
Building the PolarGrid Portal Using Web 2.0
and OpenSocial

Zhenhua Guo, Raminderjeet Singh, Marlon Pierce
Community Grids Laboratory, Pervasive Technology Institute

 Indiana University, Bloomington
2719 East 10th Street, Bloomington, Indiana 47408

{zhguo, ramifnu, marpierc}@indiana.edu

ABSTRACT
Science requires collaboration. In this paper, we investigate the
feasibility of coupling current social networking techniques to
science gateways to provide a scientific collaboration model. We
are particularly interested in the integration of local and third
party services, since we believe the latter provide more long-term
sustainability than gateway-provided service instances alone. Our
prototype use case for this study is the PolarGrid portal, in which
we combine typical science portal functionality with widely used
collaboration tools. Our goal is to determine the feasibility of
rapidly developing a collaborative science gateway that
incorporates third-party collaborative services with more typical
science gateway capabilities. We specifically investigate Google
Gadget, OpenSocial, and related standards.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Web-based services. D.2.13 [Software Engineering]:
Reusable Software – Reusable Models

General Terms
Design, Management

Keywords
Collaboration tools, Web 2.0, REST, Gadget, OpenSocial,
OpenID, OAuth

1. INTRODUCTION
Science gateways [1, 2] are composed of user interface
components supported by back-end services and capabilities.
This approach has several advantages: common components can
be shared between projects, adopting a service architecture
provide a distributed version of the model-view-controller design
pattern, and service instances can support multiple front-ends. A
common approach in many gateways of the previous generation
was to adopt the JSR 168 portlet component model and
WSDL/SOAP style web services. The TeraGrid User Portal [3]
and the LEAD science gateway [4] typify this approach.

We believe that while the fundamental concepts of a component-

service gateway are still useful, it is time to revisit some of the
software and standards used to actually build gateways. Two
important candidates are the Google Gadget component model
and the REST service development style for building gateways.
Gadgets are attractive for three reasons. First, they are much
easier to write than portlets and are to some degree framework-
agnostic. Second, they can be integrated into both iGoogle
(Google’s Start Page portal) and user-developed containers.
Finally, gadgets are actually a subset of the OpenSocial
specification [5], which enables developers to provide social
networking capabilities. Standardization is useful but more
importantly one can plug directly into pre-existing social networks
with millions of users without trying to establish a new network
from scratch. RESTful services for gateways have been reviewed
elsewhere and are appropriate for building information services.
As we discuss below, REST-style services are an important part
of the OpenSocial framework and are supported by new security
specifications.

The PolarGrid project [6] is an NSF-funded MRI project that
provides computing support for the Center for the Remote
Sensing of Ice Sheets (CReSIS, https://www.cresis.ku.edu/).
CReSIS is primarily concerned with using Synthetic Aperture
Radar (SAR) techniques to obtain information on the depth of the
Greenland and Antarctic ice sheets and their underlying rock beds.
PolarGrid provides both in-the-field computing clusters for initial
image processing (useful for finding problems with radar
equipment, for example) and larger clusters at Indiana University
for full-scale image processing needed to make community data
products. Image processing is needed to produce data products of
multiple levels. The initial products result from raw image
processing and have little need for interactive job submission.
However, higher-level products need human interaction and
judgment.

In this pilot project, we implement the web services that give
users the access to testing the three basic filters (Table 1). The
basic scenario we consider here is applying data filters to clean up
lower-level data products obtained by initial data processing. We
developed three sample filters: Wiener, Median, and FIR1. Filters
are implemented using Matlab and then wrapped as Web Services
using the OGCE’s [7] GFAC tool [8].

Table 1. Testing dataset and filters
Data and Filters Parameters
Helheim dataset size: 17023 (w) x 970 (h), ground track:

67 km

Medium filter horizontal and vertical length (h, v)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SC ‘09, November 14-20, 2009 Portland, Oregon, USA
Copyright © 2009 ACM 978-1-60558-887-2/09/11... $10.00

Wiener filter horizontal and vertical length(h, v)

Fir1 filter cut off frequency (f)

