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I. INTRODUCTION 
ESSAGE passing has been the de-facto model in 
realizing distributed memory parallelism [1] where 

Message Passing Interface (MPI) with its implementations such 
as MPICH2 [2] and OpenMPI [3] have been successful in 
producing high performance applications [4]. We use message 
passing with threads [5] in our data analytics applications on 
Windows High Performance Computing (HPC) environments 
[6] using MPI.NET [7] and Microsoft’s Task Parallel Library 
(TPL) [8]. However, the number of available Windows HPC 
systems are limited and our attempts to run these on traditional 
Linux based HPC clusters using Mono – a cross platform .NET 
development framework – have been unsuccessful due to poor 
performance. Therefore, we decided to migrate our applications 
to Java for reasons 1) productivity offered by Java and its 
ecosystem; and 2) emerging success of Java in HPC [9]. In this 
paper, we present our experience in evaluating the performance 
of our parallel deterministic annealing clustering program 
(DAVS) [10] and micro benchmark results for two Java 
message passing frameworks – OpenMPI with Java binding and 
FastMPJ [11] – compared against native OpenMPI and 
MPI.NET. The results show clear improvement of application 
performance over C# with MPI.NET and near native 
performance in micro benchmarks. 

II. RELATED WORK 
Message passing support for Java can be classified as pure 

Java implementations or Java bindings for existing native MPI 
libraries (i.e. wrapper implementations). Pure Java 
implementations advocate portability, but may not be as 
efficient as Java bindings that call native MPI (see III.D and 
[11]). There are two proposed Application Programming 
Interfaces (API) for Java message passing – mpiJava 1.2 [12] 
and Java Grande Forum (JGF) Message Passing interface for 
Java (MPJ) [13]. However, there are implementations that 
follow custom API as well [9]. 

TODO – Grant info. 

Performance of Java MPI support has been studied with 
different implementations and recently in [11, 14]. The focus of 
these studies is to evaluate MPI kernel operations and little or 
no information given on applying Java MPI to scientific 
applications. However, there is an increasing interest [15] on 
using MPI with large scale data analytics frameworks such as 
Apache Hadoop [16]. MR+ [17] is a framework with similar 
intent, which allows Hadoop MapReduce [18] programs to run 
on any cluster under any resource manager while providing 
capabilities of MPI as well.  

III. TECHNICAL EVALUATION 
The DAVS code is about 15k lines of C# code and to evaluate 

performance on Java we used a combination of commercially 
available code converter [19] and carefully inspected manual 
rewrites to port the C# code to Java. Furthermore, we performed 
a series of serial and parallel tests to confirm correctness is 
preserved during the migration, prior to evaluating 
performance.  

Our interest in this experiment was to compare application 
performance when run on Linux based HPC clusters against 
results on Windows HPC environments. We noticed from initial 
runs that two of the MPI operations – allreduce, and send and 
receive – contribute to the most of inter-process 
communication. Therefore, we extended the evaluation by 
performing micro benchmarks for these, which further 
supported our choice to use Java. 

A. Computer Systems 
We used two Indiana University clusters, Madrid and 

Tempest, and one FutureGrid [20] cluster – India, as described 
below. 

Tempest: 32 nodes, each has 4 Intel Xeon E7450 CPUs at 
2.40GHz with 6 cores, totaling 24 cores per node; 48 GB node 
memory and 20Gbps Infiniband (IB) network connection. It 
runs Windows Server 2008 R2 HPC Edition – version 6.1 
(Build 7601: Service Pack 1). 

Madrid: 8 nodes, each has 4 AMD Opteron 8356 at 
2.30GHz with 4 cores, totaling 16 cores per node; 16GB node 
memory and 1Gbps Ethernet network connection. It runs Red 
Hat Enterprise Linux Server release 6.5 

FutureGrid (India): 128 nodes, each has 2 Intel Xeon 
X5550 CPUs at 2.66GHz with 4 cores, totaling 8 cores per 
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node; 24GB node memory and 20Gbps IB network connection. 
It runs Red Hat Enterprise Linux Server release 5.10. 

