
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Future Generation Computer Systems 26 (2010) 318–323

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Real-time performance analysis for publish/subscribe systems
Sangyoon Oh a,∗, Jai-Hoon Kim b,1, Geoffrey Fox c,2
a Division of Information and Computer Engineering, Ajou University, Suwon, South Korea
b Graduate School of Information and Communications, Ajou University, Suwon, South Korea
c Pervasive Computing Labs., Indiana University, Bloomington, IN, USA

a r t i c l e i n f o

Article history:
Received 2 October 2008
Received in revised form
18 February 2009
Accepted 21 September 2009
Available online 24 September 2009

Keywords:
Real time
Performance analysis
Publish–subscribe

a b s t r a c t

The publish/subscribe communication system has been a popular communication model in many areas.
Especially, it is well suited for a distributed real-time system inmanyways. However, the research of cost
model and analysis of publish/subscribe system in a distributed real-time systemhave not been suggested
yet. In this paper, we present our cost model for publish/subscribe system in a real-time domain, analyze
its performance, and compare it with other communication models such as request/reply and polling
models. Our empirical result on mobile embedded device shows accordance with cost analysis, which
verifies correctness and usefulness of our cost model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The publish/subscribe communication system [1] has been
popular in many distributed application domains. Unlike tradi-
tional point-to-point model such as client–server, publish/subscr-
ibe model decouples publisher and subscriber in time, space, and
synchronization. Producer (i.e. event source) declares the topics
on which they intend to publish event (data) and subscriber (i.e.
event displayer) register the topics of interest. When the pro-
ducer publishes events on a topic, server (i.e. event brokering sys-
tem) disseminates events to the subscriber. Subscriber can access
published data asynchronously anytime and anywhere at its own
convenience. Because of its location transparency and flexibility
to dynamically add and remove participants, it is an appropriate
communication system for large scale loosely coupled distributed
systems. Examples of such systems include collaboration systems
which require an asynchronous multicast messaging system and
military system requiring a distributed real-time system support.
The Publish/subscribe systems are well suited for distributed

real-time systems in a number of ways [2,3]. First, events are de-
livered to the subscribers immediately after the event occurrence,
thus subscriber can access the event data in real time. Second, it is
asynchronous. The Publish/subscribe systems free the data sender

∗ Corresponding author. Tel.: +82 31 219 2633.
E-mail addresses: syoh@ajou.ac.kr (S. Oh), jaikim@ajou.ac.kr (J.-H. Kim),

gcf@indiana.edu (G. Fox).
1 Tel.: +82 31 219 2546.
2 Tel.: +1 812 219 4643.

(publisher) from waiting for an acknowledgement by the receiver
(subscriber). Thus, publisher can quickly move on to the next re-
ceiver within deterministic time without any synchronous opera-
tions. The other benefit of having publish/subscribe system for a
distributed real-time system is its multicast-like model. Publisher
sends only one event to the event broker and the event is delivered
to many subscribers [4]. Thus, an increasing number of distributed
real-time systems adopt publish/subscribe system for data transfer
among a massive number of distributed entities.
There are many challenges related to Peer-to-Peer (P2P) sys-

tems. The performance and availability of the P2P system are gre-
atly affected by its underlying interaction scheme. Both Structured
P2P (e.g. Tapestry [5], NaradaBrokering [6], and SCRIBE [7]) andUn-
structured P2P (e.g. Gnutella [8] and Kazaa [9]) require updated
peer information while it is running. Whether it is using central-
ized architecture with the Distributed Hash Table or it is using the
Gossiping method, during their organization of information pro-
cess (e.g. routing, storage, and discovery) requires the deadline to
deliver and to provide the up-to-date information to the overall
system. We believe that publish/subscribe based P2P system can
perform better than the traditional interaction scheme such as the
client–server interaction. Our real-time performance analysis and
simulation result arewell suited to the proposition and can be used
to support it.
There are many advantages to use a publish/subscribe com-

munication paradigm for real-time applications. As noted above,
its loosely coupled nature and multicast-like notification is best
fitted to the domain. To verify the advantage formally, it is requi-
red to have an analytical model and validate it through the sim-
ulation and/or the empirical experiment. Even though there has

0167-739X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.09.001

Author's personal copy

S. Oh et al. / Future Generation Computer Systems 26 (2010) 318–323 319

Table 1
Model selection.

