast them to the 
collaborating clients. It is a common strategy for 
collaboration systems built on top of vendor’s APIs with 
event exposure with either proprietary or open source 
implementations. We have demonstrated this in our 
laboratory with PowerPoint and OpenOffice [24]. 
  
We have already described the idea of “Collaboration as 
a Web Service” although at that time we demonstrated 
collaboration features through monolithic SVG 
experiments [11]. We presented already preliminary 
result on a collaborative SVG browser and JavaScript 
multiplayer chess game as a prototype to explore a 
general approach of collaborative Web Services. We then 
separated SVG into model and view components [12] and 
convert the desktop SVG application into a distributed 
system. In this paper, we are rebuilding the collaboration 
environment with explicit Web Service models and 
demonstrate both SMMV and MMMV models.  
 
 

4. PERFORMANCE MEASUREMENTS 
 
4.1 Test Scenarios 
 
We have presented a unified collaborative architecture 
M-MVC, which supports the above variety of SVG 
applications. The advantages of this modular design 
imply performance overheads coming from the 
replacement of method calls by explicit messages. We 
have performed extensive performance tests [13] [25] 
with encouraging results but we still need further 
optimization to minimize thread scheduling and transport 
overheads.  
 
To identify key factors that influence the performance of 
M-MVC in particular and message-based model in 

general of building distributed applications, we adopt the 
decomposition strategy of the Model and the View of 
Batik SVG browser as delineated in figure 1. The 
collaboration interactions between decoupled MMMV 
Model-Model or SMMV Model-View components are 
done through intermediary event brokers with 
publish/subscribe or point-to-point interface that is 
provided by NaradaBrokering [4] as messaging services 
(see figures 5 and 6). The "View" including client 
interface components (Swing GUI and GVT rendering) is 
dynamically downloaded to client. The "Model" 
consisting of DOM and JavaScript modules naturally 
becomes a service which could run standalone or on a 
Web server. Event-oriented messages, which are 
transported through our messaging infrastructure - 
NaradaBrokering, play the role of the "Controller". 
 
There are many variables that we can vary in our tests 
including the locations of Model, View, and Event 
Broker (NaradaBrokering) and the choice of type of host 
computer and network connection. One can also vary the 
application running in the Model (Web service). One can 
investigate either the single Model and View or the 
collaborative models. To simplify the issues, here we 
present some investigations with Broker, Model and 
View in the single Model and View case as displayed in 
figure 1.  
 
We list scenarios for a set of performance tests: 
environment settings in table 1 and system configurations 
in table 2. Each test case presents a choice of 
combinations based on network, operating system, and 
CPU configurations. The coupling of the Model and the 
View components varies when Broker distance changed 
from direct switch connection to a remote site in campus 
or inter-city area. In test 1 to 6, the Broker either shared 
the same runtime environment or ran in a distinct 
operating system platform in communication with Model 
and View, where both of these were run with Windows 
on desktop computers. Hosting computers of Broker and 
View were varied to delineate the influence of CPU 
processing power. 
 

  
Table 1 Specification of Test Scenarios 

 
Test scenarios Environment Settings 

Broker distance No Description Event Broker  
(NB0.97 Server) 

View 
(Client) 

Model 
(Service) 

Network 
connection type area hop 

1 Switch connection desktop2 desktop1 desktop2 direct switch 10 meters 1 
2 Switch connection  desktop3  

(High-end desktop) 
desktop3 desktop2 direct switch 10 meters 1 

3 Office area linux 
(gridfarm1) 

desktop1 desktop2 hub 10 meters 1 

4 Within-City  
(Campus  area) linux HPC cluster node desktop1 desktop2 routers 40 miles n/a 

5 Inter-City  
 

Solaris (ripvanwinkle) 
(light loaded) 

desktop1 desktop2 routers 100 miles n/a 

6 Inter-City 
 

Solaris (complexity) 
(heavy loaded) 

desktop1 desktop2 routers 100 miles n/a 

 



  

 
 
 

