

1

Abstract—TODO.

Index Terms—TODO

I. INTRODUCTION
ESSAGE passing has been the de-facto model in
realizing distributed memory parallelism [1] where

Message Passing Interface (MPI) with its implementations such
as MPICH2 [2] and OpenMPI [3] have been successful in
producing high performance applications [4]. We use message
passing with threads [5] in our data analytics applications on
Windows High Performance Computing (HPC) environments
[6] using MPI.NET [7] and Microsoft’s Task Parallel Library
(TPL) [8]. However, the number of available Windows HPC
systems are limited and our attempts to run these on traditional
Linux based HPC clusters using Mono – a cross platform .NET
development framework – have been unsuccessful due to poor
performance. Therefore, we decided to migrate our applications
to Java for reasons 1) productivity offered by Java and its
ecosystem; and 2) emerging success of Java in HPC [9]. In this
paper, we present our experience in evaluating the performance
of our parallel deterministic annealing clustering program
(DAVS) [10] and micro benchmark results for two Java
message passing frameworks – OpenMPI with Java binding and
FastMPJ [11] – compared against native OpenMPI and
MPI.NET. The results show clear improvement of application
performance over C# with MPI.NET and near native
performance in micro benchmarks.

II. RELATED WORK
Message passing support for Java can be classified as pure

Java implementations or Java bindings for existing native MPI
libraries (i.e. wrapper implementations). Pure Java
implementations advocate portability, but may not be as
efficient as Java bindings that call native MPI (see III.D and
[11]). There are two proposed Application Programming
Interfaces (API) for Java message passing – mpiJava 1.2 [12]
and Java Grande Forum (JGF) Message Passing interface for
Java (MPJ) [13]. However, there are implementations that
follow custom API as well [9].

TODO – Grant info.

Performance of Java MPI support has been studied with
different implementations and recently in [11, 14]. The focus of
these studies is to evaluate MPI kernel operations and little or
no information given on applying Java MPI to scientific
applications. However, there is an increasing interest [15] on
using MPI with large scale data analytics frameworks such as
Apache Hadoop [16]. MR+ [17] is a framework with similar
intent, which allows Hadoop MapReduce [18] programs to run
on any cluster under any resource manager while providing
capabilities of MPI as well.

III. TECHNICAL EVALUATION
The DAVS code is about 15k lines of C# code and to evaluate

performance on Java we used a combination of commercially
available code converter [19] and carefully inspected manual
rewrites to port the C# code to Java. Furthermore, we performed
a series of serial and parallel tests to confirm correctness is
preserved during the migration, prior to evaluating
performance.

Our interest in this experiment was to compare application
performance when run on Linux based HPC clusters against
results on Windows HPC environments. We noticed from initial
runs that two of the MPI operations – allreduce, and send and
receive – contribute to the most of inter-process
communication. Therefore, we extended the evaluation by
performing micro benchmarks for these, which further
supported our choice to use Java.

A. Computer Systems
We used two Indiana University clusters, Madrid and

Tempest, and one FutureGrid [20] cluster – India, as described
below.

Tempest: 32 nodes, each has 4 Intel Xeon E7450 CPUs at
2.40GHz with 6 cores, totaling 24 cores per node; 48 GB node
memory and 20Gbps Infiniband (IB) network connection. It
runs Windows Server 2008 R2 HPC Edition – version 6.1
(Build 7601: Service Pack 1).

Madrid: 8 nodes, each has 4 AMD Opteron 8356 at
2.30GHz with 4 cores, totaling 16 cores per node; 16GB node
memory and 1Gbps Ethernet network connection. It runs Red
Hat Enterprise Linux Server release 6.5

FutureGrid (India): 128 nodes, each has 2 Intel Xeon
X5550 CPUs at 2.66GHz with 4 cores, totaling 8 cores per

Evaluation of Java Message Passing in High
Performance Data Analytics

Saliya Ekanayake, Geoffrey Fox
School of Informatics and Computing

Indiana University
Bloomington, Indiana, USA

{sekanaya, gcf}@indiana.edu

M

2

node; 24GB node memory and 20Gbps IB network connection.
It runs Red Hat Enterprise Linux Server release 5.10.

B. Software Environments
We used .NET 4.0 runtime and MPI.NET 1.0.0 for C# based

tests. DAVS Java version uses a novel parallel tasks library
called Habanero Java library from Rice University [21, 22],
which requires Java 8. Therefore, we used an early access (EA)
release – build 1.8.0-ea-b118. Early access releases may not be
well optimized, but doing a quick test with threading switched
off we could confirm DAVS performs equally well on stable
Java 7 and Java 8 EA.