B. Software Environments 
We used .NET 4.0 runtime and MPI.NET 1.0.0 for C# based 

tests. DAVS Java version uses a novel parallel tasks library 
called Habanero Java library from Rice University [21, 22], 
which requires Java 8.  Therefore, we used an early access (EA) 
release – build 1.8.0-ea-b118. Early access releases may not be 
well optimized, but doing a quick test with threading switched 
off we could confirm DAVS performs equally well on stable 
Java 7 and Java 8 EA.  

There have been several message passing frameworks for 
Java [23], but due to the lack of support for IB network and to 
other drawbacks discussed in [11], we decided to evaluate 
OpenMPI with its Java binding and FastMPJ, which is a pure 
Java implementation of mpiJava 1.2 [12] specification. 

OpenMPI’s Java binding [24] is an adaptation from the original 
mpiJava library [25].  However, OpenMPI community has 
recently introduced major changes to its API, and internals, 
especially removing MPI.OBJECT type and adding support for 
direct buffers in Java. These changes happened while we were 
evaluating DAVS, thus we tested OpenMPI Java binding in one 
of its original (nightly snapshot version 1.9a1r28881) and 
updated forms (source tree revision 30301). We will refer to 
these as OMPI-nightly and OMPI-trunk for simplicity.  

C. MPI Micro Benchmarks  
We based our experiments on Ohio MicroBenchmark 

(OMB) suite [26], which is intended to test native MPI 
implementations’ performance. Therefore, we implemented the 
selected allreduce, and send and receive tests in all three Java 
MPI flavors and MPI.NET, in order to test Java and C# MPI 
implementations.  

Fig. 1 presents the pseudo code for OMB test. Note the 
syntax of MPI operations do not adhere to a particular language 
and the number of actual parameters are cut short for clarity. 
Also, depending on the language and MPI framework used, the 
implementation details such as data structures used and buffer 
allocation were different from one another.  

 
Fig. 2.  Performance of MPI allreduce operation 

 Fig. 2 shows the results of allreduce benchmark for different 
MPI implementations. These are averaged values over patterns 
1x1x8, 1x2x8, and 1x4x8 where pattern format is number of 
threads per process x number of processes per node x  number 
of nodes (i.e. TxPxN). The best performance came with C 
versions of OpenMPI, but interestingly OMPI-trunk Java 
performance overlaps on these indicating its near zero 
overhead. The older, OMPI-nightly Java performance is near as 
well, but shows more overhead than its successor. FastMPJ 
performance is better than MPI.NET, but slower than OpenMPI 
versions. The slowest performance came with MPI.NET, which 
may be improved with further tuning, but as our focus was to 
evaluate Java versions we did not proceed in this direction. 

We experienced a similar pattern with MPI send and receive 
(Fig. 3) where OMPI-trunk Java performance overlaps with 
results from native MPI as shown in Fig. 4. 
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Fig. 1  Pseudo code for allreduce benchmark 

Input: maxMsgSize // maximum message size in bytes 
  
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 8192 // messages to be considered large  
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1000 // iterations for small messages 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 100 //iterations for large messages 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 200 // skip this many for small messages 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10 // skip this many for large messages 
   
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = MPI_COMM_WORLD 
𝑚𝑚𝑚𝑚 = MPI_Comm_rank (comm) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = MPI_Comm_size (comm) 
  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/4] // float array –initialized to 1.0  
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/4] // float array –initialized to 0.0 
  
For 𝑖𝑖 = 1 to 𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/4  
 If 𝑖𝑖 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 MPI_Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0 
 For 𝑗𝑗 = 0 to 𝑗𝑗 < 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 𝑡𝑡 = MPI_Wtime ( ) 

MPI_Allreduce (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖  
MPI_SUM,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