Models Remarks
Publish/subscribe Request/reply

Number of node Large Small Pub/submodel has advantage when system is large and data transfer is
shared among many clients.

Number of event (data update) per client’s
access

Small Large Pub/submodel is appropriate when events or data update occurs
infrequently.

Access rate of client High Low When clients seldom use published data, pub/submodel is not
appropriate.

Degree of common interest High – Pub/submodel is appropriate to disseminate data of common interest.
Cost of user’s intervention (pull based) High – Pub/submodel requires less user’s intervention than request/reply model.
Delay cost of event (data) transfer to user High – Events (data update) are immediately delivered to subscribers.
Real-time performance Hard deadline

Short deadline
– Pub/submodel has advantages especially when deadline is short or strict.

been a lot of research proposals and implementations of pub-
lish/subscribe communication model [10–14] to improve perfor-
mance of the system including Siena [15], Gryphon [16], JEDI [17],
Rebeca [18], Elvin [5] and [22]. However, to the best of our knowl-
edge, research on performance modeling for a distributed real-
time system using a publish/subscribe system has not been an-
nounced yet. We propose cost model for general publish/subscribe
systems and publish/subscribe system in distributed real-time sys-
tems, analyze their performance, and compare them to other inter-
action basedmodels such as client–server model and polling mod-
els. We can estimate the performance of a publish/subscribe sys-
tem in a distributed real-time system.We can also effectively adopt
publish/subscribe systems by using our proposed cost model and
analysis of publish/subscribe systems.
Networking middleware that implements a real-time pub-

lish/subscribe model such as Data Distribution Service (DDS) [19]
is being used for many application domains. It targets high per-
formance (e.g. low latency, high throughput) applications, such as
multimedia ormilitary systems. Thus, it is getting important to an-
alyze performance and effectiveness of a publish/subscribe com-
munication system, especially in condition in which time is a key
parameter such as in real-time condition.
Our analysis shows that we can choose model as follows by a

rule of thumb. As shown in Table 1 and results of our analysis, pub-
lish/subscribe model are effective in many cases. For the analysis,
we define pull based publish/subscribe system model as the case
when the user has an intention to retrieve data (or message) from
the broker.
We also experimentally measured and compared the perfor-

mance of publish/subscriber model to client/server model on our
test bed with NaradaBrokering which is a publish/subscribe based
message brokering system to verify correctness of our performance
model on the real systems. Our cost analysis model is simple but
accordant with experimental results.

2. Cost model

2.1. System models

In this subsection, we propose cost analysis model for pub-
lish/subscribe systems. We assume the following basic system pa-
rameters to analyze cost.

• α (publish rate): We assume that publisher’s event generation
is governed by Poisson process with average inter arrival time
of 1/α.
• β (request rate or process (reference access) rate): We use this
parameter for twomeanings: (1) subscriber’s access rate of pub-
lished events, and (2) request rate of client in the client/server
models. We assume that these rates are also governed by Pois-
son process.

• cps (α) (publish/subscribe cost per event): Cost required for an
event publish. cps is divided into two parts: (1) cpub: ES (Even
Source) publish events to EBS (Event Brokering System), and
(2) csub: EBS (Event Brokering System) relays the events to ED
(Event Displayer) which registered for the events.
• crr: (β) (cost per request and reply): Cost for sending request
and receiving response in client–server model.
• cpoll(α, T) (cost of periodic publish or polling):We assume func-
tion of α and T (ex. cpαT , cpoll), where T is the length of period.
(We can also think it as a cost of periodic polling in client/server
model.)
• cd(α, T) (cost of delaying publish): It is cost (or penalty) by de-
laying data transfer. We assume function of α and T (ex. αT).
We need to assign some function for each application.
• s(n) (effect of sharing amongn subscribers): For example, server
can deliver events with low cost when it broadcasts event to
many subscribers. It will be between 1/n and 1.
• tps (time delay for publish/subscribe): Time delay for publishing
an event. tps is divided into two parts: (1) tpub: time delay for
publish, ES (Even Source) publish events to EBS (Event Broker-
ing System), and (2) tsub: timedelay for subscribe, ED (EventDis-
player) subscribes events from EBS (Event Brokering System).
• trr (time delay for request and reply): Time delay required for
sending requestmessage and receiving responsemessage in re-
quest–reply (client–server) model.
• tpoll(α, T): Time delay for periodic publish.
• D: Relative deadline from user’s access intention or event oc-
currence.

