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Abstract 
We describe the design and features of our Grid Computing Environments Shell system, 
or GCEShell. We view computing Grids as providing essentially a globally scalable 
distributed operating system that exposes low level programming APIs. From these 
system-level commands we may build a higher level library of more user-friendly shell 
commands, which may in turn be programmed through scripts.  The GCEShell consists 
of a shell engine that serves as a container environment for managing GCEShell 
commands, which are client implementations for remote Web Service/Open Grid 
Service Architecture services that resemble common UNIX shell operations.  
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1. INTRODUCTION 
Grid Computing Environments (GCEs) [1] provide a user view of computational Grid 

technologies.  GCEs are often associated with Web portals, but in general may be any 
type of client management environment.  GCEs also come in two primary varieties: 
Problem Solving Environments (PSEs), which provide custom interfaces for working 
with specific sets of applications, visualization tools, etc; and shell-like system portals, 
which provide direct access to basic commands such as file manipulation and command 
execution.  In Ref. [1] these latter portals are referred to as “GCEShell” portals. This 
paper is extended version of ref [2]. 

GCEShell environments may however be separated from specific user interface 
rendering.  We consider here a general engine for managing Grid Web Service clients.  
This GCEShell engine, which we initially implement as a command line interface, is 
inspired by the UNIX [3] shell environments, which provide a more user friendly 
environment for interacting with the operating system than programming directly with 
system level libraries.  We view the emerging Open Grids Services Architecture 
(OGSA) [4,5] and Web service [6] infrastructures as providing a global operating 



 

 

system, extending ideas such as originally incorporated in the Legion system [7].  As 
with other operating systems, most users should not be expected to program at the 
system level.  Instead, we see the need for a command hosting and management 
environment that supports a number of useful shell-like commands: commands for 
listing and manipulating remote files, commands for listing system resources, and so on. 
These shell commands should also support simple composition and workflow through 
linkages (such as pipes and redirects) and ultimately through scripting environments. 

 
2. GCE SHELL ENGINE 

The shell engine is the core application that interprets commands, runs client commands, 
communicates with the servers (applications and registries), and manages application 
lifecycles.  The GCEShell engine essentially serves as a container for client applications, 
analogous to server-side hosting environments [4].  

Our initial implementation of the GCEShell interface is as command line interface 
similar to UNIX shells. It manages user command entries and gives results back to 
standard output.  Also, command instances and each command’s status are stored at this 
stage. The shell engine spawns a new thread for each shell command so that user can 
coordinate each single command entry by itself using several commands like kill, ps, 
history, exit.  

The GCEShell involves both local and remote commands.  The shell engine makes 
several different manipulations, like if the given URI is local, the engine directly makes 
related command calls. Otherwise, WSDL interfaces [8] are discovered at the given URI 
that gives service description.  According to that information, service requests are made 
at given SOAP endpoint by using SOAP protocol [9].  

The shell engine aggregates all the objects that perform functionality to the shell 
container. These objects are commands, tasks, communication with servers, and 
workflows. In other words, the shell engine negotiates with servers, manages application 
lifecycles, discovers services and communicates with remote services. If the worst case 
happens, like a service provider is down, there are several cases to overcome that 
situation. First, the request may be repeated according to service priority and importance. 
This time slice should be restricted in terms of system performance dynamically. Finally, 
if a part of command arguments fails, either entire command fails or partial result given 
on demand.  

Figure 1 shows the shell engine’s principal components.  Each component in our 
implementation is a Java interface with an implementing class. Arrows in the figure 
indicates communications between modules. Broken arrows show relationship with 
Exception Handler. Bold arrows indicate execution steps. Following this design 
simplifies development of the more complicated components (such as the command line 
parser) and also allows future reimplementation by other developers. 



 

 

 

 
 
 
Figure 1 also indicates the steps followed after a command is issued to the shell.  

Here we summarize the execution steps for processing a user command. In Step 1, the 
user enters a command. That command is caught by the shell engine and divided into the 
tokens by the Parser in Step 2. The Parser is responsible for checking the syntax of 
command line.  We follow a typical shell-like syntax for command the command line: 
commands, attributes and options. The Parser can also distinguish delimiters between 
multiple commands and remove them. In our test implementation we mark each item in 
the command line as a token and collect them in a hash table.  Parsing along syntax rules 
is a quite well known subfield of computer science and is reviewed in [10].  We are in 
the process of replacing the test implementation with a more formal parsing engine that 
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Figure 1: GCE Shell execution steps and block diagram 
 



 

 

will produce a parse tree at the end of Step 2. We are currently evaluating third party 
parser packages such as ANTLR [11] and Java implementations of the DOM [12].    