The PolarGrid OpenSocial portal is an effort to provide a
collaborative environment for the scientist to work together. We
reiterate here that our goal for this study was to evaluate Google
and related APIs, not to design the final interface. Thus we adopt
generic requirements for collaborative Science Gateways. In
summary, scientists must be allowed to work with different data
sets, run their experiments on TeraGrid and share their results
with collaborating scientists. OpenSocial portals provide an
interface for people to connect and work in a collaborative
environment. We want to build upon these collaboration tools to
make it easy for users to keep track of their work, share the same
dataset and avoid duplication of work. Scientists can still
maintain their privacy if they want. Desirable features include:

• View CReSIS data sets, run filters, and view results
through Web map interfaces;

• See/Share user’s events in a Calendar;
• Update results to a common repository with appropriate

access controls;
• Post the status of computational experiments.
• Support collaboration and information exchange by

interfacing to blogs and discussion areas;

2. SOLUTION APPROACHES
There are two general modes for meeting the requirements listed
above: a) providing all services in-house and b) providing a
lightweight coupling over third-party collaboration services. Both
options can involve standards, best practices, community
contributed components, etc. The first option means running all
collaboration services on resources (servers, databases, etc)
specifically maintained by the Gateway provider. This is suitable
for closed, intranet gateways and portals, especially if there are
privacy and trust concerns with third party service providers. The
second option means relying upon third party collaboration
services as much as possible, with the gateway developers
building only the minimum integration components. Obviously
any real gateway will be a combination of these two modes. We
briefly review some existing tools to support each option.

Existing frameworks like Sakai, Moodle, Liferay, Exo and
Drupal: All of these are open source portal, CMS, web
publishing, collaboration, and social networking frameworks
widely used to develop portals for different domains. Both Sakai
and Moodle are designed to help instructors, researchers and
students collaborate online. Collaboration tools include both
general-purpose tools like calendars, notice boards and
courseware-specific components like course content and pages.
They provide easy interfaces to build customized portals and add
modules based on the need. They have developed modules for
calendars, discussion boards, and standards-based content
repositories.

Building open system using OpenSocial Gadget and using
Google services or social network services like Facebook,
Twitter etc. for collaboration. In this approach, the developer
attempts to integrate in as many third party collaboration services
as possible, removing the need to run these directly within the
portal. Thus for example instead of using a built-in calendar
system provided by a downloadable framework, the gateway uses

a pre-existing calendar service such as Google Calendar. This is
the approach that we adopt and investigate.

Most of the existing frameworks are also examining OpenSocial
and trying to build their components accordingly. Sakai3, for
example, is a new architecture expected to be released in 2011 and
will be OpenSocial compliant with other Web 2.0 features. The
Moodle team is also building OpenSocial framework called
Wookie that is currently in Apache Foundation's Incubator at
initial development stage.

Liferay, Exo and Drupal already have at least prototyped support
for OpenSocial. These consist of a large set of plug-ins available
that a portal developer can use to easily bring up a social site
using these modules. The question here is what will happen when
one needs to move to a different framework later: how much
effort it will take? Another question is how far these community
frameworks will go and can evolve with the change happening in
modern software architectures. We believe the important long-
term issue is sustainability of deployed specific gateway
instances, not standard compatibility.

We believe the lightweight approach has several inherent
advantages if it can be made to work. First, we will be able to
take advantage of tools such as Gmail, Google calendars, blog and
Twitter feeds, etc that users are already using and familiar with.
Second, we believe building on top of third-party systems is more
sustainable in the long term. A problem of the purely in-house
solutions is that the intellectual content (discussions, documents,
project timelines, generated data, and job execution metadata) can
be lost when the project ends, the servers are decommissioned,
the maintainers take new jobs, and so on. By using prominent
third party services, we can offload some of the long term
archiving of collaboration data from that gateway itself. Third,
many of these services can be integrated into huge existing social
networks, which we believe is much easier at this point than
tempting users to join yet another startup network.

We note that we make no judgments on the sustainability of
community frameworks (Sakai, Liferay, etc) versus third party
services: we believe both models can succeed. Our concern is the
sustainability of specific gateways built from these frameworks.
Sustaining a gateway in the long term requires a significant
amount of effort. Large teams can afford to provide most services
in-house, but smaller teams cannot. Furthermore, we doubt users
will be tempted to join yet another social network at this point.
We concede these are our personal opinions. Our goal in this
work is to build a system to test those opinions.

We note also that there are subtle problems regarding trust that are
beyond the scope of this paper. Users need to be able to trust that
the gateway is sustainable or else they won’t use it. However,
they must also trust a third-party service provider to maintain
privacy and ownership of intellectual content. We believe these
choices are worth further study.

