

Developing a Secure Grid Computing Environment Shell
Engine: Containers and Services

Mehmet A. Nacar1, Marlon Pierce1 and Geoffrey C. Fox1

 1Community Grids Lab, Indiana University
Bloomington, IN 47404

Abstract
We describe the design and features of our Grid Computing Environments Shell system,
or GCEShell. We view computing Grids as providing essentially a globally scalable
distributed operating system that exposes low level programming APIs. From these
system-level commands we may build a higher level library of more user-friendly shell
commands, which may in turn be programmed through scripts. The GCEShell consists
of a shell engine that serves as a container environment for managing GCEShell
commands, which are client implementations for remote Web Service/Open Grid
Service Architecture services that resemble common UNIX shell operations.

Keywords - grid computing environments, web services, grid portals,

1. INTRODUCTION
Grid Computing Environments (GCEs) [1] provide a user view of computational Grid

technologies. GCEs are often associated with Web portals, but in general may be any
type of client management environment. GCEs also come in two primary varieties:
Problem Solving Environments (PSEs), which provide custom interfaces for working
with specific sets of applications, visualization tools, etc; and shell-like system portals,
which provide direct access to basic commands such as file manipulation and command
execution. In Ref. [1] these latter portals are referred to as “GCEShell” portals. This
paper is extended version of ref [2].

GCEShell environments may however be separated from specific user interface
rendering. We consider here a general engine for managing Grid Web Service clients.
This GCEShell engine, which we initially implement as a command line interface, is
inspired by the UNIX [3] shell environments, which provide a more user friendly
environment for interacting with the operating system than programming directly with
system level libraries. We view the emerging Open Grids Services Architecture
(OGSA) [4,5] and Web service [6] infrastructures as providing a global operating

system, extending ideas such as originally incorporated in the Legion system [7]. As
with other operating systems, most users should not be expected to program at the
system level. Instead, we see the need for a command hosting and management
environment that supports a number of useful shell-like commands: commands for
listing and manipulating remote files, commands for listing system resources, and so on.
These shell commands should also support simple composition and workflow through
linkages (such as pipes and redirects) and ultimately through scripting environments.

2. GCE SHELL ENGINE

The shell engine is the core application that interprets commands, runs client commands,
communicates with the servers (applications and registries), and manages application
lifecycles. The GCEShell engine essentially serves as a container for client applications,
analogous to server-side hosting environments [4].

Our initial implementation of the GCEShell interface is as command line interface
similar to UNIX shells. It manages user command entries and gives results back to
standard output. Also, command instances and each command’s status are stored at this
stage. The shell engine spawns a new thread for each shell command so that user can
coordinate each single command entry by itself using several commands like kill, ps,
history, exit.

The GCEShell involves both local and remote commands. The shell engine makes
several different manipulations, like if the given URI is local, the engine directly makes
related command calls. Otherwise, WSDL interfaces [8] are discovered at the given URI
that gives service description. According to that information, service requests are made
at given SOAP endpoint by using SOAP protocol [9].

The shell engine aggregates all the objects that perform functionality to the shell
container. These objects are commands, tasks, communication with servers, and
workflows. In other words, the shell engine negotiates with servers, manages application
lifecycles, discovers services and communicates with remote services. If the worst case
happens, like a service provider is down, there are several cases to overcome that
situation. First, the request may be repeated according to service priority and importance.
This time slice should be restricted in terms of system performance dynamically. Finally,
if a part of command arguments fails, either entire command fails or partial result given
on demand.

Figure 1 shows the shell engine’s principal components. Each component in our
implementation is a Java interface with an implementing class. Arrows in the figure
indicates communications between modules. Broken arrows show relationship with
Exception Handler. Bold arrows indicate execution steps. Following this design
simplifies development of the more complicated components (such as the command line
parser) and also allows future reimplementation by other developers.

Figure 1 also indicates the steps followed after a command is issued to the shell.

Here we summarize the execution steps for processing a user command. In Step 1, the
user enters a command. That command is caught by the shell engine and divided into the
tokens by the Parser in Step 2. The Parser is responsible for checking the syntax of
command line. We follow a typical shell-like syntax for command the command line:
commands, attributes and options. The Parser can also distinguish delimiters between
multiple commands and remove them. In our test implementation we mark each item in
the command line as a token and collect them in a hash table. Parsing along syntax rules
is a quite well known subfield of computer science and is reviewed in [10]. We are in
the process of replacing the test implementation with a more formal parsing engine that

��������	
����
���	�����������

�����

��	��	� �����������

����������������	�

�������������� �	!
��"�#���$�	�

 ����������

%��������	&�����

������������$����

 �� �����

(1)

(5)

(3)

(2)

(4a)

(4b)
����������'�	�"��

Figure 1: GCE Shell execution steps and block diagram

will produce a parse tree at the end of Step 2. We are currently evaluating third party
parser packages such as ANTLR [11] and Java implementations of the DOM [12].