2.2. Cost analysis

In this analysis, we analyze cost of three different models, pub-
lish/subscribe, request/reply, and periodic polling models without
any failure of communication link or node. We consider (1) conce-
ptual total cost (e.g., the number of message, amount of message,
or time delay) per unit time for eachmodel, (2) cost for each access
by client (or subscriber), (3) time delay for access after subscriber’s
(or client’s) intention, and (4) timedelay between event occurrence
and notification to subscriber (or recognition by client). Cost can be
the number of message, amount of message, or time delay.

2.2.1. Cost of publish/subscribe model
Since we assume that cpub is cost for that ES (Even Source) pub-

lish events to EBS (Event Brokering System), and csub is cost for that
ED (Event Displayer) subscribes events from EBS (Event Brokering
System), cost of publish/subscribe model for each event publish
and subscribe is cpub + n s(n)csub. Please remember that n is the
average number of subscriber and s(n) is sharing effect among n
nodes. When publish rate is α, cost per time unit is:

α(cpub + n s(n)csub).

Author's personal copy

320 S. Oh et al. / Future Generation Computer Systems 26 (2010) 318–323

Table 2
Cost analysis for different models.

Model Publish/subscribe Request/reply Polling

Conceptual total cost per time unit α(cpub + n s(n)csub) βn crr . (cpoll(α, T)+ cdelay(α, T))/T
Cost for each access α

β

(cpub
n + csub

)
crr cpoll(α, T)+ cdelay(α, T)

Time delay between intention and access 0 trr T/2
Time delay between event occurrence and
notification/recognition (or access)

tps =

tpub + tsub
(
tps = tpub + tsub+ 1β

) 1
2β T/2

Deadline meet ratio from user’s access intention 1 1 when D ≥ trr
0 when D < trr

1 when D ≥ T
D/T when D < T

Deadline meet ratio from event occurrence 1 when≥ tps
0 when D < tps

1− ε−βD 1 when D ≥ T
D/T when D < T

Now, we consider cost in the view point of subscriber (per each
event access of subscriber).We analyze three performancemetrics,
(1) conceptual cost for each access, (2) time delay for subscriber to
access event after its intention, (3) and time delay until notification
to subscriber after event occurring. The average number of event
occurred before each access is cost for each access:
∞∑
i=0

β

α + β

(
α

α + β

)i
=
α

β
,

where cpub is shared among n subscriber and csub is required for
each subscriber. Thus, average cost for each access is:
α

β

(cpub
n
+ csub

)
.

There is no time delay for access after subscriber’s intention
since event has already been received. Time delay between event
occurrence and notification to subscriber is:
tps = tpub + tsub.
We analyze real-time performance (deadline meet ratio) for

two aspects: one relative deadline (D) is set from the subscriber’s
intention to access data and the other deadline is set from the
occurrence of event. Deadline meet ratio from the subscriber’s
intention is always 100% since datawas published to the subscriber
before subscriber intends to access. However, deadline meet ratio
from the occurrence of event is different.WhenD ≥ tps, subscriber
can access data (event) within the deadline. However, when D <
tps, subscriber cannot access data (event) within the deadline.
Deadline meet ratio from the subscriber’s intention is 1.
Deadline meet ratio from the occurrence of event is:

1 when D ≥ tps
0 when D < tps.

2.2.2. Cost of request/reply model
Cost for each request and reply is assumed to crr. Thus total cost

is n crr, where n is the number of client.When request rate isβ , cost
per time unit is:
βncrr.
Time delay for access after client’s intention is trr as we assume.