To support our lightweight approach we have tried different open
source tools and API’s. We looked into Google Data API’s [9] to
provide framework to connect to different Google tools to share
the data. This API provides a simple protocol to read and write
data to various Google tools like Blogger, Calendar, Picasa,
Google docs, YouTube etc. It is very easy to use these API’s to
read/write data. Google Friend Connect [10] is another tool we
explored to provide social support to the community. We will
explain in detail about how they helped us in our solution. Table 2

summaries design and technology choices we made in current
implementation.

Table 2. Summary of design and technology choices

Tech/Design
choices Reason Summary

Web 2.0 Improves usability and responsiveness

Gadget
Makes developers possible to write reusable web
components that can be deployed to any Gadget
container.

OpenSocial
Makes portal possible to interact with existing
large social networks instead of building our
own.

REST
Makes applications able to access PolarGrid
services using simple HTTP requests.

OpenID Makes portal able to interact with external
OpenID-compliant identity management systems.

OAuth Makes portal able to interact with external
OAuth-protected services.

MyProxy Makes portal able to interact with security
infrastructure of Grid systems.

3. ARCHITECTURE
The PolarGrid portal is designed using Web 2.0 concepts [11] ,
Google Gadget components [12], OpenSocial collaborative user
networks, and RESTful services. We will start by introducing all
the components briefly and then go into detail.

Gadgets are a frontend user interaction layer and provide Web
based user experience like other web applications. Web Services
(RESTful services) wrap backend capabilities and provide
flexibility to the client applications to make
synchronous/asynchronous calls. Apache Shindig, an open source
implementation of OpenSocial specification, provides social
networking features to the portal. In our solution we use Shindig
as gadget renderer that understands the gadget XML and creates
HTML content to be displayed in web browser. We use the OGCE
gadget layout manager [13] to arrange both social and non-social
gadgets in a layout. The gadget layout manager provides internal
user management and also support user authentication using
OpenID [14]. User can add additional gadgets to a single layout
and also create multiple tabs in same screen. Google Friend
Connect provides authentication support using Google, Yahoo,
AOL accounts and using those accounts to provide collaborative
environment.

In our architecture, the PolarGrid User portal has four main
components (see Figure 1). We will explain them one by one and
how each component is designed.
The basic processing flow is as follows:

1. A user visits his/her gadget home page, which is served by
gadget layout manager

2. The gadget layout manager constructs the user’s custom
gadget layout in browser and makes use of a gadget renderer
(Shindig in our case) to render each gadget XML to
HTML/JavaScript. Then the generated HTML/JavaScript
code is displayed in browser.

3. Different gadgets may interact with different backend
RESTful services to generate output. A JSON response is
sent back to the gadget to display the results.

4. Gadgets and RESTful services also query social data using
OpenSocial API’s by sending requests to Shindig server.

In the processing flow described above, the discussion of
authentication and authorization are omitted for simplicity. They
will be covered in a separate section. We will describe the
components one by one in detail.

3.1 Gadgets (Web widgets)
Gadgets are mini applications that can be developed and rendered
by any standard-compliant gadget renderer. They are based on
many existing technologies including HTML, JavaScript and CSS,
which removes (we believe) many barriers to entry for application
web developers; that is, developers can build gadgets using almost
any Web language and framework. The gadget renderer is
responsible for converting gadget source files to HTML code that
can be displayed in most of modern browsers. With the popularity
of Web 2.0 in newly developed portals, gadgets are also widely
used in these sites. Gadgets are defined by XML files that include
both metadata and HTML/JavaScript code. Basically there are
two types of gadgets - legacy gadgets and OpenSocial gadgets.
Gadgets cannot run in regular HTTP web servers because they
need more runtime support including rendering and OpenSocial
data service. They are typically served by gadget rendering
engines such as Apache Shindig (see below).

We have created several different gadgets for the portal to fit
PolarGrid project needs (Table 3).

Table 3. PolarGrid gadgets

Filter Gadget
User can select different parameters to run
a filter to create image. Result image will
be displayed on Google map.

Blog Gadget To display the feeds from PolarGrid blog
site.

Figure 1. Architecture diagram of PolarGrid Portal

Discussion
Board

Google Friend Connect (GFC) gadget to
discuss on certain topic.