The results of the parsing are next passed to the Workflow Manager in Step 3, which
is responsible for executing the parsed command line. The test implementation
represents this as a hashtable, but we are in the process of converting this to use a “parse
tree” object as described above. The workflow manager is then responsible for
managing the execution of the clients and their arguments that it receives from the
parser, Step 4. These clients may be either local applications (such as shell history
commands) as shown in Step 4a, or clients that must connect to remote applications,
Step 4b. In the latter case, the client must then interact with the remote Web Service,
Step 5. In both cases, the client applications implement a common shell command
interface (see next section). Each command line is represented as a single object and is
executed by a single thread. The Workflow Manager is responsible for creating new
threads for each command line it receives (represented as a parse tree). Each thread in
turn must walk the tree and identify commands (nodes that only possess leaves) and
create “command objects” (detailed below) to execute the specific shell commands.
These command objects are executed in sequence if the command line has more than
one command. Exceptions may occur at numerous places in this system and are handled
by the Exception Handler. We address these issues below. We implemented event
system model for this design that works in between workflow manager and exception
handler.

WS Clients cover inspection of services, discoveries and service requests for grid
services. First of all, the service in the specified URI is inspected and WSDL interface is
found. After that the engine creates client stubs for that service and makes remote
procedure requests from SOAP endpoint. If an exception is thrown, the exception
handler deals with that. Unless it is succeeded, the service and so the command fails and
gives an exit code and message as error.

The Workflow Manager traces all parts of command to be completed successfully. It
combines completed parts in accordance with command line and finally outputs are sent
to GCEShell interface.

The base shell context is responsible for creating child shell contexts to hold
individual commands and for managing the lifecycle of these child contexts. It also
manages communications between the child contexts; that is, the pipes and redirects are
functions of the base context. Child context threads must block until the command
completes. If this is not implemented in the shell command itself (the client is
decoupled from the server and exits before the server process completes) then the child
context will need to implement a listener that gets notified when the command completes
on the server.

The GCEShell engine’s design must provide a simple, well defined mechanism for
adding new shell commands. Command prototypes and base shell connections is
specified. In future, we need to add dynamic class loading so that grid users could place
new features on run time. However, a user can add, remove or replace a command
implementation by updating properties file and providing appropriate classpaths.

3. GCE SHELL COMMANDS

GCEShell contains command and context interfaces which must be implemented by new
commands. Single command objects are derived from base shell so that singleton carries
all requirements needed. To simplify the loading and management of child components
by the Base Shell, we define a common interface for both local and remote shell
commands. The shell interface has the following methods.

• For each attribute, write accessor (get and set) methods.

• For execution directions, execute() method.
• To kill the command or process, exit() method.

• Allowing process to sleep, suspend() method.

Commands are similar to jakarta-ant tasks and JXTA ShellCommands. A task can

have multiple attributes. The value of an attribute might contain references to a property.
These references will be resolved before the task is executed. A service command can
have a set of properties. These might be set in the properties file by outside the base
shell. A property has a name and a value; the name is case-sensitive. Properties may be
used in the value of command names.

Commands will be well defined by interfaces, so a developer might want to add more
commands. To do that, it is needed to implement classes that inherited from that
interface. The only thing is to plug that new command into shell container, updating
property file giving command name and package name pairs. Removing a command or
replacing new ones are need similar configuration above.

4. EXCEPTIONS AND EXCEPTION HANDLING

The most crucial expectation from any kind of shell is to run forever, unless a user exits
it. GCEShell has modular and integrated design, to prevent conflicts in terms of using
services and crashes. It is especially important for GCEShell, which interact with
distributed resources that may become unavailable for a number of reasons. It is
therefore important that the GCEShell have robust exception handling.

ParserException is thrown, when the command stream consist of unknown syntax
parameters or characters. Thus, the user can correct words or syntax. If the given
command name is not specified in the properties file, CommandNotFound exception is

thrown. LocalClientException is thrown when a local command has an internal error,
perhaps caused by improper input. Finally, RemoteClientExceptions may be thrown
either if the remote command was sent improper input or the remote server is
unreachable for any number of reasons.