 If 𝑗𝑗 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+=MPI_Wtime ( ) −  𝑡𝑡  
 MPI_Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
 𝑗𝑗 = 𝑗𝑗 + 1 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  MPI_Reduce (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, MPI_SUM,0)  
 If 𝑚𝑚𝑚𝑚 == 0 
  Print (𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 
  𝑖𝑖 = 𝑖𝑖 ∗ 2 
 MPI Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
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Fig. 4  Performance of MPI send and receive operations 

D. Application Performance 
We decided to apply DAVS to the same “peak-matching” 

problem [10] that its C# variant used to solve, so we could 
verify accuracy and compare performance. We performed 
clustering of the LC-MS data [10] in two modes – Charge2 and 
Charge5 – where the former processed 241605 points and found 
on average 24.5k clusters. Charge5 mode handled 16747 points 
producing an average of 28k clusters. These modes exercises 
different execution flows in DAVS where Charge2 is more 
intense in both computation and communication than Charge5. 
DAVS supports threading too, but we are still working on this 
in Java versions. Therefore, we do not include a performance 
comparison with threads in this paper. 

 
Fig. 5  DAVS Charge5 performance 

 
Fig. 6  DAVS Charge5 speedup 

Fig. 5 and Fig. 6 show Charge5 performance and speedup 
under different MPI libraries. OMPI-trunk happens to give the 
best performance and it achieves nearly double the performance 
in all cases compared to MPI.NET. Charge2 performance and 
speedup show similar results as given in Fig. 7 and Fig. 8. Note 
we could not test pattern 1x8x1 due to insufficient memory. 

 
Fig. 7  DAVS Charge2 performance 
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Fig. 3  Pseudo code for send and receive benchmark 

Input: maxMsgSize // maximum message size in bytes 
  
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 8192 // messages to be considered large  
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1000 // iterations for small messages 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 100 //iterations for large messages 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 200 // skip this many for small messages 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10 // skip this many for large messages 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = MPI_COMM_WORLD 
𝑚𝑚𝑚𝑚 = MPI_Comm_rank (comm) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = MPI_Comm_size (comm) 
  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] // byte array –initialized to 1.0  
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] // byte array –initialized to 0.0 
  
For 𝑖𝑖 = 0 to 𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
 If 𝑖𝑖 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 MPI_Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.0 
 If 𝑚𝑚𝑚𝑚 == 0 
 For 𝑗𝑗 = 0 to 𝑗𝑗 < 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 If 𝑗𝑗 == 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 𝑡𝑡 = MPI_Wtime ( ) 

MPI_Send (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑖𝑖,1,1) 
MPI_Recv (r𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑖𝑖,1,1) 

  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+=MPI_Wtime ( ) −  𝑡𝑡  
 Else If 𝑚𝑚𝑚𝑚 == 1 
 For 𝑗𝑗 = 0 to 𝑗𝑗 < 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 MPI_Recv (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖,0,1) 

MPI_Send sr𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑖𝑖,0,1) 
 If 𝑚𝑚𝑚𝑚 == 0 
  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/2 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
  Print (𝑖𝑖, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 
  𝑖𝑖 = 𝑖𝑖 == 0 ? 1 ∶  𝑖𝑖 ∗ 2 
 MPI_Barrier (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 



 
 

4 

 
Fig. 8  DAVS Charge2 speedup 

SUMMARY 
 Scientific applications written in C, C++, and Fortran have 
embraced MPI since its inception and various attempts have 
been made over the years to establish this relationship for 
applications written in Java. However, only few 
implementations such as OpenMPI and FastMPJ are in active 
development with support for fast interconnect systems. 
OpenMPI in particular has recently introduced improvements 
to its Java binding to close the gap between Java and native 
performance. The kernel benchmarks we performed agree with 
this and depicts latest OpenMPI Java binding as the best among 
selected Java MPI implementations. 
 Our aim of this effort has been to migrate existing C# based 
code to Java in hope of running on traditional HPC clusters 
while utilizing the rich programming environment of Java. The 
initial runs of DAVS show promising performance and we 
expect to complement this work by adding support for threads 
in near future. 
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