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ABSTRACT

Resource description framework, RDF, is a stantiarguage model for representing semantic data.
As the concept of Semantic Web becomes more vidtibeability to retrieve and exchange semantic
data will become increasingly more important. Effic management of RDF data is one of the key
research issues in Semantic Web; consequently, RBXffymanagement systems have been proposed
with data storage architectures and query procgsdgorithms for data retrieval. However, mostha t
proposed approaches require many join operatioas résult in the unnecessary processing of
intermediate results for SPARQL queries. The additi processing becomes substantial as the RDF
data volume is increased. In this paper, we proposaficient structural index and a query optimine
process queries without join operations. Empirggderimental results show that our proposed system
outperforms conventional query processing appraackigch as Jena, up to 79% in terms of query
processing time by reducing the volume of unnecgsstermediate results.

Keywords: RDF, query optimization, RDF data management, SPARBQucture index

1. Introduction

As the Semantic Web becomes more viable, the ahilitetrieve and exchange information through
a Resource Description FrameworkeEource Description Framework, 2P1RDF, becomes
increasingly important. This data format is curhentceiving interest from both researchers as a=l|
business enterprises. A functional Semantic Webradgjuire efficient and effective methods to store
and retrieve large volumes of data. However, mampalgirge volumes of RDF data (up to billions of
triples) is a challenging issue. The two main adatgagement issues in Semantic Webgsanzadeh et
al., 2012 are as follows. The first issue is related t® ithprovement of performance, scalability and
guery processing to manage large volumes of RD& d&ie second issue is associated with increasing
RDF data interoperability to enhance and utilizen&etic Web information with optimized inference
engines. To solve these issues, many RDF data rearea system have been proposed that include
data storage architectures and query processinyithigis. Currently, researchers are primarily
focusing on two perspectives to optimize RDF sterégr query processing: relation-based and
graph-based. From the relation-based perspect€, data is just a particular type of relationaledat
and already known relational database technoqu&siiig, indexing and procesing queires are reused
and customized for RDF datégkr & Al-Naymat, 2004Schmidt et al., 2009 Graph based
approachesHonstrom et al., 2003ry to store RDF data without sacreficing itdhrgraph characters.
For example, navigation in RDF graph is suppoitethis approach since it views RDF data as a
classical graph. Typical queries are pattern magshithat find a certain graph. Among these
perspectives, the structure index in graph-basesppetive is considered to be a promising approach
for solving issues related to complex query grapihe perspective considers RDF data as a directed
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edge-labeled graph and the summary of the grappigesented as a structure index where the certain
nodes are merged while maintaining all edges (et al., 201p.

Within the research area of RDF data managemeft stiticture indexes, we are interested in
identifying methods to efficiently store and reteeRDF data via SPARQL querieSRARQL 1.1
Query Language, cited in 20)L3For efficient RDF data storage and retrievdk required to improve
the response time for query processing. Specificdlta indexing and query optimization should be
addressed. We conducted preliminary study to firelation between query optimization through RDF
data indexing and query processing time. Its resntticates that 1) the more optimized a querthis,
less time is required to find a matching answer 2nduery efficiency plays an important role when
dealing with large scale data.

To evaluate query, most of recent approaches vesisub-graphs (i.e. RDF data) for each triple
pattern in the queryZpu et al., 201)L And then, the RDF data are joined (merged)nd & matching
answer. Thus, the number of join operations in@g&gth the number of triple patterns retrievedsTh
approach results in a large number of unnecességyniediate data for each query and requires a
substantial amount of time to generate and prodats that will not contribute to the query results.
When the RDF dataset is scaled up, the volumetefrirediate results can have a significant effect on
qguery performance. Thus, it is needed to minimiee damount of useless intermediate data obtained
during query evaluation.

In this paper, we propose a system that uses ataeture index and an effective query optimizer
to solve the challenges of data indexing and qoetimization, respectively. A new structural index
that stores the RDF data source with key-valueadspted to enhance efficient data storage and
retrieval for SPARQL query processing. RDF dataekidg is done “offline” only once before users
make queries. For query processing, an effectiegygoptimization mechanism is proposed that has 1)
an execution plan based on the query's patternl¢liatages our indexing schema and 2) a query
processing mechanism that merges matching dataveayy eevaluation step and reduces invalid
intermediate results. Query optimization is donalifte” and enhances the query processing
performance. Our empirical experiments show thatgprocessing performance improves up t0o79%
for simple queries and about 50% for complex q@eniith 8 triple patterns.

The rest of this paper is organized as followstiBe@ introduces RDF and SPARQL queries as
well as several related works. In section 3, wewslo overview description of our system. Our
indexing schema is also discussed to clarify hovsteee RDF triples. Then we describe the execution
plan and algorithm for query processing. In sectipthe experimental setup is discussed, followed b
experimental results. Finally, we provide a sumneargt define our future work in section 5.

2. Background and Related Works

2.1 RDF and SPARQL

RDF is known as a standard language model for septing Semantic Web data. The proliferation
of RDF data on the Web increases as increasingnadiof useful information are represented, queried
and transformed across social netwofksr( Martin & Gutierrez, 2009In RDF, data is usually stored
as statements in terms of triplesupject, predicate, objg¢twhich is similar to entity representation
{ entity, property, value Subjects and predicates in triples are URIs wilgects can be either URIs or
literal values. An example of RDF data is preseiretiable 1.