Each exception interacted with related module, but most of them are handled by the
workflow manager and base shell. There are mechanisms to deal with exceptions. For
example, when remote client exception thrown, the request will be made in a loop so far
to get service or exceed the timeout. Also, timeouts can be done several times.

5. INFORMATION SYSTEM REQUIREMENTS

The Shell Commands are responsible for discovering the service that they need and for
communicating with that service. However, it is possible and perhaps desirable for the
shell to take over some of these responsibilities when the command is run by the shell.
In this case, the command would contact the GCEShell in the service discovery phase
and communicate only indirectly with the remote service, with direct communications
filtered through the shell.

Workflow manager coordinates all negations with services and adjust timeouts
according to priority of specified services. The purpose of involving WSIL [13] is that
the base shell needs to inspect web services instantly. Likewise, gce-ls command is
available remote service of the shell. In case of taking URI argument, related web
service method being invoked. So, currently up and running web services reported back
to the shell container. For example,

 gce-list http://fuji.ucs.indiana.edu:8080/axis/services

The gce-list command examines the inspection.wsil at this location and inspects what

WS running and gets back the list of WSDL interfaces.
The shell container is eligible to deal with some possible failures. If a command

resulted with error or exception, workflow manager might be able to manage that in
different cases. Depending on partial results, either command is terminated or request is
repeated until getting the service or timeout.

GCEShell container can support Globus Security Infrastructure (GSI) [14] to access
COG [15] services. Also it is compatible with GSI-enabled web services.

 5.1. Information System Security

Information systems could have restricted information. To retrieve this information
system users should be authenticated. Globus proxy service provides authentication
using X509 certificates. When a user logs in to a GCEShell it gets globus proxy

credentials until either proxy expired or logout. Using the proxy, a client can call Cog
based commands and secure web services commands.

GCEShell engine supports secure web services to access restricted services. GSI
enabled security system uses Transport Layer Security (TLS). Secure connection
established after user proxy and host proxiy negotiation. GSI secured channel is used to
exchange critical or private information with parties.

6. STATUS OF IMPLEMENTATION

GCEShell interface is a standalone application written in Java. All commands implement
the same interface and each command runs in a new thread. We have implemented the
following so far: a) we are constructing the GCEShell engine, with initial prototypes; b)
we are implementing an initial set of commands, which use the interface described
above for clients and implement remote services using Apache Axis
(http://ws.apache.org/axis); c) the shell has ability to use environment variables; and d)
we are implementing an initial information discovery command, gce-list, based on
WSIL. This command can be used to discover available web services and provides
information to the user on locations of services. The collection of commands that we
have implemented so far includes the following: gce-ls, gce-list, gce-ps, gce-set, gce-
history, gce-man, gce-kill, and gce-help.
 GCEShell container incorporates with GRAM services using Java CogKit commands.
These commands similar to existing shell commands like gce-ls, gce-ps, gce-kill.
Additional command gce-run submits remote jobs using ‘globusrun’ command. Each
command is implemented by an RSL [16] script that generated dynamically to match
with options and attributes.

There are some configuration attributes when running GCEShell engine, in order to
get several optional services. While running a command, a user can choose type of
services. Such parameters called service attributes that could be ‘ws’ or ‘cog’. Web
services based commands called by ws parameter, GRAM based commands called by
cog parameter. By doing such kind of distinctions help to develop new services and plug
into the shell engine easily.

7. FUTURE WORK: GRID COMPUTING ENVIRONMENT PATTERNS FOR
SERVICE ORIENTED PORTALS

In this section, we summarize our current research efforts to build a more general portal
engine suitable for service oriented grid systems and alternative display technologies.

The GCE Shell is intended to be a subset of general portal architectures. One of the
limitations in computing portals previously has been that they have been too dependent
on presentation technology, specifically browsers. However, Grid Computing
Environments may be implemented using Java Swing and similar user interface
components, or with Shell like interfaces (as we have discussed here) that interact with

remote services through a service layer. All these computing environment systems have
the same architecture [17], and thus in our discussions below, we will refer to all of these
computing environments as “portals” and do not limit our discussion to Web browser
clients.

It is important that we review all such Grid portal systems (browsers, shells, and
GUIs) in terms of two important architectural developments: portlet components and
service oriented architectures (SOA) [18]. These provide two complementary
developments. Portlets provide reusable portal components that may be shared between
projects, with desired user capabilities plugged into the portal in a well-defined way.
Web service architectures provide the means for separating the portal’s functionality
from its display. We next examine the implications of these two trends for portals.