Filter Images Picasa gadget to display all the filter
images with filter description.

FAQ Gadget
GFC gadget for Question/Answer.
Moderator can always control the topics
and can block people from the list.

Google
Calendar

Calendar gadget to display public
PolarGrid-specific activities and tasks.

Twitter Gadget To read filter execution updates from
twitter related to PolarGrid.

Facebook
Gadget

User can update status of task directly to
Facebook from here.

Currently all the gadgets are deployed in the local shindig server
and added in OGCE layout manager. These gadgets may be
deployed into an online gadget container like iGoogle. This is
useful for development and testing of individual gadgets and also
a means to deliver general interesting gadgets to a wider audience.

3.2 Gadget layout manager
Having frontend portal gadgets, we need to put them into a
container that manages layout of gadgets and displays them to
end-users. We have developed our own gadget layout manager,
which makes brings customization of user interface under our
control. Gadgets are organized into different groups in arbitrary
way. When a gadget group is rendered, all of its contained gadgets
are displayed.

Two built-in layouts are provided. One is tab layout that is shown
in Figure 2. Each tab corresponds to a gadget group and the user
can switch between different tabs by clicking tab title in tab bar.
The other is tree layout that is shown in Figure 3. On the left of
user interface is a navigation tree. Each internal tree node
represents a gadget group. When a user clicks an internal tree
node, corresponding gadgets are rendered and displayed in the
main panel.

We support two gadget views: home and canvas. In the home
view, a gadget shares space with other gadgets within the same
group. The advantage of this view is that multiple gadgets are
simultaneously displayed on the same page, which is convenient
for users who are interested in output of more than one gadget. In
the canvas view, a gadget does not share space with other gadgets
and occupies all of space. This view is useful for gadgets that
need large space for better interactivity. One example of this is a
scientific workflow composition gadget. A large editing space
helps improve editing efficiency of workflows. For each gadget,
the user can easily switch between home view and canvas view.

On-demand gadget rendering is used to improve performance.
The user may have several gadgets that are organized into
different groups. At any moment, just one gadget group is
displayed and the other groups are invisible. Gadget layout
manager does not render all of the gadget groups at one time.
Gadgets belonging to a group are rendered only when the user
switches to that gadget group for the first time. This improves
performance by avoiding unnecessary rendering of gadget groups
that may never be used by user in a session.

 Figure 2. Gadget layout manager - Tab layout

 Figure 3. Gadget layout manager - Tree layout

Users can easily export and import their layout data using our
container. The exported data includes all information needed to
rebuild users’ gadget configuration and layout. If the user wants to
switch to another instance of our gadget layout manager, he/she
just needs to export his/her data and import it to the new instance.
Currently we use a custom JSON format to describe layouts. The
reason we chose JSON is that it is lightweight and natively
supported by JavaScript. There are no foreseeable obstacles that
prevent us from supporting more data formats (e.g. XML).

The OGCE gadget container supports the following
personalization features.

Drag-and-Drop support: Within a rendered gadget group, the
user can drag and drop any gadget to move it to a different
location. This is useful because usually the user wants to put
similar and related gadgets close to each other.

Dynamic addition and removal of gadgets and gadget groups:
To add a new gadget, the user just needs address of the gadget
specification file which can be hosted anywhere. When a gadget
group is removed, all of its contained gadgets are moved as well.

Theme customization: Several built-in themes are provided. Also
developers can customize theme by writing their own CSS files.

Our goal is not to reproduce iGoogle and compete with Google, of
course. Our goal is to give communities and developers an
alternative by building an open source gadget layout manager that
provides rich features, can be run in closed environments, and is
under the developer’s direct control. So any community that wants
to build their own gadget servers instead of using iGoogle can

download and install our gadget container, which has an Apache
Maven-based build process. The OGCE gadget layout manager is
appropriate for private gateways. OGCE gadget layout manager is
almost as fully featured as iGoogle, as is shown in Table 4.