There have been several message passing frameworks for
Java [23], but due to the lack of support for IB network and to
other drawbacks discussed in [11], we decided to evaluate
OpenMPI with its Java binding and FastMPJ, which is a pure
Java implementation of mpiJava 1.2 [12] specification.

OpenMPI’s Java binding [24] is an adaptation from the original
mpiJava library [25]. However, OpenMPI community has
recently introduced major changes to its API, and internals,
especially removing MPI.OBJECT type and adding support for
direct buffers in Java. These changes happened while we were
evaluating DAVS, thus we tested OpenMPI Java binding in one
of its original (nightly snapshot version 1.9a1r28881) and
updated forms (source tree revision 30301). We will refer to
these as OMPI-nightly and OMPI-trunk for simplicity.

C. MPI Micro Benchmarks
We based our experiments on Ohio MicroBenchmark

(OMB) suite [26], which is intended to test native MPI
implementations’ performance. Therefore, we implemented the
selected allreduce, and send and receive tests in all three Java
MPI flavors and MPI.NET, in order to test Java and C# MPI
implementations.

Fig. 1 presents the pseudo code for OMB test. Note the
syntax of MPI operations do not adhere to a particular language
and the number of actual parameters are cut short for clarity.
Also, depending on the language and MPI framework used, the
implementation details such as data structures used and buffer
allocation were different from one another.

Fig. 2. Performance of MPI allreduce operation

 Fig. 2 shows the results of allreduce benchmark for different
MPI implementations. These are averaged values over patterns
1x1x8, 1x2x8, and 1x4x8 where pattern format is number of
threads per process x number of processes per node x number
of nodes (i.e. TxPxN). The best performance came with C
versions of OpenMPI, but interestingly OMPI-trunk Java
performance overlaps on these indicating its near zero
overhead. The older, OMPI-nightly Java performance is near as
well, but shows more overhead than its successor. FastMPJ
performance is better than MPI.NET, but slower than OpenMPI
versions. The slowest performance came with MPI.NET, which
may be improved with further tuning, but as our focus was to
evaluate Java versions we did not proceed in this direction.

We experienced a similar pattern with MPI send and receive
(Fig. 3) where OMPI-trunk Java performance overlaps with
results from native MPI as shown in Fig. 4.

5

50

500

5000

50000
4B 16

B

64
B

25
6B 1K

B

4K
B

16
KB

64
KB

25
6K

B

1M
B

4M
B

Av
er

ag
e

tim
e

(u
s)

Message size (bytes)

MPI.NET C# in Tempest
FastMPJ Java in FG
OMPI-nightly Java FG
OMPI-trunk Java FG
OMPI-trunk C FG
OMPI-nightly C FG

Fig. 1 Pseudo code for allreduce benchmark

Input: maxMsgSize // maximum message size in bytes

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 8192 // messages to be considered large
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1000 // iterations for small messages
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 100 //iterations for large messages
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 200 // skip this many for small messages
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10 // skip this many for large messages

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = MPI_COMM_WORLD
𝑚𝑚𝑚𝑚 = MPI_Comm_rank (comm)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = MPI_Comm_size (comm)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/4] // float array –initialized to 1.0
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/4] // float array –initialized to 0.0

For 𝑖𝑖 = 1 to 𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/4
 If 𝑖𝑖 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 MPI_Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0
 For 𝑗𝑗 = 0 to 𝑗𝑗 < 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑡𝑡 = MPI_Wtime ()

MPI_Allreduce (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖
MPI_SUM,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

 If 𝑗𝑗 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+=MPI_Wtime () − 𝑡𝑡
 MPI_Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
 𝑗𝑗 = 𝑗𝑗 + 1
 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = MPI_Reduce (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, MPI_SUM,0)
 If 𝑚𝑚𝑚𝑚 == 0
 Print (𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
 𝑖𝑖 = 𝑖𝑖 ∗ 2
 MPI Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

3

Fig. 4 Performance of MPI send and receive operations

D. Application Performance
We decided to apply DAVS to the same “peak-matching”

problem [10] that its C# variant used to solve, so we could
verify accuracy and compare performance. We performed
clustering of the LC-MS data [10] in two modes – Charge2 and
Charge5 – where the former processed 241605 points and found
on average 24.5k clusters. Charge5 mode handled 16747 points
producing an average of 28k clusters. These modes exercises
different execution flows in DAVS where Charge2 is more
intense in both computation and communication than Charge5.
DAVS supports threading too, but we are still working on this
in Java versions. Therefore, we do not include a performance
comparison with threads in this paper.