Time delay between event occurrence and recognition of client is
depends on request rate (similar to polling rate):
1
2β
.

Deadline meet ratio from client’s intention is as follows: when
D ≥ trr, client can access data within the deadline; however, when
D < trr, client cannot access data within the deadline.
Now, deadline meet ratio from the occurrence of event is an-

alyzed. Client can access data within deadline when the client
requests data within D after the occurrence of event. As client’s re-
quest rate is β , deadline meet ratio is:∫ D

0
βε−βtdt = 1− ε−βD.

2.2.3. Periodic (polling) model
Periodic model is appropriate for applications in which delayed

message is acceptable. Cost of periodic model (periodic publish or
polling) per period is cpoll(α, T) + cdelay(α, T). Thus, cost per time
unit is:

(cpoll(α, T)+ cdelay(α, T))/T ,

where cpoll(α, T) can be between crr and αTcrr.
If we assume periodic publish, cost per time unit is:

(cpub(α, T)+ ns(n)csub(α, T)+ cdelay(α, T))/T ,

where cpub(α, T) is between cpub and αTcpub, cpub(α, T) and
csub(α, T) is be between csub and αTcsub, and cdelay(α, T) is propor-
tional to between cdelay and αTcdelay. Average time delay for access
after client’s intention is T/2. Time delay between event occur-
rence and recognition of subscriber is T/2.
Client can always access data within the deadline when D ≥ T .

When D < T , however, client can access data within the deadline
of probabilityD/T . Client can access datawithin the deadlinewhen
it requests data afterwhich the first followingpolling occurswithin
D during the polling period T . We assume that data access is evenly
distributed during polling period T .
Now, deadline meet ratio from the occurrence of event is

analyzed. Client can always access data within the deadline when
D ≥ T . When D < T , however, client can access data within
the deadline of probability D/T , which is similar to the analysis of
deadline meet ratio from the intention (Table 2).

3. Performance comparisons

We have conducted performance comparisons on simulated
condition and verify the parameter values by empirical experi-
ments. They are explained in the following subsections respec-
tively.

3.1. Parametric analysis

In this section, we describe performance comparisons by para-
metric analysis. Table 3 shows system parameters we set for
the comparisons. We verify cost parameters through empirical
experiments and the results are shown in Section 3.2. Fig. 1
shows performance comparisons between publish/subscribe, re-
quest/reply, and polling systems. In this experiment, cost is com-
munication cost for each transaction. Since publish/subscriber
systemdisseminates data via server instead of individually for each
client, it requires less cost than request/reply system. As the num-
ber of client node increases, the cost gap between two systems
increases. Periodic polling system saves cost by transferring data
once per period when delay cost is negligible. However, cost in-
creases as delay cost increase. Polling system is viable approach
for applications where data delay is allowed and delay cost is neg-
ligible.

Author's personal copy

S. Oh et al. / Future Generation Computer Systems 26 (2010) 318–323 321

Table 3
System parameters for analysis.

Parameters Values

α (publish rate) 0.5
β (request rate or access rate) 0.5
cps (publish/subscribe cost per event) 2
cpub (publish cost per event) 1
csub (subscribe cost per event) 1
crr (cost per request and reply) 2
cpoll(α, T) (cost of periodic publish) 1 or α T
cdelay(α, T) (cost of delaying publish) 0, T , or α T
s(n) (effect of sharing among n subscribers) 1/n− 1
tps (time delay for publish/subscribe) 1
tproc (processing time for request/reply) 1 or 5
trr (time delay for request and reply) 1
tpoll(α, T) (time for periodic publish) 1, T , or α T
D (relative deadline from user’s access
intention or event occurrence)

Variable

2

4

6

8

10

12

14

16

C
os

t

0

18
Cost Comparisons

10 11 12 13 14 152 3 4 5 6 7 8 9
n (number of nodes)

161

pub/sub

req/rep

polling 1

polling 2

Fig. 1. Communication cost per transaction by varying number of clients (α =
0.5, s(n) = 1, cps = 2, and crr = 2; cpub(α, T) = cpub , csub(α, T) = csub ,
and cdelay(α, T) = 0 for polling 1; cpub(α, T) = αTcpub , csub(α, T) = αTcsub ,
cdelay(α, T) = 2αTcdelay for polling 2).