Table 4. Features of OGCE layout manager and iGoogle

Features OGCE Layout
Manager iGoogle

Gadget Repository In Development Yes

Gadget User Preference Yes Yes
Dynamic Height Adjustment Yes Yes

Drag and Drop Yes Yes

Home/Canvas view Yes Yes
Theme Customization Yes Yes
Layout data export and

import
Yes No

3.3 Gadget Renderer (Shindig)
Shindig is a reference implementation of Gadget and OpenSocial
specification. Firstly, it supports gadget rendering. Given a gadget
specification file, HTML output is generated that can be displayed
in most modern browsers. In the generated HTML, all required
gadget JavaScript is served automatically. Secondly, Shindig
supports gadget metadata service by which third-party
applications can query the metadata of gadgets. For example,
developer can query title, description and preferred height of a
specific gadget. Thirdly, it supports OpenSocial data serving in a
primitive way. Shindig’s built-in implementation supports read-
only OpenSocial operations applied to in-memory JSON social
data representation. Based on design requirements, we have two
choices about how to integrate real backend social data. These
choices match our prior discussion on open vs. closed approach in
section 2.

We are currently using Apache Shindig as our gadget renderer. In
the future, we plan to implement our own data service and make it
connect to Shindig so that Shindig container can manipulate our
social data. In other words, we build our own service to host
social data. This is an in-house solution which is appropriate for
private gateways or gateways having specific concerns about
security. If we delegate identity management to an external party
like Google Friend Connect we can also store users’ social data in
the external party. In this case, all social data are served by an
external party used by our system. This solution makes use of
existing third-party services, which may improve data
sustainability and reduce development cost and time. One
important thing is that standard-compliant external services are
preferred over proprietary services. The reason is that it is easier
for OpenSocial client applications to switch to a different social
data service.

3.4 RESTful Web Service for PolarGrid
RESTful Web services provide an interface to expose features of
backend services in REST/RPC calls and respond as JSON
messages, which can easily be converted to JavaScript in gadgets.

We have developed four different handlers for RESTful services.
Each handler plays its own role, and all the handlers are executed
in a sequential manner. Error handling is done at each individual
component level to report correct error to users.

Table 5. RESTful service handlers

Handler Function

GFAC
Handler

GFAC is a Service toolkit from OGCE to wrap
command line applications as Web services and
run them on distributed computational resources.
Here GFAC acts as a wrapper of MatLab binaries
to filter data and also will help in data movement
from different resources. This also takes care of
GSI security to make use of TeraGrid resources.

Picasa
Handler

This handler reads the image URL response from
GFAC, extracts the image and uploads it to
Picasa using a given Google account and to a
particular folder. It also adds description of input
parameters to the image.

Google
Calendar
Handler

This records the activity to the given Google
calendar about image data processing. This
records the processing time taken to process one
data filer.

Twitter
Handler

When all the processing is done and the image is
uploaded to Picasa, this handler updates the
twitter feed with image URL and parameters.
Portal users can directly look at the feed and see
what processing is already done and what are the
results.

Currently, our RESTful service is not protected by any security
mechanism. How to protect it with mechanisms described in
Section 4 is part of our future work.

4. SECURITY
When building any portal or a gateway, security plays an
important role in the architecture and sustainability of any
framework or solution. Two fundaemntal aspects of security are
authentication and authorization. A traditional GSI credential is
used by backend components like GFAC to communicate with
TeraGrid. As discussed below, we must go beyond this and
investigate more options. For OpenSocial sites and gadgets,
OpenID and OAuth are the solutions available for those two
aspects.

4.1 Authentication
Authentication is the hallmark of any Web portal. The problem
with existing authentication frameworks is that users’ profile data
stored at different identity management systems is isolated and
disconnected. As a result, the user must remember usernames and
passwords for many accounts and create lot of redundant profile
data. One proposed solution to this problem is OpenID, resulting
from community effort. The way OpenID tackles the problem is
to define an interaction protocol between providers and relying
parties. Providers act as authentication services. Relying parties
that want to verify user’s identity rely on providers to accomplish
this. Users can use a single OpenID to access various services
provided by relying parties. Currently, the OGCE gadget layout
manager provides built-in user management system and it also
supports OpenID as relying party. Considering the number of
public OpenID providers, including Google Blogger, Yahoo!, and
MySpace, it is highly possible that the user already has an OpenID.
Users can use their existing OpenIDs to log in OGCE gadget
layout manager. The user can bind their OpenID to an OGCE

gadget layout manager local account. During binding
establishment, OpenID Simple Registration Extension [15] and
Attribute Exchange [16] are used to retrieve user’s profile data as
much as possible from provider, which is fed into fields of local
account. As a result, the user does not need to type profile
information (e.g. name, gender) repetitively.