Portlets are software components that process user requests and generate responses in
the form of display instructions (typically HTML, but this may be generalized to XML
and thus to various display technologies). Each portlet corresponds to a user capability,
so for example we may have job submission portlets that manages the user’s request to
launch an application and ties it to one or more services that will actually implement the
action.

Portlets are currently a part of Sun’s Java technology and are standardized through
JSR 168 [19], but the concept is general and not inherently language specific. General
Web Service for Remote Portlets (WSRP) specifications [20] exist for portlets that do
not depend on specific programming languages. Portals following the portlet component
approach are thus composed of portlet components.

We may take the JSR 168 specification as a fixed point for development, but it is
important to understand what is out of scope in the specification. The JSR 168
specification must be placed into the context of two other entities:

1. The Portlet Container: provides the runtime environment and manages the

lifecycle of portlet components. Portlet containers manage the requests and
responses needed by the portal.

2. The Portal Display Manager: manages the display of the portlets. For browsers
and GUI applications, this may be an aggregated interface that combines several
different portlet displays into a single display.

Unlike the portlet API, implementation guidelines for two entities are non-standard:
we may treat JSR 168 engines such as Jakata-Pluto as black boxes. Clearly also many
features out of scope in the current portlet API (such as portal login and inter-portlet
communication) may be implemented in various ways that may not be shared between
portal implementations.

These two entities are typically combined in current practice: the Open Grid
Computing Environments project (OGCE) [21] provides a typical example of such
systems. However, as we have pointed out in this paper, we must also support
alternative user interfaces (such as shells). Clearly, the Portlet Container may be
understood as a generalization of our Shell Engine, while the Display Manager needs to
be generalized to the point that it can support a wide range of display mechanisms. A
GCE Shell Display Manager will be one such mechanism that we must develop, but we
also will draw upon experience building browser portals to define more general Display
Managers.

Portlet containers must provide the runtime environment for managing portlet
components. This effectively means that the portlet container must house all of the
“portal services”: create and destroy portlets, send messages between portlets, manage
access to user requests and responses, manage identity and authentication, manage roles
and access restrictions to content and services, and so forth. The portlet container must
not only manage portlet lifecycles, but it must also manage service lifecycles and service
object lifecycles. “Service objects” here mean entities such as user identification objects
created when the user logs into the portal.

The primary challenge for Grid portal services is defining the relationship between
the portal services and service oriented architectures. Typically, in systems such as
Jetspeed and variants like OGCE, the portlet container engine implements all services
locally. Specific implementations may in fact be client applications to remote services
(such as web service stubs or Java COG calls). Such systems must be designed
carefully, however, as we may easily design tightly coupled systems that share objects
all within the same Virtual Machine. Such implementation have short term advantages
but suffer, in the long run, from two inherent limitations: the service implementation is
too intimately tied to the container implementation and the service implementation is
language dependent.

These are critical limitations to the computing portals for two reasons:

1. Portlet container implementations are non-standard, so services cannot be easily

reused between different container implementations. In particular, it appears
likely that containers will undergo significant development as they seek to
provide capabilities outside the scope of JSR 168 standards. Thus it appears
likely that portlet container services, if too tightly coupled to the portal container,
will have to be frequently reimplemented and cannot be reused between projects.

2. Grid portal systems are by their nature distributed, so it is often the case that
portlet services need to be invoked following external Grid events. For example,
a user’s job completes and the user’s job management portlets need to updated to
show that this has occurred and data may be downloaded. Portlet services directly

implemented and accessible only through the portlet container make this sort of
event updating extremely unwieldy.

Both of these limitations may be overcome if we adopt a Service Oriented

Architecture (SOA) for the portlet container. In this approach, the portal container does
not and should not implement services directly. Instead, “portal services” inside the
portlet container are in fact only “Requester Agents” in SOA terminology. That is, they
manage client stubs. The portlet container is thus in part a Requester Agent management
system.

By removing service implementations from the engine and specifying them as web
services, we may provide a clean separation between implementation (which may
change) and interface (which should be less time dependent). Portlet containers should
then be programmed to these service interfaces, but as portlet containers themselves
evolve, we do not lose our time-tested service implementations. Furthermore, separating
the portal services from the container provides a natural solution for Grid systems, in
which events may be generated externally to the portal engine. In Figure 2, services
such as event logs can have multiple equivalent requester agents (service stubs): those
inside the portlet container and those running externally. Incoming Grid event postings
thus do not have to go directly to the container’s requester agent (a complicated process)
but rather through an equivalent external agent. In this case, external agents are utilized
by an event broker.