The results of the parsing are next passed to the Workflow Manager in Step 3, which 
is responsible for executing the parsed command line. The test implementation 
represents this as a hashtable, but we are in the process of converting this to use a “parse 
tree” object as described above.  The workflow manager is then responsible for 
managing the execution of the clients and their arguments that it receives from the 
parser, Step 4. These clients may be either local applications (such as shell history 
commands) as shown in Step 4a, or clients that must connect to remote applications, 
Step 4b.  In the latter case, the client must then interact with the remote Web Service, 
Step 5.  In both cases, the client applications implement a common shell command 
interface (see next section). Each command line is represented as a single object and is 
executed by a single thread.  The Workflow Manager is responsible for creating new 
threads for each command line it receives (represented as a parse tree).  Each thread in 
turn must walk the tree and identify commands (nodes that only possess leaves) and 
create “command objects” (detailed below) to execute the specific shell commands.  
These command objects are executed in sequence if the command line has more than 
one command.  Exceptions may occur at numerous places in this system and are handled 
by the Exception Handler.  We address these issues below.  We implemented event 
system model for this design that works in between workflow manager and exception 
handler.  

WS Clients cover inspection of services, discoveries and service requests for grid 
services. First of all, the service in the specified URI is inspected and WSDL interface is 
found. After that the engine creates client stubs for that service and makes remote 
procedure requests from SOAP endpoint. If an exception is thrown, the exception 
handler deals with that. Unless it is succeeded, the service and so the command fails and 
gives an exit code and message as error.  

The Workflow Manager traces all parts of command to be completed successfully. It 
combines completed parts in accordance with command line and finally outputs are sent 
to GCEShell interface. 

The base shell context is responsible for creating child shell contexts to hold 
individual commands and for managing the lifecycle of these child contexts.  It also 
manages communications between the child contexts; that is, the pipes and redirects are 
functions of the base context.  Child context threads must block until the command 
completes.  If this is not implemented in the shell command itself (the client is 
decoupled from the server and exits before the server process completes) then the child 
context will need to implement a listener that gets notified when the command completes 
on the server. 

 



 

 

The GCEShell engine’s design must provide a simple, well defined mechanism for 
adding new shell commands. Command prototypes and base shell connections is 
specified. In future, we need to add dynamic class loading so that grid users could place 
new features on run time. However, a user can add, remove or replace a command 
implementation by updating properties file and providing appropriate classpaths.  

 
3. GCE SHELL COMMANDS 

GCEShell contains command and context interfaces which must be implemented by new 
commands. Single command objects are derived from base shell so that singleton carries 
all requirements needed. To simplify the loading and management of child components 
by the Base Shell, we define a common interface for both local and remote shell 
commands. The shell interface has the following methods. 

 

• For each attribute, write accessor (get and set) methods. 

• For execution directions, execute() method. 
• To kill the command or process, exit() method. 

• Allowing process to sleep, suspend() method. 
 
Commands are similar to jakarta-ant tasks and JXTA ShellCommands. A task can 

have multiple attributes. The value of an attribute might contain references to a property. 
These references will be resolved before the task is executed. A service command can 
have a set of properties. These might be set in the properties file by outside the base 
shell. A property has a name and a value; the name is case-sensitive. Properties may be 
used in the value of command names.  

Commands will be well defined by interfaces, so a developer might want to add more 
commands. To do that, it is needed to implement classes that inherited from that 
interface.  The only thing is to plug that new command into shell container, updating 
property file giving command name and package name pairs. Removing a command or 
replacing new ones are need similar configuration above. 

 
4. EXCEPTIONS AND EXCEPTION HANDLING 

The most crucial expectation from any kind of shell is to run forever, unless a user exits 
it. GCEShell has modular and integrated design, to prevent conflicts in terms of using 
services and crashes. It is especially important for GCEShell, which interact with 
distributed resources that may become unavailable for a number of reasons.  It is 
therefore important that the GCEShell have robust exception handling.   

ParserException is thrown, when the command stream consist of unknown syntax 
parameters or characters. Thus, the user can correct words or syntax. If the given 
command name is not specified in the properties file, CommandNotFound exception is 



 

 

thrown.  LocalClientException is thrown when a local command has an internal error, 
perhaps caused by improper input.  Finally, RemoteClientExceptions may be thrown 
either if the remote command was sent improper input or the remote server is 
unreachable for any number of reasons.  

Each exception interacted with related module, but most of them are handled by the 
workflow manager and base shell. There are mechanisms to deal with exceptions. For 
example, when remote client exception thrown, the request will be made in a loop so far 
to get service or exceed the timeout. Also, timeouts can be done several times. 

 
5. INFORMATION SYSTEM REQUIREMENTS 

The Shell Commands are responsible for discovering the service that they need and for 
communicating with that service.  However, it is possible and perhaps desirable for the 
shell to take over some of these responsibilities when the command is run by the shell.  
In this case, the command would contact the GCEShell in the service discovery phase 
and communicate only indirectly with the remote service, with direct communications 
filtered through the shell. 