Table 1. Example ofRDF data triples

Subj ect Predicate Object
id123 foaf : name Jon Foobar
id123 rdf : type foaf : Agen
id123 foaf : weblog http://foobar.xx/blog
id456 rdf : type foaf : Agent
http://foobar.xx/blog.rdf  foaf : maker id123
http://foobar.xx/blog.rdf  foaf : maker id456

http://foobar.xx/blog rdfs:seeAlso  http://foobarbog.rdf




SPARQL is a query language and protocol for reinig\wdata in RDF repositories. Its syntax
similar to SQL, thus it basicallgontains two main clausesg., SELECT and WHERE. THeELECT
clause identifies the variablésat will appear in the query results. TWHERE clause provides tt
basic graph pattern to match against the data gWe consider four disjoint sets (variables),U
(URIs), B (blank nodes) and (literals).

Almost every SPARQL quergontairs a set of triple patterns called a basic graph pa A basic
graph patternBGP, is a finite set of pattern<py, tp,, ..}, in which eachtp is a triple

(s,p,o)0(vOU OB)x(VOU)x(VOuOBOL)

A BGP and SPARQL query processiis as follows: the SPARQL query is formed by takihg
description of what the usersiterest as variableA BGP in the WHERE clause the core ofall
SPARQL queriesgnd it identifies a subgraph of the RDF « The subgraph that is a set of varia
mappings is evaluated lyatching the triple patterns against the tripleienRDF dataTheresult of
the BGP processing is then a RDfamh equivalent to the subgr: that may be substituted for t
variables.Variables can occur in multiple patte, thus join operations are requireditentify all
possible variable bindings that satisfy the givattgyns The queryreturns the info as an RDF gra
that binds with the variables.

An example BGP of 8PARQL quenyis shown inFigure 1(a) along withthe correspondir query
graph (inFigure 1(b)) that contains three triple patterrThe query retrievesformation from the
above RDF data graphrable 1 andmean<‘Find the person and name with a blog tit{#dle’)”. The
answer for the query in this case has only oneibin(?person id123) and Pname “Jon Foobar”

SELECT ?person ?name

WHERE { foaf-weblog ofoy100 | de:title
?person foaf:name ?name. 1
?person foaf:weblog ?blog. ?person title
?blog dc:title “title”

} foaf-name ?name

(@) A SPARQL query (b) The corresponding query graph

Fig. 1 Example query graph

2.2 RDF Data Management

There are two main approachto dealing with the storage and retrieval RDF dat:
relational-based and grajased. In relation-based database systems (RDBM®&)RDF storage
RDF triples are stored in tables (SEable 1) as in traditional RDBMS. However, thables in this
perspective do not have any relations or consgdntwee them. There are several soluti, each
with their own pros and cons. Firgiple stor¢ (Harris & Gibbins, 200B(Carroll et al., 200¥stores ont
single giant table (as ihable 1) for all the IDs of triples, but usiminor tables for indexingesource:
and literals of triples. There are sobenefits ti this approach. One of the benefitshat minor table
help to minimize storage requirememsother advanta( to use this approach is ththe number o
tables is manageable, allowing thealmse to be easily manipule (e.g.,insert, update,... datsOn
the other handsince every single triple pattern must be searohnettie large table, look up times car
excessive.

In the property table approaohJeni (Wilkinson, 200§(Nitta et al., 201} each table stores a gro
of triples whose predicates relate to a certainctop concef (e.g., movie awards’ info ifable 2).
Properties are classified into identical tablegasfous concepts. Ttbiggest benefit othis solution is
that the query can be executed via a simple seleciperator if all properties in a query are lod:
inside a single property tabll contras, an excessive number of NULL valuesn be returned f



properties that are not contained in the tabletheamore, if the query requires data from more thaa
property table, multiple union and join operatiovi be required, making the query processing both
complex and time-consuming.

Table 2. A property table with 1 subject and its predisate

Subject Type Name Country
ID1 MusicAward “XYz” “uvw”
ID2 MovieAwarc “ABC” “def”
ID3 BestActor “LMN” NULL
ID4 BestSong NULL “opq”

In vertical partitioning Abadi et al., 200 all triples with the same predicate are stored table
named using that predicate. Every predicate tabigains two columns, one for the subjects and
another for the objects. For those triple patt@orgtaining bounded predicates, it is easy to firel t
predicate tables to retrieve the appropriate siplegardless of the data volume. However, the eumb
of tables is proportional to the number of progartiConsequently, many tables may be required if a
large number of predicates are used that appeaoank or a few timesgigure 2 shows some example
predicate tables.

Title Copyright L anguage
ID1 | “XYZ” ID1 | 2001 ID2 | “French”
ID2 | “ABC” ID2 | 1985 ID3 | “English”
ID3 | “MNO” ID4 | 1995
ID4 | “DEF” ID5 | 2004
ID5 | “GHI"

Fig. 2 Vertical partitioning approach example (three pratés represented by three tables)

Atre et al. (2010also use a relation-based approach with BitMatatrix of bitmaps that is used to
reduce the index size. Based on the compressegdddiata, lightweight semi-join operations are used
for query processing. This approach helps to retheegolume of intermediate data required to preces
queries. The approach does not, however, reduaedtuired number of join operations.

RDF-3X (Neumann & Weikum, 20J)Gstores all triples in a single table with comgezsindexes of
clustered B+-trees. The table is maintained wlitkia possible permutations of subject (S), pratic
(P) and object (O). With sophisticated join plamnand fast merge joins, the RDF-3X approach can
perform a single index scan and then start proocgdsom any literal/URI position in the pattern.
However, this approach creates redundant indexeésvaan the size of the index is comparable to that
of the data source, the increase in data storagereenents can be significant. The authors optimize
join orderings and use an efficient query plan watldedicated cost-model, which improves the
selectivity estimation accuracy for joins on veayge RDF graphs. However, indexing and processing
gueries against a whole data source still requii@sy join operations. When the RDF data is incriase
join operations are used to produce many duplicateduseless intermediate results, increasing query
response time.