10

20
30
40
50

60
70
80

90

0

100

D
ea

dl
in

e
M

ee
t R

at
io

Dealine Meet Ratio (Intention)

2 3 4 5 6 7 8 91

Deadline

0 10

pub/sub

req/rep

polling

Fig. 2. Deadline meet ratio by varying deadline from user’s access intention (trr =
1, tps = 1, T = 5, and β = 0.2).

Figs. 2 and 3 show deadline meet ratios between publish/
subscribe, request/reply, and polling systems for user’s access in-
tention for pull based publish/subscribe model and for event oc-
currence respectively. As analyzed in the Section 2, we see the
pub/subcurve meet the deadline better than req/rep and polling.

3.2. Experimental results

To verify the simulated result, we conducted empirical exper-
iment using embedded system clients and a message brokering
system. The purpose of our experiment was to get actual cps(tps)
and crr(trr) which are publish/subscribe cost (i.e. time delay) per
event and request and reply cost (i.e. time delay), respectively, for

pub/sub

req/rep

polling

Deadline Meet Ratio (Event)

10
20
30
40
50
60
70
80
90

D
ea

dl
in

e
M

ee
t R

at
io

0

100

Deadline

2 3 4 5 6 7 8 910 10

Fig. 3. Deadline meet ratio by varying deadline from event occurrence (trr = 1,
tps = 1, T = 5, and β = 0.2).

200 400 600 800 1000

Payload (byte)

0 1200

D
at

aT
ra

ns
iti

on
T

im
e(

se
c)

0

0.5

1

1.5

2

2.5

Pub/Sub
Req/Rep

Fig. 4. Delay time by payload.

both different message sizes and numbers of clients in a practical
environment. The experiment environment consists of NaradaBro-
kering system which is a message brokering system with HHMS
(Held Message Service) [20] Proxy plug-in for mobile and embed-
ded client. NaradaBrokering is developed at the Community Grids
Laboratory at Indiana University. It is a content distribution in-
frastructurewhich supports asynchronous publish/subscribe com-
munication model and originally designed for a uniform software
multicast to support a real-time collaboration. We choose to use
HHMS for the experiments because mobile or embedded devices
are popular choice of client in a distributed real-time system.
Weperformed two types of experiments. First is the experiment

to measure the data transition time between an event source
(publisher) and an event displayer (subscriber) by varying the size
of message (i.e. size of payload). We performed on the wireless
environment which is a common network environment for a
distributed real-time system such as a military system on the
field. Since correct measurement of data transition time on the
embedded device is not an easy task to achieve, we measured a
round trip time (RTT) on the event source and get cps = RTTwhere
cps = cpub + csub. A client application (i.e. subscriber) on Treo 600
mobile phone device [21] which is connected to Internet through
2nd generation CDMA service just echoes back message from the
event source (i.e. publisher) which runs on Linux machine. We did
the same to get crr, ‘Cost of request/reply event’.
The experiment result of the data transition time of pub-

lish/subscribe message (tps) and the data transition time of re-
quest/reply message (trr) is shown in Fig. 4. From the graph, we
can get the relationship between tps and trr.

trr = tps + k, (1)

Author's personal copy

322 S. Oh et al. / Future Generation Computer Systems 26 (2010) 318–323

50

100

150

200

250

300

350

D
at

a
T

ra
ns

iti
on

 T
im

e
(m

se
c)

0

400

5 10 15 20 25 30

Number of Clients

0 35

RPC
Pub/Sub

Fig. 5. Delay time by a number of clients.