Workflow manager coordinates all negations with services and adjust timeouts 
according to priority of specified services. The purpose of involving WSIL [13] is that 
the base shell needs to inspect web services instantly. Likewise, gce-ls command is 
available remote service of the shell. In case of taking URI argument, related web 
service method being invoked. So, currently up and running web services reported back 
to the shell container. For example, 

 
 gce-list http://fuji.ucs.indiana.edu:8080/axis/services 
 
The gce-list command examines the inspection.wsil at this location and inspects what 

WS running and gets back the list of WSDL interfaces.  
The shell container is eligible to deal with some possible failures. If a command 

resulted with error or exception, workflow manager might be able to manage that in 
different cases. Depending on partial results, either command is terminated or request is 
repeated until getting the service or timeout. 

GCEShell container can support Globus Security Infrastructure (GSI) [14] to access 
COG [15] services. Also it is compatible with GSI-enabled web services. 

         
   5.1. Information System Security 

Information systems could have restricted information. To retrieve this information 
system users should be authenticated. Globus proxy service provides authentication 
using X509 certificates. When a user logs in to a GCEShell it gets globus proxy 



 

 

credentials until either proxy expired or logout. Using the proxy, a client can call Cog 
based commands and secure web services commands. 

GCEShell engine supports secure web services to access restricted services. GSI 
enabled security system uses Transport Layer Security (TLS). Secure connection 
established after user proxy and host proxiy negotiation. GSI secured channel is used to 
exchange critical or private information with parties.  

 
6. STATUS OF IMPLEMENTATION 

GCEShell interface is a standalone application written in Java. All commands implement 
the same interface and each command runs in a new thread. We have implemented the 
following so far:   a) we are constructing the GCEShell engine, with initial prototypes; b) 
we are implementing an initial set of commands, which use the interface described 
above for clients and implement remote services using Apache Axis 
(http://ws.apache.org/axis); c) the shell has ability to use environment variables; and d) 
we are implementing an initial information discovery command, gce-list, based on 
WSIL.  This command can be used to discover available web services and provides 
information to the user on locations of services. The collection of commands that we 
have implemented so far includes the following: gce-ls, gce-list, gce-ps, gce-set, gce-
history, gce-man, gce-kill, and gce-help. 
 GCEShell container incorporates with GRAM services using Java CogKit commands. 
These commands similar to existing shell commands like gce-ls, gce-ps, gce-kill. 
Additional command gce-run submits remote jobs using ‘globusrun’ command. Each 
command is implemented by an RSL [16] script that generated dynamically to match 
with options and attributes.  

There are some configuration attributes when running GCEShell engine, in order to 
get several optional services. While running a command, a user can choose type of 
services. Such parameters called service attributes that could be ‘ws’ or ‘cog’.  Web 
services based commands called by ws parameter, GRAM based commands called by 
cog parameter. By doing such kind of distinctions help to develop new services and plug 
into the shell engine easily. 

7. FUTURE WORK: GRID COMPUTING ENVIRONMENT PATTERNS FOR 
SERVICE ORIENTED PORTALS 

In this section, we summarize our current research efforts to build a more general portal 
engine suitable for service oriented grid systems and alternative display technologies. 

The GCE Shell is intended to be a subset of general portal architectures.  One of the 
limitations in computing portals previously has been that they have been too dependent 
on presentation technology, specifically browsers.  However, Grid Computing 
Environments may be implemented using Java Swing and similar user interface 
components, or with Shell like interfaces (as we have discussed here) that interact with 



 

 

remote services through a service layer.  All these computing environment systems have 
the same architecture [17], and thus in our discussions below, we will refer to all of these 
computing environments as “portals” and do not limit our discussion to Web browser 
clients.  

It is important that we review all such Grid portal systems (browsers, shells, and 
GUIs) in terms of two important architectural developments: portlet components and 
service oriented architectures (SOA) [18].  These provide two complementary 
developments. Portlets provide reusable portal components that may be shared between 
projects, with desired user capabilities plugged into the portal in a well-defined way. 
Web service architectures provide the means for separating the portal’s functionality 
from its display.  We next examine the implications of these two trends for portals. 

Portlets are software components that process user requests and generate responses in 
the form of display instructions (typically HTML, but this may be generalized to XML 
and thus to various display technologies).  Each portlet corresponds to a user capability, 
so for example we may have job submission portlets that manages the user’s request to 
launch an application and ties it to one or more services that will actually implement the 
action.  

Portlets are currently a part of Sun’s Java technology and are standardized through 
JSR 168 [19], but the concept is general and not inherently language specific.  General 
Web Service for Remote Portlets (WSRP) specifications [20] exist for portlets that do 
not depend on specific programming languages. Portals following the portlet component 
approach are thus composed of portlet components.   