To maximize richness and flexibility, we propose an identity
management system integration architecture (shown in Figure 4)
in which both OpenID providers and non-OpenID authentication
services are supported.

Figure 4. OGCE authentication integration

In the architecture, all authentication communications go through
the integration server. After the user types his or her credential
information (usually username and password), it is sent to
integration server. Then integration server takes over and handles
communication details with the backend authentication systems.
After authentication is done, the integration server returns
authentication results to the end user. The implementation of
integration server should be extensible so that developers can
develop their own authentication modules to interact with specific
backend authentication systems.

Google Friend Connect (GFC) implements integration of multiple
authentication systems. Google Friend Connect is not bound to
Google Applications. It can provide an authentication service to
any website. It enables us to use all common Identity
Management Systems and store the OpenSocial data on the server.
Besides authentication, Google Friend Connect maintains social
data, such as members and messages, associated to each registered
websites. We are currently using friend connect collaborations
features. We want to integrate GFC to the backend REST services
level to validate the user token is correct. GFC has API’s to
support server-side integration besides client-side integration. We
are still in the process of investigation to use maximum features of
friend connect.
4.2 Authorization
Authorization is another hallmark of science gateways. For grid
systems, usually Grid Security Infrastructure [17] is used.
MyProxy [18, 19] server acts as certificate repository for science
gateways and manage authentication. One problem is how to
combine a gateway user management system with MyProxy
certificates. Community accounts [20] are a simple solution in
which all gateway users share the same backend grid account,

which is used to access grid resources. Some authorization
frameworks, including Community Authorization Service [21, 22],
Akenti [23] and PERMIS [24], have been proposed to improve
original GSI. They work well for centrally coordinated Grids like
NSF’s TeraGrid. However, in the PolarGrid portal design we are
trying to have an open architecture for services. The portal may
need to access some third-party services that are not under our
control. As a result, GSI and GSI derivatives cannot be used
directly although they still can be used to access some centralized
Grid systems.

We investigated OAuth [25], which is an open standard tackling
the problem of cross-domain authorization. OAuth allows third-
party applications to access users’ data stored at service providers.
This enables our applications to access OAuth-protected external
services including Twitter, Google, and Yahoo!. The official
OAuth specification only covers three-legged authorization in
which the user must be involved to grant or deny resource access
requests. For science gateways, this requirement is sometimes too
tight considering that in scientific computation batch processing is
a common occurrence. One solution is to use three-legged OAuth
to start up a complete workflow that consists of multiple jobs.
After OAuth processing, an access token is granted that makes the
program able to access resources. This is acceptable if all
accessed resources are within the same domain as the program.
However, if OAuth-protected external resources, such as Google
Picasa, are accessed, additional OAuth authorization processes are
needed so that the user must manually grant access requests to all
external OAuth-protected resources. The reason is that the access
token obtained from one domain cannot be used to access
resources belonging to another domain. So we have extended
OAuth to support two-legged authorization. After the initial
delegation of authority, client application can access resources on
user’s behalf without user involvement. In summary, digital
signature using public key cryptography is utilized to prove
identity of message sender. As a result, a key management
mechanism is necessary. Two-legged OAuth process flow is
shown in Figure 5.

Figure 5. Two-legged OAuth

At first the user uploads public key certificate to OAuth server
that protects the backend service. Then the user uploads the
corresponding private key to client application. This step actually
delegates user’s privileges to the client application. After that, the

client application can access data of the OAuth-protected service
on behalf of the user. Sometimes the user may not be willing to
expose their long-term private keys to a client application because
of trust issues. We proposed a solution that combines MyProxy. It
is shown in Figure 6.

Figure 6. Two-legged OAuth and MyProxy

At first, the user uploads his/her long-term public key certificate
and private key to MyProxy server. Then when the user wants to
access an OAuth-protected service, he/she first retrieves a short-
lived proxy certificate and private key from MyProxy server. The
following process matches what is described in Figure 5. Length
of validity period of proxy certificate checked out in step 2 can be
used to limit how long the privilege delegation will be. The
problem is that, in Step 2, the private key cannot be checked out
in the current MyProxy implementation. Additional work is
needed to support checkout of private key plus proxy certificate.
In both of the two OAuth-based authorization architectures
described above, the initial privilege delegation is cumbersome
and not user-friendly. Further study is needed on how to simplify
and automate the process.