From the graph-based perspective, RDF data is deresl as a graph with directed edges and
vertices fngles & Gutierrez, 2005 There are many algorithms and solutions rel&tegtaph theory
that can be applied herétan, Ladwig & Rudolph (201reate an index graph on whole graph data
that serves as a revised/summary graph for thestatece graph. The summary graph contains the
extension nodes of the original nodes which hage#me structure as in the source graph. For eeampl
Figure 3 shows the index graph of a source graph in whighitems (B ., i1, iz, ...) inside the
rectangles are its nodes and the labels (“nameajrKsAt”,...) are its edges. Node and p have same
value (29) of predicate “age”, hence they are geduipto extension node;Ehode { and } both have
name “AlIFB” so they are grouped into extension né&geand so on. To process the query, the
algorithm finds the matched index graph with quaaiterns using the isomorphism of two graphs. For
each of the matched triple patterns in a queryatperithm retrieves the matched triples in a dettas



The triples are then combined to get the final guesults. With this mechanism, the structures are
optimally indexed when the graph data has a sirstlarcture. In addition, the diverse graph data may
be very large. In this case, the index graph msy bk very large with limited utility.

Fig. 3 A graph index of graph data in R@fran et al., 201p

The authors in dipLODocus/\(ylot et al., 201) use a hybrid approach for indexing data with a
cluster manager (property table) and a templatédisinverted list of clusters for a literal vajuidence,
dipLODocus can respond to both triple pattern easeand analytic queries efficiently. The approach
focuses on finding and processing molecule quetiepes. With complex queries, however, to the
approach must join many clusters, which requireauge of redundant intermediate data.

Picalausa et al. (2018se a similar method for indexing RDF triplestesapproach proposed here.
There are, however, two fundamental differenceswéen their approach and ours. FiFstalausa et al.
(2012) consider two triples as common if there existequality type in which they have the same
subject, predicate, or object, and then group thrgdes into index blocks. By looking at this sttural
index, they can prune triples that do not realiwedesired equality type. In the approach propbseg],
only the subject and object are considered, anglthiel query's patterns, not RDF triples, are afplie
Consequently, when the RDF graph source has divEtsewith just a few triples sharing common
values, structure index proposedrigalausa et al. (2018 of limited utility. Second, they still need to
join the pattern matches to obtain the final result

The query processing approachZefing et al. (2013js also similar to the method proposed here.
Zeng et al. (2013puse a sequence of patterns in which consecutitterpa have a common item
(described in details in next section). Since therigs already contain a sequence of patternsipteult
patterns can be processed quickly through graploetpn. However, in some cases only a partial
sequence of patterns from the query's patternsbeabuilt. Consequently, this algorithm is only
applicable when all the patterns in a query caimbued into a sequence of patterns. For exampule fr
the below list of patterns,

tp, = (?a pl b)
tps = (?e p2 ?d)
tp. = (?a p3 ?c)
tps = (?c p4 7€)
tps = (?d p5 ?f)
tps = (?e p6 g),
a sequence for all patterns cannot be built. Onibeopossible sequences is
tp, = (?aplb)
tp. = (?ap3?0)



tps = (?cp4?¢)

tps = (?ep2?d)

tps = (7d p5 ?f),
where the tp= (?e p6 ) is left out. The approach proposed inpayrer addresses this problem by
finding the longest sequence within the patterns, then appending the remaining patterns to this
sequence. Moreover, after using the exploration pafind matches for the sequence of patterns, a
final join operation is required to assemble thevaer. The proposed approach does not require this
final join operation. At each step of matching, @heck the valid binding of a pattern for the whole
graph.

Although each of the related works above presenisigue solution for storage with indexes and
guery processing, many share a similar problem:riggieare not optimized for processing.
Consequently, many irrelevant intermediate resates created. The idea proposed in this paper
overcomes this issue by generating an executiom folathe query, which reduces the intermediate
results substantially. In the following sectiorstauctural index for RDF data storage is descrddedg
with development of a query execution plan for migting query processing.

3. Data Indexing and Query Optimization

In this section, we describe our system in detadldiscuss potential implementation issues that may
arise during implementation. First, we provide gargiew of the system, including the component and
their interactions. Next, the main contributiongtod paper, the RDF data indexer and query optimize
are discussed. We show that our storage systenswatk key-value based structural indexes and an
algorithm to build query execution plans. Finalke elaborate on the query processor to demonstrate
how the matching answer of a query is found usmgxecution plan

3.1 System Overview
43
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Fig. 4 System architecture for full query processing



As discussed in Section 1, the challenges of ROk melexing and query optimization must be
addressed to achieve high performance during quegessing and data retrieval. Query optimization
reduces response times for finding matching ansv@mghe other hand, RDF data indexing enhances
query efficiency by facilitating data retrieval Witarge scale data.

We propose an efficient architecture to addressetieballenges while supporting full query search.
The architecture is depicted igure 4. Our RDF Data Indexer supports efficient RDF dataeval
using a structure index schema stored in a keyeMafised system. A general SPARQL Query Engine
component receives SPARQL queries from users, psesgthem against the RDF triples in key-value
storage and then returns the answer to users.