Table 2 System configurations used in Table 1 
 

Computer Hardware Software 
No. Type Brand Processor CPU (MHz) RAM OS 
1 desktop  Dell Dimension 8100 Intel Pentium 4  1500 523,344KB Windows 2000 
2 desktop Dell Dimension 8100 Intel Pentium 4  1500 512MB Windows XP 
3 desktop (highend) Dell Dimension XPS Intel Pentium 4  2990 1GB Windows XP 
4 Solaris (grids/community) SUN Ultra-60 UltraSPARC II 450 1GB Solaris 5.8 
5 Solaris 

(ripvanwinkle/complexity) 
SUNW, Sun-Fire-880 UltraSPARC III 900 16GB Solaris 5.9 

6 Linux (gridfarm1) Angstrom, Phython Intel Xeon 2400 2GB Linux 2.4  
7 Linux cluster 

(supercomputer node) 
IBM  470 processors 1.1 Teraflops 0.5 TB  Linux 2.4 SMP 

 
4.2 Timing model 
 
A Graphics User Interface (GUI) provides the 
conventional computer-based interactive style 
applications for visual evoked responses. A complete pass 
of system behavior is started with user input in the View, 
event interpretation and process in the Model, and ended 
with re-display in the View corresponding to the system 
state change. At a high level, three parts contribute to the 
major cost of performance ― computation at View and 
Model, and interaction between them. Performance is 
sensitive both to the nature of the application and the 
coding style and system architecture used. Further even 
with the same application, one will often find different 
results reflecting background loads in system and the 
nature of the user interaction. 
 
The procedure of interactions between user and SVG 
applications is illustrated in figure 1. This shows the "U" 
turn trip along the pipeline delineates two legs of event 
propagation: one from input device to Broker and then the 
Model; the other from the updated DOM model via 
Broker to GVT tree and output of image rendering.  Each 
stage is comprised of a component with different runtime 
states based on its function during the event process. Note 
that the communication between the View and the Model 
is routing of event-based messages via Broker over the 
network while the inter-stage interaction within View or 
Model component is done by runtime method call. 
 
We found that the system performance is mainly 
composed of the latency at client (GUI and GVT for 
locating event and graphical rendering), service 
(application JavaScript code manipulates DOM elements), 
and messaging (event processing, buffering, and routing). 
We add a timer along the pipeline (ref. figure 1) at each of 
the marked timing points T0, T1, T2, T3, and T4 to 
scrutinize the cost and characteristics of the modules 
delineated by these timers. The times T0, T1, T2, T3, and 
T4 are all measured in the View and defined as follows: 
 T0: start time 
 T1: A given user event such as a mouse click can 
generate multiple associated DOM change events  

 
transmitted from the Model to the View. T1 is the arrival 
time at the View of the first of these.  

T2: This is the arrival of the last of these events 
from the Model and the start of the processing of the set 
of events in the GVT tree 
 T3: This is the start of the rendering stage 
 T4: This is the end of the rendering stage 
 
As performance measurement is directly related to the 
choice of event for testing, we choose to track down 
system interactions within the testing model to the 
smallest atomic unit ― mouse event ― that is triggered 
by detection of each pixel change for performance 
measurement purpose. 
 
4.3 Performance measurement and analysis 
 
Tables 3 contain a selection of measured data, which 
records times between the processing markers T0, T1, and 
T4. More extensive results including a discussion of 
timing points T2 and T3 will be found in [25]. Figure 7 
gives a detailed histogram extending the results of table 3. 
Each row of the table corresponds to averages over many 
event processing sequences i.e. to averages over 
processing of mouse events with understanding that for 
efficiency strings of mouse move events (generated by the 
system as each pixel is passed) are passed as single vector 
events. Note from the figure that events start on the View 
as a User Interface Mouse action and the pipeline sends 
them through the Model and back to the View.  
 