All of our OAuth investigation was done separately from
PolarGrid Portal. It will be integrated into PolarGrid portal in
future work. Additionally, authorization granularity and
delegation revocation are two problems we are working on.

Finally, integrating OpenID and OAuth is helpful to improve
usability. Users can log in portal using their existing OpenID and
authorize the portal to access their data stored at external services
using OAuth-based approach. This has not been implemented in
our current code base and is part of future work.

5. CONCLUSIONS
Science gateways have long been built out of reusable
components and services, but we believe the standards used need
to be reevaluated. We also believe that previous science gateways
have not provided enough collaboration and social networking
capabilities. We further have asserted here that collaborative
service sustainability (not to be confused with software
sustainability) is a key issue when building these systems. Our
goal is to build a system to test some of these ideas.

Our methodology is to utilize lightweight open standards and
make use of existing third-party services instead of building our

own. Use of open standards improves interoperability so that we
are not locked to a specific implementation. Delegating some
components to third-party services makes agile development
possible and improves sustainability. We have chosen to
investigate REST, Web 2.0, Gadget and OpenSocial. REST makes
our gadgets able to access backend services easily without
incurring complex message manipulation operations (compared
with SOAP). The gadget specification is used to build modular
web components (gadgets) that can be deployed to any standard-
compliant gadget container. Numerous existing gadgets in
iGoogle and Orkut developed by programmers across the world
can be used by our gateway easily. This is a notable improvement
over the older portlet component model, which required server-
side (rather than client-side) integration and which never
developed the extensive library of standard and portable
component that was anticipated. Also OpenSocial makes it
possible for our portal to access users’ social data in existing
social networking services. The third-party services used in our
current implementation include Google Picasa, Google Calendar
and Twitter. They are used to save filter execution results, filter
events and filter execution status notifications.

We reiterate that our goal is to investigate applications of existing
technologies and to build a generic open portal platform instead of
a closed one. Considering development time of PolarGrid portal
and the accomplishments, we believe our investigation and trial is
successful. However, there are problems, especially security
integration that will require further work.

6. FUTURE WORK
The system described in this paper was an evaluation prototype to
explore different technologies and how they work together. The
current portal illustrates capabilities, but we must align them more
carefully with specific PolarGrid user requirements. We will work
to enhance user experience with the Layout Manager and improve
gadget directory support using Sling [26] or Jackrabbit [27] to
leverage the versioning and comments capabilities supported by
these API’s.

For authentication, we will build generic identity integration
service described in Figure 4, which will provide an
authentication service to both the portal and other external
applications. For authorization, we will first integrate two-legged
and three-legged OAuth into the portal and integrate it with GSI
security. OAuth will be used to secure both portal data, such as
layout data and user information, and RESTful services. Currently,
our PolarGrid RESTful service does not have any built-in security
mechanism. We will evaluate OAuth for protecting our developed
RESTful service and investigate how to use it to protect arbitrary
RESTful services in a general and noninvasive way. Further,
authorization granularity and delegation revocation will be studied
carefully, and OAuth extensions will be proposed to solve these
problems in a flexible and scalable way. Finally, integration of
OpenID and OAuth will be implemented to make the whole
process more user-friendly.

Inter-gadget communication is also part of our future work. There
exist different intercommunication patterns. One pattern is direct
communication in which a logical communication channel
between two gadgets is established so that one gadget can send
messages to and receives messages from the other gadget directly.
Another pattern is publish/subscribe. A ‘publisher’ gadget
publishes its changes, and ‘subscriber’ gadgets that declare

interest in those changes get notified. One possible application is
workflow submission and monitoring. A ‘publisher’ gadget can be
used to submit workflows and the corresponding ‘subscriber’
workflow status-monitoring gadget is notified when the user
submits a new workflow through the ‘publisher’ gadget. One
foreseeable obstacle is unique identification of gadgets. Simply
UUID can be generated automatically for each gadget. However,
UUID is not human-friendly. Trade-off between rigorousness and
convenience needs to be made.