The proposed SPARQL Query Engine has three subaoenpg Query Parser, Query Optimizer
and Query Processor. The Query Optimizer is a kayufe of our system; it optimizes the SPARQL
queries before processing them in the Query ProceBBis section provides a high level descriptibn
our architecture and introduces a general pictfirthe® overall approach. We briefly describe the
system’s workflow as follows:

- Query Parser. This subcomponent obtains input queries from useasacts their BGPs for the
Query Optimizer and creates a variable list for gnery processing step. In this paper, we only
consider the basic SPARQL queries with simple dapse. SELECT and WHERE clauses. The
proposed system can support other operators, SUORBER, FILTER, and OPTIONAL, but these
operators are beyond the scope of this paper dhtendlemonstrated in future work.

- Query Optimizer. This subcomponent generates an execution plahdajuery. Query processing
is optimized by evaluating the query patterns irefiicient manner. Triple patterns are arranged in
an order such that the matching result of a patteraes as input for the next pattern in the plan.
Since the result of each pattern is checked foidialat every processing step, the number of
intermediate results is substantially reduced.

- Query Processor. The Query Processor’s tasks consist of finding matcpoints with the query’s
variables, verifying the matching points and thembining them to retrieve the full answer for the
whole query. The use of an execution plan allovesehtasks to be implemented more easily. We
process a query through the use of a hash tablehwiaps nodes between the query and matched
data. By reducing the volume of intermediate ddia,query processing performance is improved.

- RDF data Indexer. RDF triple data is stored in a key-value basedesystvith three main
collections of data. The collections of data inelwadl resources (URIs), literal text from the saurc
of triples, and an index schema to retrieve daf@F Rata indexing is performed once “offline”;
afterwards, the data can be used indefinitely thregb users’ queries.

- Data Loader. The Query Processor uses this subcomponent to Rid¢hdata from the key-value
based storage. Data retrieval is performed fon gaery pattern in the execution plan.

In the following sections, we provide additionatalkeabout the efficiency of the structural index i
RDF data Indexer, as well as the working mechanisitise Query Optimizer and Query Processor.

3.2 Structural Indexed RDF Data with Key-value BhSéorage

In this section, we describe our RDF Data Inderengonent using an index schema with key-value
storage. The storage system consists of threectiols of nodes and RDF data relations. The three
collections are 1) gertexcollection that stores subjects and objects (sirsghject can be an object and
vice versa in RDF), 2) jpredicatecollection that stores predicate data and itsesponding subject and
objects, and 3) pre_objcollection that stores the list of subjects fochepair (predicate, object).

The first two collections do not store RDF datdtia triples typically used in conventional RDF
infrastructure, e.g. Jen@4drroll et al., 200yt This approach reduces the size of stored date $iiples



may contain long string literals and URIs. Mappuuajlections with a key-value storage provides a
natural approach to replace all literals & URIshwiids (pID and vID).

The predicate collection andvertex collections use pID and vID values to index theyesd
(predicates) and vertices (subjects, objects). @ thds, pID and vID values are assigned to predicat
and vertex values, respectively. More specificalhe values stored in thgredicatecollection are
strictly URIs, whereas values stored in tlegtexcollection include store both literals and URI&eT
pre_objcollection contains an index pair, (pID, vID) aesponding to the subject’s ids (in this case,
vID is the object’s identifier).

Furthermore, in th@redicatecollection, Sub_Obj documents are also storedréyaiesent ids of
subjects and objects in a form that indicates &iation of a predicate to subjects and objects. For
example, inTable 3, the predicate “0” (“foaf:name”) connects subjeotie “0” (“id123") and object
node “1” (“*Jon Foobar”), and so on. The format afadentries in thpredicatecollection is described as
this following formula.

pID: [id] — value: [URI] A Sub_Obj: {s;:[04, 02, ], S2: [03, 04, - ]} (1)
To illustrate this formula, we give an example ofaatry stored in the data storage
pID: [0] — value: ["foaf:name"] A Sub_Obj: {0: [1]}
Table 3, 4 show the illustration opredicateand pre_obj collections, respectively, for the graph

depicted inFigure 5. In theFigure 5, numbers with green colour represent index nunfirevertex
collection, and numbers with blue colour represedéx number for predicate collection.

0 )
0 id123 foaf?\\-'eblog
Tame -
1 - .
Jon Foobar foaf:fﬂ?er http://foobar.xx/
3 blog
df- 1 http://foobar.xx/ ‘J/
Tty blog.rdf rdfs:seeAlso .
2 dc:title
foaf:Agent foaf:m:% 6
4 title
rdf:type id456

Fig. 5 Example of RDF graph for Table 1

Table 3. Index for the data ifrigure 5 — predicatecollection

predicate value Sub_Objs
0 foaf:name {0": [1]}
1 [rdf:type] {*0": [2], “4":[2]}
2 [foaf:maker] {“3": [0, 4]}
3 [foaf:weblog {*0": [5]}
4 [rdfs:seeAlso] {*5”: [3]}
5 [dc:title] {*5" : [6]}




Table 4. Index for the data ifigure 5 —pre_objcollection
Pre Obj  Subjects
0,1 [0]
[0, 4]
[3]
3]
[O]
[5]
[5]

The above design improves the performance of uitigeRDF data. The input RDF data files are
first preprocessed to extract the structural inded&ta shown in Tables 3 and 4. The triples ane the
parsed from these files and all subjects, predicatel objects are extracted. Next, the valuesarreds
and indexed in their appropriate collections withrelative keys. This step can require substatitied
to read files, parse triples, extract URl/literaled insert key-value pairs. However, these cobegi
need only be generated once (“offline”) and thay tteen be used indefinitely.

With these three collections, retrieval of all pbhks types of patterns can be supported. The
following Table specifies patterns that are supgmbitiy correlative collections.