where k is a constant. The k is relatively small to tps and trr if we
increase the size of the message (i.e. payload). Thus, our system
parameter setting in Section 3.2, cps = crr and tps = tr are valid.
The second experiment is to measure the communication cost

per transaction for varying number of clients. Conducting an
experiment with a large number of clients is not acceptable in
many cases and we were in the same situation where we have a
limited number of mobile embedded devices. Thus, we performed
the experiments using J2ME simulators. It is not a quite similar
experimental environment compare to ‘‘simulation result’’ in
Section 3.1. The simulator in this experiment is a software platform
where the actual application runs on, thus it is more like to make
an application run on a virtual device. The experimental result is
shown in Fig. 5. From the result, we can see that the curves on both
Figs. 1 and 5 aremuch resembled. Using these verified parameters,
we perform simulations for comparing real-time performance
(deadline meet ratio). Thus, we verify our simulation result.
The experiment is performed on a Linux machine equipped

with Pentium III 1 GHz CPU and 512 MB memory and a mobile
embedded device, Treo 600 equippedwith 33MHzMotorola Drag-
onball processor and 8 MB of memory. Time is measured with the
Linux native timer by JNI. The subscriber application onmobile em-
bedded device is written in Java Micro Edition for embedded and
mobile device with MIDP 2.0.

4. Conclusion

Although publish/subscribe system has been popular recently
in distributed real-time systems and embedded systems (e.g. air-
craft control systems, military applications, medical imaging sys-
tems), cost analysis model has not been suggested and verified
yet. This is important because application developers can estimate
the performance of their application by applying the theoretical
model and its verification through simulations and empirical ex-
periments. In this paper, we present our cost analysis model for
publish/subscribe systems especially in distributed real-time sys-
tem domains. The empirical result from our test bed verifies our
cost model. By providing the simulation result and the empirical
result which is based on our cost analysis model, we give theoreti-
cal proof to the known claim, the publish/subscribe system is well
suited for the distributed real-time system.

Acknowledgement

This work has partially been supported by the 2007 new faculty
research fund of Ajou University, the Ubiquitous Computing and

Network (UCN) Project, Knowledge and Economy Frontier R & D
Program of the Ministry of Knowledge and Economy (MKE), and
by the ITRC (Information Technology Research Center) support
program supervised by the NIPA (National IT Industry Promotion
Agency) (NIPA-2009-C1090-0902-0003).

References

[1] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrec, The many faces of
publish/subscribe, ACM Computing Surveys 35 (2003) 114–131.

[2] R. Rajkumar, M. Gagliardi, L. Sha, The real-time publisher/subscriber inter-
process communication model for distributed real-time systems: Design and
implementation, in: Proceedings of the 1st IEEE Real-Time Technology and
Application Symposium, May 1995, pp. 66–76.

[3] J. Kaiser, M. Mock, Implementing the real-time publish/subscriber model on
the Controller Area Network (CAN), in: Proceedings of the 2nd IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing, May
1999, pp. 172–182.

[4] Y. Huang, H. Garcia-Molina, Publish/subscribe in a mobile environment,
Wireless Networks 10 (2004) 643–652.

[5] B.Y. Zhao, H. Ling, J. Stribling, S.C. Rhea, A.D. Joseph, J.D. Kubiatowicz, Tapestry:
A resilient global-scale overlay for service deployment, IEEE Journal on
Selected Areas in Communications 22 (2004) 41–53.

[6] S. Pallickara, G.C. Fox, NaradaBrokering: A middleware framework and
architecture for enabling durable peer-to-peer grids, in: Proceedings of
ACM/IFIP/USENIX InternationalMiddleware ConferenceMiddleware2003, Rio
de Janeiro, Brazil, June 2003.

[7] Antony I.T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, Peter Druschel,
SCRIBE: The design of a large-scale event notification infrastructure,
in: Networked Group Communication, 2001, pp. 30–43.

[8] M. Ripeanu, Peer-to-Peer architecture case study: Gnutella network, in: First
International Conference on Peer-to-Peer Computing, P2P’01, 2001.

[9] N.S. Good, A. Krekelberg, Usability and privacy: A study of Kazaa P2P file-
sharing, in: Proceedings of the SIGCHI Conference on Human Factors in, 2003.

[10] G. Deng, M. Xiong, A. Gokhale, G. Edwards, Evaluating real-time pub-
lish/subscribe service integration approaches in QoS-enabled component
middleware, in: Proceedings of the 10th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, ISORC, May 2007.