7. ACKNOWLEDGMENTS
The National Science Foundation supports this work through
awards 0721656, "SDCI NMI Improvement: Open Grid
Computing Environments Software for Science Gateways" and
0504075, "SCI: TeraGrid Resource Partners: Indiana University."
The Polar Grid project is funded by NSF award 0723054, "MRI:
Acquisition of PolarGrid: Cyberinfrastructure for Polar Science".
We thank Jun Wang for developing Matlab image processing
filters that are used by some of our frontend gadgets.

8. REFERENCES
[1] Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., and

Pamidighantam, S. 2008. TeraGrid Science Gateways and
Their Impact on Science. IEEE Computer 41(11): 32-41

[2] TeraGrid Science Gateways [Online]
http://www.TeraGrid.org/gateways/gateway_list.php

[3] TeraGrid user portal [Online]
https://portal.TeraGrid.org/gridsphere/gridsphere

[4] Lead Portal [Online]
https://portal.leadproject.org/gridsphere/gridsphere

[5] OpenSocial Specification [Online]
http://www.opensocial.org/Technical-Resources

[6] PolarGrid Project [Online]
http://www.PolarGrid.org/PolarGrid/index.php/Main_Page

[7] OGCE Project [Online]
http://www.collab-ogce.org/ogce/index.php/Main_Page

[8] Generic Factory toolkit [Online]
http://www.collab-ogce.org/ogce/index.php/GFAC

[9] Google Data Protocol [Online]
http://code.Google.com/apis/gdata/

[10] Google Friend Connect [Online]
http://www.Google.com/friendconnect/

[11] Pierce, M. E., Fox, G., Yuan, H., and Deng, Y. 2006.
Cyberinfrastructure and Web 2.0. "High Performance
Computing and Grids in Action" (L. Grandinetti Editor)
published by IOS Press, Amsterdam, as the volume no 16 in
the series "Advances in Parallel Computing", Proceedings of
HPC2006 July 4 2006 Cetraro Italy

[12] Gadget Specification [Online]
http://code.Google.com/apis/gadgets/docs/spec.html

[13] OGCE Gadget Container [Online]

http://www.collab-
ogce.org/ogce/index.php/OGCE_Gadget_Container

[14] OpenID Authentication 1.1 [Online]
http://openid.net/specs/openid-authentication-1_1.html

[15] OpenID Simple Registration Extension 1.0 [Online]
http://openid.net/specs/openid-simple-registration-extension-
1_0.html.

[16] OpenID Attribute Exchange 1.0 - Final [Online]
http://openid.net/specs/openid-attribute-exchange-1_0.html.

[17] Butler, R., Welch, V., Engert, D., Foster, I., Tuecke, S.,
Volmer, J., and Kesselman, C. 2000. A National-Scale
Authentication Infrastructure. IEEE Computer 33(12): 60-66
(2000)

[18] Novotny, J., Tuecke, S., and Welch, V. 2001. An Online
Credential Repository for the Grid: MyProxy. Proceedings of
the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, August
2001, pages 104-111.

[19] Basney, J., Humphrey, M., and Welch, V. 2005. The
MyProxy Online Credential Repository. Software: Practice
and Experience, Volume 35, Issue 9, July 2005, pages 801-
816.

[20] Welch, V., Barlow, J., Basney, J., Marcusiu, D., and
Wilkins-Diehr, N. 2007. A AAAA model to support science
gateways with community accounts. Concurrency and
Computation: Practice and Experience 19(6): 893-904 (2007)

[21] Pearlman, L., Welch, V., Foster, I., Kesselman, C., and
Tuecke, S. 2002. A Community Authorization Service for
Group Collaboration. Proceedings of the IEEE 3rd
International Workshop on Policies for Distributed Systems
and Networks, 2002.

[22] Pearlman, L., Kesselman, C., Welch, V., Foster, I., and
Tuecke, S. 2003. The Community Authorization Service:
Status and Future, CHEP03, March 24-28, 2003, La Jolla,
California

[23] Thompson, M., et al. 1999. Certificate-based Access Control
for Widely Distributed Resources. In Proc. 8th
UsenixSecurity Symposium. 1999.

[24] Chadwick, D. W. and Otenko, A. 2003. The PERMIS X.509
role based privilege management infrastructure. Future
Generation Comp. Syst. 19(2), pp. 27-289, 2003.

[25] OAuth Core 1.0. [Online] http://oauth.net/core/1.0
[26] Sling [Online] http://sling.apache.org/site/index.html
[27] Jackrabbit [Online] http://jackrabbit.apache.org/