R WNNPRE
oOwulAON

Table 5. Supported patterns by data collections
Pattern  Collection
S p pre_ob
s p?0 predicate
s ?po pre_obj
s ?p?0 pre_obj
?s po pre_obj
?s p?0 predicate
?s?po pre_obj

3.3 Query Optimization with Execution Plan

In this section, we describe the Query Parser amehyQOptimizer subcomponents that are used to
extract the triple patterns and generate an exatufilan. Since basic queries with simple
SELCET-WHERE clauses are considered here, the (Ramser can easily extract variables from the
SELECT clause and BGP from the WHERE clause. TheryRarser can be extended in future work to
support full SPARQL queries with complex operaiies UNION, OPTIONAL, etc.

An example execution plan will be developed ushmg list of triple patterns in the extracted BGP
above. We define an execution plan as follows:

Definition 1 (Execution Plan) An execution plarieP for a query is a path-based sequence of triple
patterns {p;, tpz, ..., tpn} such that there exists an ordered list of pattemsyhich every pair of
consecutive patterrtg, andtpc., has at least 1 common itgfgsubjectS, predicateP, or objectO). In
other words, one of the following conditions sholddd:

Stpk)) = S(tp(k + 1)) or O(tp(k + 1))
or O(tp(k)) = S(tp(k + 1)) or O(tp(k + 1))
1<k<n)

whereS(tp)andO(tp) are the subject and object of pattgmrespectively. The execution plan assigned
to the Query Optimizer subcomponentigure 4 is an example.

To construct the execution plan, the query is Bsed as ilgorithm 1, which stores the triple
patterns in a simple hash table that maps each taocteresponding triples. In other words, the hash
table contains a list of adjacent triple patterrs feach node in the query, i.enofe



[adjacent_triple_lig). From this hash table and a given trifgethe next triplenextTpis added to the
plan in such a way that a common subject (objscthared witmextTps.

Zeng et al. (2013propose the use of an exploration plan for queoggssing that is similar to the
method proposed here. They use an algorithm torgenéhe plan with a complexity of([&|-|V])
where |, M| are the number of edges and vertices, respegtivethe query graph. In contrast, our
algorithm’s complexity is QE| + |V|) because we consider every node and edge only once

After generating the ordered list of patterns fa plan, the remaining triple patterns that aremot
the list are appended to the current plan. Thisagfinal execution plan for the query evaluatiohe
motivation to build an ordered sequence of patteyths take advantage of the structural indexed RDF
data and inherent characteristics of sequentetgatterns to improve query processing. Basat®n
sequence of patterns satisfyiDgfinition 1, matching data for each triple pattern is found stored
for use in the next triple, and so on. Hence, joperations are not required and the quantity of
intermediate results is significantly reduced. He hext section, we describe how to process a query
using an execution plan.

Algorithm 1 GET_PLAN(sNode, tp)
Input: sNode - considered starting node

tp = considered triple pattern

H - hash table stores patterns for every node in tleeyq
Output: EP, the longest path-based sequence of triple patterns.
1. EP < tp
2: nextNode< getNextNode(tp, sNode)

//if startingNodés subjectnextNodeis its object, vice versa.

3: adjacentTripleList< getTripleListH, nextNode)
4. subPlan< @ // store remaining part foplan EP
5: for each triple tpl £ adjacentTripleListlo
6: if (tpl is not visited}hen
7
8
9

tmpPlan& GET_PLANhextNodetpl)
if sizgsubPlan)< sizetmpPlar) then
: subPlan<& tmpPlan
10: nexTriple< tpl
11: end
12: end
13:end
14:EP < adjacentTripleListy { nextTriple tp}
/I nextTripleis included irsubPlan
15: EP < subPlan
16:return EP

Algorithm 1. Algorithm to build execution plan for the query

3.4 Query Processing

In this section, we explain how to process qudraesed on the execution plan generated above. To
do so, we need to find all mapping nodes from thta dtorage and remove or identify invalid answers.
We execute the following stepsAdgorithm 2 using a hash table:

1) Based on the common nodevith the previously considered pattern, we regithe next triple

patternTP from the execution plan and obtain the mappingshis common node from a hash
tableM (described later).



2) For each mapping of the common noddevhich is one of the elements in triple patt&R®) we

find the matched result of the variableliR and add this mapping to the hash taidle

3) If any mappingn of common nod®& has no matches for triple pattérR, we removen and all

of the related connectors from hash tad¥ile

4) Finally, as long as a mapping of common nhidexists that answers the triple pattéi®, we

continue processing next pattern in the executian.p

The hash tabl& keeps the mappings of a pattern’s variabdeX, with the corresponding values
and connectors (note: hash talilas different from the hash table referenced ingtevious section).
In other wordsM stores a list of key-value pairs, in which the eg variable from the pattern and the
values are the matching URIs/literals and conneétonatching value connector is a matching value to
an adjacent variable aofarX. For example, considering a pattetpsn the execution plan andis a
matching value ofp's subject, the matching valuestp® object?varX are found to beXl, x2, x3}.
Hash tableM will store an entry of key-value pair ad: ?varX-> {x| [x1, x2, x3]}.

This type of data structure helps to track the rivaggpof variables visited during execution. By
evaluating each triple pattern in the executiom glequentially, we can find the answer for eactepat
and remove all invalid results at each procesdig $n the algorithm below, thimdMatches(method
finds the matching data for a given triple patteith type and supporting index (for retrieving data
listed in theTable5.