[11] P. Costa, M. Migliavacca, G. Picco, G. Cugola, Epidemic algorithms for reliable
content-based Publish-subscribe: An evaluation, in: Proceedings of the 24th
International Conference on Distributed Computing Systems, ICDCS04, 2004.

[12] J. Pereira, F. Fabret, F. Llirbat, D. Shasha, Efficient matching for web-based
publish/subscribe systems, in: Proceedings of the 7th International Conference
on Cooperative Information Systems, 2000, pp. 162–173.

[13] V. Ramasubramanian, R. Peterson, E.G. Sirer, Corona: A high performance
publish-subscribe system for the world wide web, in: Proceedings of
Networked SystemDesign and Implementation, NSDI, San Jose, CA, May 2006.

[14] M. Caporuscio, A. Carzaniga, A. Wolf, Design and evaluation of a support
service for mobile, wireless publish/subscribe applications, IEEE Transactions
on Software Engineering 29 (12) (2003) 1059–1071.

[15] D. Carzaniga, A. Rosenblum,Wolf, Design and evaluation of a wide-area
event notification service, ACM Transactions on Computer Systems 19 (2001)
332–382.

[16] M. Aguilera, R. Strom, D. Sturman, M. Astley, T. Chandra, Matching events in a
content-based subscription system, in: Proceedings of the 18th Annual ACM
Symposium on Principles of Distributed Computing, May 1999, pp. 53–61.

[17] G. Cugola, E. Di Nitto, A. Fuggetta, The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS, IEEE Transactions on
Software Engineering 27 (9) (2001) 827–850.

[18] L. Fiege, G. Muhl, F. Gartner, A modular approach to building event-based
systems, in: Proceedings of the 2002 ACM Symposium on Applied Computing,
2002, pp. 385–392.

[19] G. Pardo-Castellote, OMG data-distribution service: Architectural overview,
in: Proceedings of the 23rd International Conference on Distributed Comput-
ing Systems, May 2003, pp. 200–206.

[20] S. Oh, G.C. Fox, S. Ko, GMSME: An architecture for heterogeneous collaboration
with mobile devices, in: Proceedings of the fifth IEEE/IFIP Conference on
Mobile and Wireless Communications Networks, Singapore, October 2003.

[21] Palm, Treo 600. http://www.palm.com/us/products/smartphones/treo600/.
[22] B. Segall, D. Arnold, J. Boot, M. Henderson, T. Phelps, Content based routing

with elvin4, in: Proceedings of AUUG2K, Canberra, Australia, June 2000.

Sangyoon Oh received M.S. in Computer Science from
Syracuse University, USA and Ph.D. in Computer Science
Department from Indiana University at Bloomington, USA.
He is an assistant professor of Division of Information and
Computer Engineering at Ajou University, South Korea. He
previously held a research position at SK Telecom, South
Korea. His main research interest is in the design and
development of web based large scale software systems
and he has published papers in the area ofmobile software
system, collaboration system, Web Service technology,
Grid systems, and Service Oriented Architecture (SOA).

Author's personal copy

S. Oh et al. / Future Generation Computer Systems 26 (2010) 318–323 323

Jai-Hoon Kim received the B.S. degree in Control and
Instrumentation Engineering, Seoul National University,
Seoul, South Korea, in 1984, M.S. degree in Computer
Science, Indiana University, USA, in 1993, and his Ph.D.
degree in Computer Science, Texas A&M University, USA,
in 1997. He is currently a professor of the Information
and Communication department at Ajou University, South
Korea. His research interests include distributed systems,
real-time systems, and mobile computing.

Geoffrey Fox received a Ph.D. in Theoretical Physics
from Cambridge University and is now a professor of
Computer Science, Informatics, and Physics at Indiana
University. He is the director of the Community Grids
Laboratory of the Pervasive Technology Laboratories at
IndianaUniversity. He previously held positions at Caltech,
Syracuse University and Florida State University. He has
published over 550 papers in physics and computer
science and been a major author on four books. Fox has
worked in a variety of applied computer science fields
with his work on computational physics evolving into

contributions to parallel computing and now to Grid systems. He hasworked on the
computing issues in several application areas — currently focusing on Earthquake
Science.