We used the same JavaScript chess program described in 
earlier papers [11] in tables 3. All events are W3C DOM 
compliant as required by the SVG application. T0 
represents the time that messages are transmitted from 
View to Model after initial processing in View of mouse 
event. T1, recorded in the View, represents the time that 
the associated events are returned from the Model to the 
View. A given user interface event generates several 
Model events which are sent back to the View as separate 
messages and we record in tables 3 the times of the first 
and last messages in this returned sequence. The final 
time recorded T4 corresponds to the end of the rendering 



  

update in the View component. All times are recorded 
relative to the processing marker T0. We record mean, 
statistical error in the mean and standard deviation of the 

distribution. Essentially all plots show broad distributions 
with large standard deviations.  
 
 

Table 3 Average performance  
 

Mousedown events Average of all mouse events (mousedown, mousemove, and mouseup) 
Test  First return – Send time: 

T1-T0  (milliseconds) 
First return – Send time: 
T1-T0 (milliseconds) 

Last return – Send time: 
T’1-T0 (milliseconds) 

End Rendering 
T4-T0 (microseconds) 

No mean ± error Stddev mean ± error stddev mean ± error stddev mean ± error stddev 
1  33.6 ± 3.0 14.8 37.9 ± 2.1 18.7 48.9± 2.7 23.7 294.0± 20.0 173.0 
2  18.0 ± 0.57 2.8 18.9 ± 0.89 9.07 31.0 ± 1.7 17.6 123.0 ± 8.9 91.2 
3  14.9 ± 0.65 2.8 21.0 ± 1.3 10.2 43.9  ± 2.6 20.5 414.0 ± 24.0 185.0 
4 20.0  ± 1.1 4.8 29.7 ± 1.5 13.6 49.5  ± 3.0 26.3 334.0  ± 22.0 194.0 
5 17.0 ± 0.91 4.3 24.8 ± 1.6 12.8 48.4 ± 3.0 23.3 404.0  ± 20.0 160.0 
6  20.0  ± 1.3 6.4 29.6 ± 1.7 15.3 50.5 ± 3.4 26.0 337.0  ± 22.0 189.0 

 
In table 3, we record the difference between types of 
mouse events by recording both all mouse down 
processing sequences and the results averaged over mouse 
move, mouse down and mouse up. The measurements in 
the first two columns are an upper limit on the overhead 

due to the decomposition and this varies from 20-40 ms 
with most measurements at the lower end of this range. 
This holds for all broker positions from collocation in the 

desktop to remote location (in Indianapolis with the 
Clients in Bloomington). We call this an upper limit as it 
is processed concurrently with essential computation (the 
thread scheduling issue) and we get some improvement in 
M-MVC due to concurrent processing between Model 

and View for operations sequentialized in the 
conventional version.  
 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

minimum T1-T0 in milliseconds

nu
m

be
r o

f e
ve

nt
s 

in
 5

 m
ill

is
ec

on
d 

bi
ns

Message transit time in M-MVC Batik browser

all events
mousedown event
mouseup event
mousemove event

Figure 7 Histograms of the elapsed time T1(first event to return)-T0 for three types of mouse events and 
the set of all mouse events which is just the sum of the first three histograms. This data corresponds to 
test case 1 of Table 1 and the row labeled 1 in table 3. The configuration is in detail: NB on Model; Model 
and View on two desktop PCs; local switch network connection. A few events with timing greater than 
100 milliseconds are not shown on the plot 



  

Figure 7 shows for the three major mouse event types (up, 
down, move) rather clear peaks with widths at half height 
of about 10-15 milliseconds. Mouse move shows the 
lowest and mouse up the largest means but the shapes are 
comparable. 
 
It is known that human visual system (retina and brain) 
retains an image for a fraction of a second after it views 
the image, which is essential to all visual display 
technologies. For computer-based GUI, it implies that 
time delay of each system change including visual 
analysis and graphical feedback must be lower than the 30 
millisecond time frame to achieve coherent view ― with 
prompt image update and no flickering. Of course often a 
complex model change can take longer than this to 
process and render. It is especially challenging for the 
design of distributed media rich applications. This is due 
to compute intensive graphics image processing and 
rendering plus extra network latency overhead. However, 
messages that containing representation data and control 
instructions must be delivered and processed before 
rendering can begin and this can lead to possible 
bottlenecks of overall system performance. To achieve 
proper functioning and real time experience, interactive 
style applications usually employ optimizations for 
improved system performance. The Batik SVG browser 
itself buffers changes to exploit visual persistence and it 
only updates the rendering every 20 milliseconds. 
 