Algorithm 2 PROCESS_PATTERN(cNode)
Input: cNode - common node (considered node of the pattern)
Data: EP - execution plan of the query’s triple patterns

M - hash table stores intermediate result of eaclenpatt
Output: mappings of nodes between query & RDF data

1: tp < EP.getNext() lget nextriple pattern to be processed

2. cMatchList& M(cNode) //get match list of common node

3: for each cnt € getConnectorListMatchLis) do

4. for each mVal € cMatchListgetMatchValuesint) do

5: nextNode<& getNextNodef, cNode)

6: nextNodeMatchLis€ findMatchesfiextNode, mVal

7. if there is mapping afextNoddhen

8: M.addMappingiextNodemVal nextNodeMatchLi¥t

/[l mVa$ nowthe connector ofiextNode

o else

10: remove(Val)) // remove thisnatching value and its
/I corresponding connectors

11 end

12: end

13: end

14: if there is any match for answertpfthen

15: nCommonNod&- findNextCommonNodég)

16: PROCESS PATTERMCommonNode

17: end

Algorithm 2. Algorithm to process a pattern from execution plan

To demonstrate the execution plan efficiency, weazmnsider the example query in section 2.2 with
this execution plan as follows:



EP = {tp., tp, tps, tpu, tps, tps}
tp=(?aplh

tp.= (?a p3 ?¢

tps = (?c p4 ?¢

tps = (?e p2 2

tps = (?d p5 7

tps = (?e p6 ¢

As shown irFigure 6, we assume that each individual triple patternahfiieed number of matches with
RDF data (e.g. five matches fgm, ten matches foip,, etc.). The query processing algorithm and
execution plan EP are then applied to find the yjaeswer.

{2aplb. | _ Hash table 3/ Triple patterns Number of
?ap3 c, ’a =[a,.a,.a;.a,.a.].b matches
27cp4 %e, — :
2ep2 2d. p1={fepld; 5
2d p5 ?f} tp2={%ap3 ?c} 10

tp3 ={?cp4 %e} 4
tp4={?ep2 2d}
tp5 = {2d p5 7} 8

Fig. 6 Processing pattetp;

Starting from nodé in tp;, we can find the five matching values of varia®dgbecausép; has five
matches)M(?a) = {[ai, &, &, &, &), b}. With this notation, {fn],n) denotes that is the connector of
valuem and ] is the list of match values for a given varialfs.shown inFigure 7,we then process
the next triple pattermp,={?a p3 ?¢ to find the five correlative matches of varial®?e from the
previous five values dfa, M(?¢) = {[c],a; [C2],8; [C3],as; [Cal,a4; [C5],86} @S iN.

Hash table M

{?aplb,
2ap3 ">£_// aE[alraZeGB?a‘“as]’b

':’c 4?e.- —
% 32 ?d-, c= ([cl]:al;[cz]sa2;[03 ]:as;[cas ],a4;[05 ]:as

2d p5 7}

Triple patterns  Number of

matches

p2={ap3 ?c} 10

Fig. 7 Processing patteip,

Next, we procestps={ ?c p4 ?¢ with the matching values dfcto find two matches of variabfe
M(?€) = {[ed],Cz; [e2], Cs}. As shown inFigure 8, our algorithm then removes the invalid matchesds
¢4} of ?cas well as their correlative connectorg, @, a,} from the hash tabl#.



( b Hash table M

7a .

?a§3 2, 2a=[a, a,,a-0a,,a].b

02;1_,; || ?e = ledkarle] aileastedaniles]. a
"’ZI:); ”f} ‘?eE([el]:Cz;[ezl:Cs) Y

p3={?cpd ?e} 4

Fig. 8 Processing patteips

We continue to process the remaining pattetps,and tps, with the two matching values of
variable?c. For the final triple pattertps={ ?e p6 @, since the matching values @¢are already stored
in M, the number of valid matches f8e can be reduced when checking for matche8efvith
predicatep6 and objeciy. Since unnecessary matchestfmrandtps have been removed, the system
only has to consider five matches for pattpsr{instead of 10) and two matchesfjoy (instead of four).

From the above query processing example, we canthegeour system improves the query
performance by reducing the unnecessary intermeediatches for each triple pattern and removing all
invalid data at each processing step. To verifyegsgefficiency, an experiment is described in teetn
section.

4. Evaluation

This section provides an empirical evaluation amdification of the proposed system. The
experiment characterizes the query performanceotif bur system as well as a conventional RDF
management system.

4.1 Experimental Environment and Data Setup

To evaluate of query performance, a conventionaktd@ computer was used with the
configuration described ihable 6. The Eclipse with Java 1.7.0 platform was usesirtaulate both our
system and Jen&longoDB (cited in 2013)s chosen for the key-value storage associatell tivi
structural index.

Table 6. Experiment specifications

Specifications
CPU type Intel® Core™ i3-2120
CPU clock 3.3 GHz
RAM 2GB
#Core: 2
0s Windows 7 Enterprise 32-bit
IDE Eclipse (Indigo Service Release 2)
Databas MongoDE

A diverse RDF dataset collected from DBpedia &8n(ple RDF dataset, cited in 20i%as used
for input data (Number of Triples: 2,403,306). Th8pedia data set uses a large multi-domain
ontology (RDF triples) which has been derived fAdfikipedia and external RDF data sets. Hence, the
dataset allows queries to be processed on divettseateas (described in next section). We first use
Jena to extract data triples from this datasetthed store them in the MongoDB database with our
indexing schema.