 �(���	&���
�	�&���	

�	�!�	

��	&���
��)(

�&���
����	���	

��	�������������	

���!���
%���)	���

SOAP��	����
��	&����

��	&���
��)(

 Figure 2: Portlet services interacts with external event generators using web services

Portlet containers provide two important capabilities needed by SOAs: session/state

management and service orchestration. These are difficult in distributed object and
service systems, but implementing then within the portlet container provides an elegant

solution. The requester agents living in the container (all in the same JVM) acting as
proxies to remote services, maintain the state that their corresponding remote services do
not actually posses. Service orchestration (effectively, distributed programming) is
simplified by programming to the requester agents within the container and letting the
requester agents manage the remote invocations.

REFERENCES

1. Fox, G. C., Gannon, D., and Thomas, M. (2002). A summary of grid computing
environments. Concurrency and Computation: Practice and Experience. Vol 14, No 13-
15.

2. Nacar, M., Pierce, M., Fox, G. C. (2003). Designing a grid computing environment
shell engine. Proceedings of the 2003 International Conference on Internet Computing.

3. Kernighan, B. W. and Pike, R. (1984). The unix programming environment. Prentice
Hall, Englewood Cliffs, NJ.

4. Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002). The physiology of the grid:
an open grid services architecture for distributed systems integration. Open Grid
Services Infrastructure Working Group, Global Grid Forum.

5. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., and
Vanderbilt, P. (2002). Grid service specification. Global Grid Forum Recommendation
Draft.

6. Champion, M., Ferris, C., Newcomer, E., and Orchard, D. (2002). Web services
architecture. W3C Working Draft. Available from http://www.w3.org/TR/ws-arch/.

7. Stoker, G., White, B.S., Stackpole, E., Highley, T.J., Humprey, M. (2001). Grids:
harnessing geographically-separated resources in a multi-organisational context. High
Performance Computing Systems.

8. Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001). Web service
description language (WSDL) 1.1. W3C. Available from http://www.w3c.org/TR/wsdl.

9. Box, D., et al (2000). Simple object access protocol (SOAP) 1.1. W3C. Available
from http://www.w3.org/TR/SOAP/.

10. Aho, A. V., Sethi, R., Ullman, J. D. (1986). Compilers: principles, techniques, and
tools. Addison-Wesley.

11. Parr, T. (1989). ANTLR: Another tool for language recognition. Available from
http://www.antlr.org

12. Le Hors, A., Le Hegaret, P., Wood, L., Nicol, G., Robie, J., Champion, M., and
Byrne, S. (2000). Document object model level 2 core. W3C Recommendation.
Available from http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113.

13. Ballinger, K., Brittenham, P., Malhotra, A., Nagy, W. A., and Pharies, S. (2001).
Specification: web service inspection language (WS-Inspection) 1.0. Available from
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html.

14. Foster, I., Karonis, N. T., Kesselman, C., Tuecke, S. (1998). Managing security in
high-performance distributed computing. Cluster Computing. 1(1):95-107.

15. von Laszewski, G., Gawor, J., Lane, P., Rehn, N., and Russell, M. (2002). Features
of the java commodity grid kit. Concurrency and Computation: Practice and Experience.
Vol 14, No 13-15.

16. The globus resource specification language RSL v1.0. Available from
http://www-fp.globus.org/gram/rsl_spec1.html.

17. Thomas M., Dahan M., Mueller K., Mock S., Mills C., Regno R. (2002). Application
portals: practice and experience. Concurrency and Computation: Practice and
Experience. Vol 14, No 13-15.

18. Booth D., Haas H., McCabe F., Newcomer E., Champion M., Ferris C., and Orchard
D. (2004). Web service architecture. W3C Working Group Note.

19. Abdelnur A., Chien E., Hepper S. (2003). Portlet specification 1.0. Java Community
Process Program. Available from http://jcp.org/en/home/index

20. Kropp A., Leue C., Thompson R. Web services for remote portlets (WSRP).
OASIS. Available from http://www.oasis-open.org

21. Gannon D., Fox G., Pierce M., Plale B., von Laszewski G., Severance C., Hardin J.,
Alameda J., Thomas M., Boisseau J. (2003). Grid portals: a scientist's access point for
grid services.