We have discussed network performance in this 
subsection and shown that it impacts the M-MVC 
application significantly as it can add 100's of 
milliseconds to the user interaction. However we intend 
M-MVC to be used in the local environment where our 
results show good performance even when components 
are separated by about 40 miles corresponding to the 
connection between the Bloomington and Indianapolis 
campuses of Indiana University with a very good network 
link. Note collaboration applications MMMV and SMMV 
are not so sensitive to network latency as the events are 
pipelined and non-masters follow master events. Here one 
is sensitive to the acceptable delay in round-trip audio for 
interactive conversations. As discussed in Uyar's thesis 
[26], this is an order of magnitude longer than the delay 
associated with visual persistence. 
 
If the Web Service model and view are placed on nearby 
machines with the message broker on one of these 
computers, we get an overhead of about 10 milliseconds 
in the transport from view (user input) to broker to model 
and back again for rendering at the view. This overhead is 
the same for both the collaborative and standalone cases. 
 

5. CONCLUSIONS 
 
The SMMV collaboration model can be used for lecturing 
in distance education; the MMMV collaboration model 
would support participatory learning. Education requires 

different mode of interaction ranging from rather passive 
fashion lecturing to highly interactive and collaborative in 
participatory learning such as joint projects. A whiteboard 
represents a good example for interactive project-based 
learning. It allows multiple people to participate 
interactively together. Joint modeling projects have the 
same structure as the whiteboard although using different 
detailed tools.  
 
We have proposed M-MVC, a universal modular design 
with messaging linkage service model that unifies support 
of desktop applications, Web applications, and Internet 
collaboration. This approach allows maximum reusability 
of existing components; use of a flexible messaging 
scheme with high scalability; automatic and effective 
collaboration with interactivity of rich Web content for 
diverse clients over heterogeneous network environments; 
finally it suggests a uniform interface for the next 
generation Web client with ubiquitous accessibility. 
Applied to education, our architecture enables new 
participatory education tools and a richer distance 
education environment.  
 
The architecture presented here is being used in our 
laboratory in several related projects looking at 
collaborative desktop and visualization tools and together 
these could enhance the  e-education environment. 
 

6. REFERENCES 
 

[1] Global Internet Statistic 
http://www.glreach.com/globstats/index.php3 

[2] W3C Web Service Description Language at 
http://www.w3.org/TR/wsdl 

[3] G. Lee, Object oriented GUI application 
development, Prentice Hall, 1994. ISBN: 0-13-
363086-2. 

[4] Community Grids Lab NaradaBrokering system 
at http://www.naradabrokering.org 

[5] Sun Microsystems Java Message Service at 
http://www.hostj2ee.com/specs/jms1_0_2-
spec.pdf 

[6] Sun Microsystems JXTA at http://www.jxta.org/ 
[7] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan 

Bulut, Shrideep Pallickara, “A Web Services 
Framework for Collaboration and 
Videoconferencing”, WACE 2003 Workshop on 
Advanced Collaborative Environments Seattle 
June 22 2003 
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/wace-submissionjune-03.pdf 

[8] Community Grids Lab Carousel project at 
http://grids.ucs.indiana.edu/ptliupages/projects/c
arousel/ 

[9] Anabas Conferencing system 
http://www.anabas.com 

[10] Xiaohong Qiu, Bryan Carpenter and Geoffrey C. 
Fox, “Internet Collaboration using the W3C 



  

Document Object Model”, Proceedings of the 
2003 International Conference on Internet 
Computing, Las Vegas June 2003 
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/collaborative_dom_conference_2003_Int_IC_
font10_without_title_page.pdf  