In our system, we first create a structural index the entire RDF dataset using “off-line”
preprocessing and then store the structural indé4dngoDB storage. The indexed data will improve
the retrieval time for query processing. In ourexkment, the query processing performance is only
evaluated for “online” processing, which includesqessing queries from the indexed RDF data.
Although the preprocessing time required building $tructural index of RDF data can be substantial,
this task is only performed once. In addition, kbg-value storage allows for easy modification (@fed
delete). To add a new dataset, the preprocesgiogtaim is used to insert any new data to the iexjst
index.

4.2 Query Preparation

To prepare for the experiment, five SPARQL quesiesgenerated that correspond to five different
categories of data. They store information abowtagr storage areas (Q1), b) vehicle engines ©2),
spaceships (Q3), d) car specifications and feat(@d3, and e) satellites (Q5). As a result, query
characteristics vary greatly.

- Query Q1 retrieves data associated with water géoegieas, which only have two properties, i.e.
shore length and catchment area. Query Q1 is repas/e of simple queries with only one or two
triple patterns.

- Query Q2 retrieves data associated with vehicléesgwhich have more properties, such as power
output, acceleration, torque output, and pistooksti(five triple patterns).

- Query Q3 retrieves data associated with spaceshigading mission duration, lunar surface time,
orbit time and lunar sample mass (six triple patgr

- Query Q4 retrieves data associated with cars, mmwhich have similar specification values, such
as wheel base, fuel capacity, and so on. Thisafp@ery contains seven or eight triple patterns.

- Query Q5 uses ten or more patterns to retrieve dssaciated with different satellites which
represents a complex query in our experiments.
These five queries are described in detail inAppendix In summary, the queries represent the
entire spectrum of different data areas includdatiédataset of RDF triples. As shown in Appendix
the complexity of each query varies with numbepatterns. Therefore, queries of various lengths and
different ranges of the dataset are used to vejifgry processing performance. A complete set of
queries is not used to cover all data in the RDiEas#d, however, the results are indicative of divera
performance.

4.3 Experiment Result

We conduct the experiment by executing the aboxe dueries and comparing the running time
with Jena(Jena, cited in 20)3(McCarthy, 200%. Jena has recently graduated from the Apache
incubator and is known as a general system for giagand querying RDF data. Jena provides APls
and corresponding documentation for researchepsacess SPARQL queries against RDF datasets.
Hence, we choose Jena as the conventional systesarfgparison.

With our structural index, RDF data for all typd<S®®ARQL query patterns can be retrieved. Since
the execution plan is built as an ordered sequehteple patterns, the matched data for eacheripl
pattern is found and stored for use by the nexlelriBy excluding unnecessary results at each
processing step, intermediate results are reduiggdfisantly, which improves running time. The
objective of our experiment is to verify the eféiocy of processing SPARQL queries by evaluating the
triple patterns in the execution plan generatethfquery’s BGP.

To demonstrate the performance consisteRiyyre 9 shows the running time for each of the five
gueries that are of different complexities and awttidifferent data domains. As shownHigure 9,
each query has a relatively stable execution tinaeitsshows the diversity of queries and low vaci&n
on the processing times of each query.

In our system, we assume that users prefer to madees that contain triple patterns in which at
least one item (S, P, or O) is bound. Users aea@sumed to use query patterns with simple opsrato
(such as SELECT, WHERE) and a single BGP as na&ditie
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Fig. 9 Processing time of 5 queries executed 20 times.

Each query is executed 20 times (Begure 9) and the average query processing time is usttkas
result. As shown ifrigure 10, our system reduces the processing time up to (é8%rage time of
processing queries in the experiment) as compardéria. We can achieve 66~79% of performance
improvement for simple queries (Q1, Q2, and Q3hwihall number of triple patterns and about 50%
gains for complex queries (Q4 and Q5) in procestimg. The improvement in response time does
require additional computation time in the formmé&processing. In fact, the performance is only
considering “online” query processing, and doesimcude the time required to build the index (our
system) and store data in memory (Jena). We dinohkide the RDF preprocessing step because the
Data Indexer requires a substantial amount of tomereate the structural indexed data. Howeves, thi
“offline” task only needs to be executed once befast querying can be supported.
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Fig. 10 Queries’ average running time of Jena and ouesyst
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The advantage of our system (as seen from the iengratal result) comes from the use of an
execution plan that reduces intermediate resulisexipedites the look up of data. Since Jena stores
triples in property tables, Jena still needs taled¢he correct table and then process the queries, if
the data result for a query is located at the beginof the database (file). In contrast, our systan



quickly find the data, thereby reducing the querycpssing time. This experiment demonstrates the
benefits of our structure index and shows thatsyatem improves query processing performance over
Jena. Our proposed system builds structure indexiame only as an offline processing and is able to

update incrementally. Thus, it is very efficienpegach for the long term management and usage of
RDF data.

5. Conclusion and future work

In this paper, we addressed the challenge of effityi storing and retrieving RDF data. Two
perspectives (relational-based and graph-basedjuarently being applied by researchers. However,
most current work focuses on indexing RDF data@neMaluating queries with join operations. This
approach increases the query processing time lgimgeunnecessary intermediate results.

An efficient RDF data management approach was exgpderein for processing queries using a
query optimizer and a new indexing schema. A stinecindex was used to obtain RDF data for
evaluating query patterns based on an executiam fh&reby reducing the volume of unnecessary
intermediate data. This approach allows querie$ witltiple triple patterns to be solved very
efficiently. The contributions of this paper candaenmarized as follows:

- A new structure index for storing RDF data sourc&ey-value based storage with improved data
retrieval time.

- An efficient query processing approach with a qurtimization mechanism. Under this approach,
we built an execution plan and merged matching da&ach step to reduce invalid intermediate
results without using join operations.