Fig. 5 DAVS Charge5 performance

Fig. 6 DAVS Charge5 speedup

Fig. 5 and Fig. 6 show Charge5 performance and speedup
under different MPI libraries. OMPI-trunk happens to give the
best performance and it achieves nearly double the performance
in all cases compared to MPI.NET. Charge2 performance and
speedup show similar results as given in Fig. 7 and Fig. 8. Note
we could not test pattern 1x8x1 due to insufficient memory.

Fig. 7 DAVS Charge2 performance

1

100

10000

0B 2B 8B 32
B

12
8B

51
2B 2K

B

8K
B

32
KB

12
8K

B

51
2K

BAv
er

ag
e

tim
e

(u
s)

Message size (bytes)

MPI.NET C# in Tempest
FastMPJ Java in FG
OMPI-nightly Java FG
OMPI-trunk Java FG
OMPI-trunk C FG

0

0.2

0.4

0.6

0.8

1

1.2

1x1x1 1x1x2 1x2x1 1x1x4 1x4x1 1x1x8 1x2x4 1x4x2 1x8x1
Ti

m
e

in
 h

ou
rs

TxPxN

MPI.NET
OMPI-nightly
OMPI-trunk

1

2

3

4

5

6

1x1x1 1x1x2 1x2x1 1x1x4 1x4x1 1x1x8 1x2x4 1x4x2 1x8x1

Sp
ee

du
p

TxPxN

MPI.NET
OMPI-nightly
OMPI-trunk

0

2

4

6

8

10

12

1x1x1 1x1x2 1x2x1 1x1x4 1x4x1 1x1x8 1x2x4 1x4x2

Ti
m

e
in

 h
ou

rs

TxPxN

OMPI-nightly
OMPI-trunk

Fig. 3 Pseudo code for send and receive benchmark

Input: maxMsgSize // maximum message size in bytes

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 8192 // messages to be considered large
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1000 // iterations for small messages
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 100 //iterations for large messages
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 200 // skip this many for small messages
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10 // skip this many for large messages
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = MPI_COMM_WORLD
𝑚𝑚𝑚𝑚 = MPI_Comm_rank (comm)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = MPI_Comm_size (comm)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] // byte array –initialized to 1.0
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] // byte array –initialized to 0.0

For 𝑖𝑖 = 0 to 𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 If 𝑖𝑖 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 MPI_Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0
 If 𝑚𝑚𝑚𝑚 == 0
 For 𝑗𝑗 = 0 to 𝑗𝑗 < 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 If 𝑗𝑗 == 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑡𝑡 = MPI_Wtime ()

MPI_Send (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑖𝑖,1,1)
MPI_Recv (r𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑖𝑖,1,1)

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+=MPI_Wtime () − 𝑡𝑡
 Else If 𝑚𝑚𝑚𝑚 == 1
 For 𝑗𝑗 = 0 to 𝑗𝑗 < 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 MPI_Recv (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖,0,1)

MPI_Send sr𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑖𝑖,0,1)
 If 𝑚𝑚𝑚𝑚 == 0
 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/2 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 Print (𝑖𝑖, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
 𝑖𝑖 = 𝑖𝑖 == 0 ? 1 ∶ 𝑖𝑖 ∗ 2
 MPI_Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

4

Fig. 8 DAVS Charge2 speedup

SUMMARY
 Scientific applications written in C, C++, and Fortran have
embraced MPI since its inception and various attempts have
been made over the years to establish this relationship for
applications written in Java. However, only few
implementations such as OpenMPI and FastMPJ are in active
development with support for fast interconnect systems.
OpenMPI in particular has recently introduced improvements
to its Java binding to close the gap between Java and native
performance. The kernel benchmarks we performed agree with
this and depicts latest OpenMPI Java binding as the best among
selected Java MPI implementations.
 Our aim of this effort has been to migrate existing C# based
code to Java in hope of running on traditional HPC clusters
while utilizing the rich programming environment of Java. The
initial runs of DAVS show promising performance and we
expect to complement this work by adding support for threads
in near future.