[11] Xiaohong Qiu, Bryan Carpenter and Geoffrey C. 
Fox,  “Collaborative SVG as A Web Service”, 
Proceedings of SVG Open, Vancouver, Canada,  
July 2003 
http://www.svgopen.org/2003/papers/Collaborati
veSVGasAWebService/#S.Bibliography 
(requires SVG viewer plug-in 
http://www.adobe.com/svg/viewer/install/main.h
tml for displaying figures) 

[12] Xiaohong Qiu, “Building Desktop Applications 
with Web Service in a Message-based MVC 
Paradigm”, IEEE 2nd International Conference 
on Web Services (ICWS 2004) pages 765-769, 
San Diego July 2004 
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/ICWS04_BuildingDesktopApplicaitonwithW
ebServicesinaMessageBasedMVCParadigm.pdf 
or 
http://dx.doi.org/10.1109/ICWS.2004.1314812  

[13] Xiaohong Qiu, Shrideep Pallickara, and Ahmet 
Uyar, "Making SVG a Web Service in a 
Message-based MVC Architecture”, in 
Proceedings of SVG Open Conference, 
September 2004, Tokyo, Japan. 
http://www.svgopen.org/2004/papers/MakingSV
GaWebServiceinaMessageBasedMVCArchitectu
re/ 

[14] W3C Scalable Vector Graphics (SVG) version 
1.0 Specification http://www.w3.org/TR/SVG/. 

[15] Apache Batik SVG Toolkit 
http://xml.apache.org/batik/ 

[16] W3C Document Object Model (DOM) level 1 
specification http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001/ 

[17] Flynn's taxonomy is a classification of computer 
architectures based on the number of streams of 
instructions and data. It is proposed by Flynn in 
1972. 
http://en.wikipedia.org/wiki/Flynn%27s_taxono
my 

[18] Single Instruction Multiple Data (SIMD) at 
http://en.wikipedia.org/wiki/SIMD 

[19] Multiple Instruction Multiple Data (MIMD) at 
http://en.wikipedia.org/wiki/MIMD 

[20] Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko, 
Sangmi Lee, Shrideep Pallickara, Marlon Pierce, 
Xiaohong Qiu, Xi Rao, Ahmet Uyar, Minjun 
Wang, Wenjun Wu, “Peer-to-Peer Grids”, 
Chapter 18 of Grid Computing: Making the 
Global Infrastructure a Reality edited by Fran 
Berman, Geoffrey Fox and Tony Hey, John 
Wiley & Sons, Chichester, England, ISBN 0-

470-85319-0, March 2003. 
http://www.grid2002.org 

[21] Sun Microsystems, Java Server Faces 
Technology, Sun Microsystems. 
http://java.sun.com/j2ee/javaserverfaces/overvie
w.html 

[22] Java Server Pages JSP for producing Java based 
dynamic web content 
http://java.sun.com/products/jsp/ 

[23] Sun Microsystems, Java Servlet Technology, 
Sun Microsystems, 
http://java.sun.com/products/servlet/index.jsp. 
Servlets allow dynamic updating of Java Servers. 

[24] Minjun Wang, Geoffrey Fox and Shrideep 
Pallickara, “A Demonstration of Collaborative 
Web Services and Peer-to-Peer Grids” to appear 
in proceedings of IEEE ITCC2004 International, 
Las Vegas April 5-7 2004. 
http://grids.ucs.indiana.edu/ptliupages/publicatio
ns/wangm_collaborative.pdf 

[25] Xiaohong Qiu. Message-based MVC 
Architecture for Distributed and Desktop 
Applications. Ph.D. thesis. EECS Department of 
Syracuse University. Spring 2005. 
http://grids.ucs.indiana.edu/~xqiu/thesis.html 

[26] Ahmet Uyar. Scalable Grid Architecture for 
Video/Audio Conferencing. Ph.D. thesis. EECS 
Department of Syracuse University. Spring 2005. 

 