- Empirical experiments that verify the performantéhe proposed system and allow comparison of
query processing time. We created five queries ¢$pah various data areas in the dataset. The
evaluation shows that our system can significamttitice the query processing time.

For simple queries of one single triple patterm,system performs well because the structural index
supports all types of patterns and a B+-tree siracis used for storage of key-value storage with
MongoDB. Our system is more effective for compleedes with multiple triple patterns, when each
triple pattern of the query has multiple matchimgedtriples. In this case, our system processasegue
based on an execution plan and query processing igmminimized by reducing the number of
unnecessary intermediate results.

Challenges still remain for future work. In realiyeneral SPARQL queries sometimes contain
UNION, OPTIONAL, ORDER, LIMIT, OFFSET or FILTER opstors. We did not include these
operators due to the associated complexity of [@ing these queries. Our research focused on
improving the performance of query processing hiynaiging the storage and query pattern evaluation.
If we can support processing queries with theseabpes, the query results will be further refinedia
there will be additional ways to represent the ltef\lso, we will extend our system to integrate a
keyword search feature. In other words, we carr dffe queries in which one or many object nodes
have a keyword specified. To do so, we can sta@&éywords that are in the literal objects or ceaivl
from the URIs’ content. For example, the qQUBBLECT ?x ?y WHERE { ?x p1 ?y. ?y p2 ?z. ?z catain
“hello”} can return the result that satisfies a conditicarigble “?z” contains word “hello”}. That is,
we will consider all the URIs (map with ?z) whosantents or literal values hold at least the term
“hello”. Such feature is helpful for users who do®member exactly the whole URI strings to specify
in the query.
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APPENDIX

SPARQL queries. The queries used in our experiment are provided.&r the ease of reading,
the patterns are provided in compact format, meptivat the URI parts are removed and their
meaningful names and values are kept. For example,URI
“http://dbpedia.org/ontology/Lake/shoreLenith Q1 will be represented astioreLength The five
gueries are as follows:

= QLI reservoirs with variabl@reservoir The returned reservoirs have a catchment ar&a8
km? and shore length of 170 km.
SELECT ?reservoir
WHERE {
?reservoir <areaOfCatchment> "1388.0"<squarekélme» ;
<shoreLength> "170.0"<kilometre>

}

= Q2 vehicle engines (A), (B) and (B)'s power outputgh variables?vehicleA ?vehicleB
and ?powerOutput respectively. (A) has an acceleration of 5.1 sdscand the same torque
outputs (510 newtonMetre) as (B), which has a @2 piston’s stroke.
SELECT *
WHERE {
?vehicleA <torqueOutput> "510.0"M<newtonMetre> ;
<acceleration> "5.1"M<second> .
?vehicleB <powerOutput> ?powerQutput ;
<torqueOutput> "510.0"<newtonMetre> ;
<pistonStroke> "92.0"M<millimetre>

}

= Q3. spaceships and their properties (Lunar SampleshMasl Lunar Orbit Time) with
variables ?spaceShip ?lunarSampleMassand ?lunarOrbitTime respectively. These
spaceships have a mission duration of 11 days. i&veg the same lunar surface time (48 hours)
as the orbit time of one or more other spaceshigsdtherSpaceSHipvith a mission duration
of 8 days.
SELECT ?spaceShip ?lunarSampleMass ?lunarOrbitTime
WHERE {
?spaceShip <lunarSurfaceTime> "48"<hour> ;
<lunarOrbitTime> ?lunarOrbitTime ;
<lunarSampleMass> ?lunarSampleMass ;
<missionDuration> "11"<day> .
?anotherSpaceShip <missionDuration> "8"<day> ;
<lunarOrbitTime> "48"<hour>

}

= Q4 cars with variabl@carXand a wheel base property corresponding to vartatheelbaseX

These cars have the same wheel base (BYD_e6, Ogelrs, Isuzu_Oasis, BMW5_E39) and
fuel capacity (80 litre) with some other caPsdrY) whose wheelbases are 2659 mm.
SELECT ?carX ?wheelbaseX
WHERE {

<BYD_e6> <wheelbase> ?wheelbaseX .

<Opel_Signum> <wheelbase> ?wheelbaseX .

<Isuzu_Oasis> <wheelbase> ?wheelbaseX .

<BMWS5_E39> <wheelbase> ?wheelbaseX .

?carX <wheelbase> "80"<litre> ;

<fuelCapacity> ?wheelbaseX .



?carY <fuelCapacity> "80"<litre> ;
<wheelbase> “2659"<millimetre>

}

Q5. some satelltes (X), (Y), (Y)s detailed info andsatellites (Z) with
variables?satelliteX, ?satelliteY, ?meanRadiusXY, ?average®y, ?orbitalPeriodY, ?surfac
eAreaYand?satelliteZ respectively. (Y) has the same mean radius gs(Xirh has an orbital
period of 18 days. (Z) has a surface area of 232F0 a mean radius of 43 km and the same
temperature (12€) as (Y).
SELECT *
WHERE {
?satelliteX <meanRadius> ?meanRadiusXY ;
<orbitalPeriod> "18"<day> .
?satelliteY <temperature> "124"<kelvin> ;
<averageSpeed> ?averageSpeedY ;
<orbitalPeriod> ?orbitalPeriodY ;
<meanRadius> ?meanRadiusXY ;
<surfaceArea> ?surfaceAreay .
?satelliteZ <temperature> "124"<kelvin> ;
<meanRadius> "43"<kilometre> ;
<surfaceArea> "23200"<squareKilometre
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