We may take the JSR 168 specification as a fixed point for development, but it is 
important to understand what is out of scope in the specification.  The JSR 168 
specification must be placed into the context of two other entities: 

 
1. The Portlet Container: provides the runtime environment and manages the 

lifecycle of portlet components.  Portlet containers manage the requests and 
responses needed by the portal. 

2. The Portal Display Manager: manages the display of the portlets.  For browsers 
and GUI applications, this may be an aggregated interface that combines several 
different portlet displays into a single display.   
 

Unlike the portlet API, implementation guidelines for two entities are non-standard: 
we may treat JSR 168 engines such as Jakata-Pluto as black boxes.  Clearly also many 
features out of scope in the current portlet API (such as portal login and inter-portlet 
communication) may be implemented in various ways that may not be shared between 
portal implementations. 



 

 

These two entities are typically combined in current practice: the Open Grid 
Computing Environments project (OGCE) [21] provides a typical example of such 
systems.  However, as we have pointed out in this paper, we must also support 
alternative user interfaces (such as shells).  Clearly, the Portlet Container may be 
understood as a generalization of our Shell Engine, while the Display Manager needs to 
be generalized to the point that it can support a wide range of display mechanisms.  A 
GCE Shell Display Manager will be one such mechanism that we must develop, but we 
also will draw upon experience building browser portals to define more general Display 
Managers. 

Portlet containers must provide the runtime environment for managing portlet 
components.  This effectively means that the portlet container must house all of the 
“portal services”: create and destroy portlets, send messages between portlets, manage 
access to user requests and responses, manage identity and authentication, manage roles 
and access restrictions to content and services, and so forth.  The portlet container must 
not only manage portlet lifecycles, but it must also manage service lifecycles and service 
object lifecycles.  “Service objects” here mean entities such as user identification objects 
created when the user logs into the portal.   

The primary challenge for Grid portal services is defining the relationship between 
the portal services and service oriented architectures.  Typically, in systems such as 
Jetspeed and variants like OGCE, the portlet container engine implements all services 
locally.  Specific implementations may in fact be client applications to remote services 
(such as web service stubs or Java COG calls).   Such systems must be designed 
carefully, however, as we may easily design tightly coupled systems that share objects 
all within the same Virtual Machine.  Such implementation have short term advantages 
but suffer, in the long run, from two inherent limitations: the service implementation is 
too intimately tied to the container implementation and the service implementation is 
language dependent.   

These are critical limitations to the computing portals for two reasons:   
 
1. Portlet container implementations are non-standard, so services cannot be easily 

reused between different container implementations.  In particular, it appears 
likely that containers will undergo significant development as they seek to 
provide capabilities outside the scope of JSR 168 standards.  Thus it appears 
likely that portlet container services, if too tightly coupled to the portal container, 
will have to be frequently reimplemented and cannot be reused between projects. 

2. Grid portal systems are by their nature distributed, so it is often the case that 
portlet services need to be invoked following external Grid events.  For example, 
a user’s job completes and the user’s job management portlets need to updated to 
show that this has occurred and data may be downloaded.  Portlet services directly 



 

 

implemented and accessible only through the portlet container make this sort of 
event updating extremely unwieldy. 

 
Both of these limitations may be overcome if we adopt a Service Oriented 

Architecture (SOA) for the portlet container.  In this approach, the portal container does 
not and should not implement services directly.  Instead, “portal services” inside the 
portlet container are in fact only “Requester Agents” in SOA terminology.  That is, they 
manage client stubs.  The portlet container is thus in part a Requester Agent management 
system.   

By removing service implementations from the engine and specifying them as web 
services, we may provide a clean separation between implementation (which may 
change) and interface (which should be less time dependent).  Portlet containers should 
then be programmed to these service interfaces, but as portlet containers themselves 
evolve, we do not lose our time-tested service implementations.  Furthermore, separating 
the portal services from the container provides a natural solution for Grid systems, in 
which events may be generated externally to the portal engine.  In Figure 2, services 
such as event logs can have multiple equivalent requester agents (service stubs): those 
inside the portlet container and those running externally.  Incoming Grid event postings 
thus do not have to go directly to the container’s requester agent (a complicated process) 
but rather through an equivalent external agent. In this case, external agents are utilized 
by an event broker. 
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      Figure 2: Portlet services interacts with external event generators using web services 

 
Portlet containers provide two important capabilities needed by SOAs: session/state 

management and service orchestration.  These are difficult in distributed object and 
service systems, but implementing then within the portlet container provides an elegant 



 

 

solution.  The requester agents living in the container (all in the same JVM) acting as 
proxies to remote services, maintain the state that their corresponding remote services do 
not actually posses.  Service orchestration (effectively, distributed programming) is 
simplified by programming to the requester agents within the container and letting the 
requester agents manage the remote invocations.  
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