REFERENCES
[1] LUSK, E. and YELICK, K. LANGUAGES FOR HIGH-PRODUCTIVITY
COMPUTING: THE DARPA HPCS LANGUAGE PROJECT. Parallel
Processing Letters, 17, 01 2007), 89-102.
[2] Laboratory, A. N. MPICH2,. City.
[3] Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R., Daniel, D.,
Graham, R. and Woodall, T. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. Springer Berlin Heidelberg, City, 2004.
[4] Gropp, W. Learning from the Success of MPI. In Proceedings of the
Proceedings of the 8th International Conference on High Performance
Computing (2001). Springer-Verlag, [insert City of Publication],[insert 2001 of
Publication].
[5] Ekanayake, S. Survey on High Productivity Computing Systems (HPCS)
Languages. Pervasive Technology Institute, Indiana University, Bloomington,
2013.
[6] Qiu, J., Beason, S., Bae, S.-H., Ekanayake, S. and Fox, G. Performance of
Windows Multicore Systems on Threading and MPI. In Proceedings of the
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (2010). IEEE Computer Society, [insert City of
Publication],[insert 2010 of Publication].
[7] Gregor, D. and Lumsdaine, A. Design and implementation of a high-
performance MPI for C\# and the common language infrastructure. In
Proceedings of the Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming (Salt Lake City, UT, USA,
2008). ACM, [insert City of Publication],[insert 2008 of Publication].
[8] Daan Leijen, J. H. Optimize Managed Code For Multi-Core Machines. City.
[9] Taboada, G. L., Touri, J., #241, Ram, #243 and Doallo, n. Java for high
performance computing: assessment of current research and practice. In
Proceedings of the Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java (Calgary, Alberta, Canada,
2009). ACM, [insert City of Publication],[insert 2009 of Publication].
[10] Fox, G., Mani, D. R. and Pyne, S. Parallel deterministic annealing
clustering and its application to LC-MS data analysis. IEEE, City, 2013.

[11] Expósito, R., Ramos, S., Taboada, G., Touriño, J. and Doallo, R. FastMPJ:
a scalable and efficient Java message-passing library. Cluster
Computing(2014/02/06 2014), 1-20.
[12] Bryan Carpenter, G. F., Sung-Hoon Ko and Sang Lim. mpiJava 1.2: API
Specification. 1999.
[13] Carpenter, B., Getov, V., Judd, G., Skjellum, A. and Fox, G. MPJ: MPI-
like message passing for Java. Concurrency: Practice and Experience, 12, 11
2000), 1019-1038.
[14] Taboada, G. L., Tourino, J. and Doallo, R. Performance analysis of Java
message-passing libraries on fast Ethernet, Myrinet and SCI clusters. City,
2003.
[15] Squyres, J. Resurrecting MPI and Java. City, 2012.
[16] Tom White Hadoop: The Definitive Guide. Yahoo Press; Second Edition
edition, 2010.
[17] Ralph H. Castain, W. T. MR+ A Technical Overview. 2012.
[18] Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on
Large Clusters. Sixth Symposium on Operating Systems Design and
Implementation2004), 137-150.
[19] Inc., T. S. S. C# to Java Converter. City.
[20] von Laszewski, G., Fox, G. C., Fugang, W., Younge, A. J., Kulshrestha,
A., Pike, G. G., Smith, W., Vo, x, ckler, J., Figueiredo, R. J., Fortes, J. and
Keahey, K. Design of the FutureGrid experiment management framework.
City, 2010.
[21] Cav, V., #233, Zhao, J., Shirako, J. and Sarkar, V. Habanero-Java: the new
adventures of old X10. In Proceedings of the Proceedings of the 9th
International Conference on Principles and Practice of Programming in Java
(Kongens Lyngby, Denmark, 2011). ACM, [insert City of Publication],[insert
2011 of Publication].
[22] Sarkar, V. a. I., Shams Mahmood HJ Library. City.
[23] Taboada, G. L., Ramos, S., Exp, R. R., #243, sito, Touri, J., #241, Ram,
#243 and Doallo, n. Java in the High Performance Computing arena: Research,
practice and experience. Sci. Comput. Program., 78, 5 2013), 425-444.
[24] Project, T. O. M. FAQ: Where did the Java interface come from? , City.
[25] Baker, M., Carpenter, B., Fox, G., Hoon Ko, S. and Lim, S. mpiJava: An
object-oriented java interface to MPI. Springer Berlin Heidelberg, City, 1999.
[26] Laboratory, T. O. S. U. s. N.-B. C. and (NBCL) OMB (OSU Micro-
Benchmarks). City.

1

2

3

4

5

1x1x1 1x1x2 1x2x1 1x1x4 1x4x1 1x1x8 1x2x4 1x4x2

Sp
ee

du
p

TxPxN

OMPI-nightly
OMPI-trunk

	I. INTRODUCTION
	II. Related Work
	III. Technical Evaluation
	A. Computer Systems
	B. Software Environments
	C. MPI Micro Benchmarks
	D. Application Performance

	Summary
	References

