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1 Introduction

Developments in the pervasive computing area, have led to an explosion in the number of devices
that users employ to communicate with each other and also to access services that they are interested
in. These devices have different computing and content handling capabilities. Further, these users
do not maintain an online presence at all times and access services after prolonged disconnects.
The channel employed to access services may have different bandwidth constraints depending on
the channel type and also on the service being accessed. The system we are considering needs
to support communications for 109 devices. The users using these devices would be interested
in peer-to-peer (P2P) style of communication, business-to-business (B2B) interaction or a system
comprising of agents where discoveries are initiated for services from any of these devices. Finally,
some of these devices could also be used as part of a computation. The devices are thus part of a
complex distributed system. In our model we have the notion of logical clients. These logical clients
exist since there could be one or more devices that belong to a single physical user. We make no
assumptions regarding a client’s computing power or the reliability of the transport layer over which
it communicates. Clients have profiles, which indicate the type of events and servicing that they are
interested in.

To support the large number of clients that exist within the system we have a distributed network
of servers. These servers are responsible for intelligently routing events within the system. This
routing should be such that an event is routed to a server only if it is en route to a valid destination
for the event. Distributed messaging systems broadly fall into three different categories. Namely
queuing systems, remote procedure call based systems and publish subscribe systems. Message
queuing systems with their store-and-forward mechanisms come into play where the sender of the
message expects someone to handle the message while imposing asynchronous communication and
guaranteed delivery constraints. The two popular products in this area include IBM’s MQSeries [23]
and Microsoft’s MSMQ [22]. MQSeries operates over a host of platforms and covers a much wider
gamut of transport protocols (TCP, NETBIOS, SNA among others) while MSMQ is optimized for
the Windows platform and operates over TCP and IPX. A widely used standard in messaging is
the Message Passing Interface Standard (MPI) [16]. MPI is designed for high performance on both
massively parallel machines and workstation clusters. Messaging systems based on the classical
remote procedure calls include CORBA [30], Java RMI [26] and DCOM [15]. Publish subscribe
systems form the third axis of messaging systems and allow for decoupled communication between
clients issuing notifications and clients interested in these notifications.

The decoupling relaxes the constraint that publishers and subscribers be present at the same time,
and also the constraint that they be aware of each other. The publisher is also unaware of the number
of subscribers that are interested in receiving a message. The publish subscribe model does not
require synchronization between publishers and subscribers. By decoupling this relationship between
publishers and consumers, security is enhanced considerably. The routing of messages from the
publisher to the subscriber is within the purview of the message oriented middleware (MOM) which
is responsible for routing the right content to the right consumers. The publish subscribe paradigm
can support both pull and push paradigms. In the case of pull, the subscribers retrieve messages
from the MOM by periodic polling. The push model allows for asynchronous operations where
there are no periodic pollings. Industrial strength products in the publish subscribe domain include
solutions like TIB/Rendezvous [14] from TIBCO and SmartSockets [13] from Talarian. Variants of
publish subscribe include systems based on content based publish subscribe. Content based systems
allow subscribers to specify the kind of content that they are interested in. These content based
publish subscribe systems include Gryphon [5, 2], Elvin [33] and Sienna [8]. The system we are
looking at, the grid event service (GES), is also in the realm of content based publish/subscribe
systems with the additional feature of location transparency for clients.

The shift towards pub/sub systems and its advantages can be gauged by the fact that message
queuing products like MQSeries have increased the publish subscribe features within them. This
intersection of mature messaging products with pub/sub features serves its purpose for a large
number of clients. Similarly OMG introduced services that are relevant to the publish subscribe
paradigm. These include the Event services [29] and the Notification service [28]. The push by Java
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to include publish subscribe features into its messaging middleware include efforts like JMS [20] and
JINI [3]. One of the goals of JMS is to offer a unified API across publish subscribe implementations.
Various JMS implementations include solutions like SonicMQ [12] from Progress, JMQ [25] from
iPlanet, iBus [24] from Softwired and FioranoMQ [11] from Fiorano.

In the systems we are studying, unlike traditional group multicast systems, groups cannot be
pre-allocated. Each message is sent to the system as a whole and then delivered to a subset of
recipients. The problem of reliable delivery and ordering1 in traditional group based systems with
process crashes has been extensively studied [19, 7, 6]. These approaches normally have employed the
primary partition model [32], which allows the system to partition under the assumption that there
would be a unique partition which could make decisions on behalf of the system as a whole, without
risk of contradictions arising in the other partitions and also during partition mergers. However
the delivery requirements are met only within the primary partition [18]. Recipients that are slow
or temporarily disconnected may be treated as if they had left the group. This model works well
for problems such as propagating updates to replicated sites. This approach doesn’t work well in
situations where the client connectivity is intermittent, and where the clients can roam around the
network. The main differences between the systems being discussed here and traditional group-based
systems are:

1. We envision relatively large, widely distributed systems. A typical system would comprise of
hundreds of thousands of broker nodes, with tens of millions of clients.

2. Events are routed to clients based on their profiles, employing the group approach to routing
the interesting events to the appropriate clients would entail an enormous number of groups -
potentially 2n groups for n clients. This number would be larger since a client profile comprises
of interests in varying event footprints.

The approach adopted by the OMG [29, 28] is one of establishing channels and registering
suppliers and consumers to those event channels. The event service [29] approach has a drawback
in that it entails a large number of event channels which clients (consumers) need to be aware
of. Also since all events sent to a specific event channel need to be routed to all consumers, a
single client could register interest with multiple event channels. The aforementioned feature also
forces a supplier to supply events to multiple event channels based on the routing needs of a certain
event. On the fault tolerance aspect, there is a lack of transparency since channels could fail and
issuing clients would receive exceptions. The most serious drawback in the event service is the lack
of filtering mechanisms. These are sought to be addressed in the Notification Service [28] design.
However the Notification service attempts to preserve all the semantics specified in the OMG event
service, allowing for interoperability between Event service clients and Notification service clients.
Thus even in this case the client needs to subscribe to more than one event channel.

In this paper we propose the Grid Event Service (GES) where we have taken a system model that
encompasses Internet/Grid messages. GES is designed to include JMS as a special case. However,
GES provides a far richer set of interactions and selectivity between clients than the JMS model.
GES is not restricted to Java of course, this is our initial implementation. We envision a system
with thousands of broker nodes providing a distributed event service in a federated fashion. In GES
a subscribing client can attach itself to any of the broker nodes comprising the system. This client
specifies the type of events it is interested in through its profile. We have employed a distributed
network of broker nodes primarily for reasons of scaling and resiliency. A large number of broker
nodes can support a large number of clients while at the same time eliminating the single point of
failure in single broker systems. These broker nodes are organized as a set of strongly connected
broker nodes comprising a cluster; clusters in turn are connected to other such clusters by long links.
This scheme provides for small world networks, which in the spectrum of strongly connected graphs
falls in between regular graphs and random graphs. The advantage of such small world networks [35]
is that the average pathlength of any broker node to any other broker node increases logarithmically
with the geometric increases in the size of the network.

1The ordering issues addressed in these systems include FIFO, Total Order and Causal Order
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We employ schemes, which ensure that each broker node maintains abbreviated views of system
inter-connectivities. This abbreviated system view is maintained in the connectivity graph. The
connectivity graph has imposed directional constraints on graph traversal and also dynamic costs
associated with the same based on link type and links connecting two system units (brokers, clusters,
cluster of clusters etc). This is then used to provide us with the fastest hops to employ to reach any
given destination. It is ensured that this graph maintains the true state of the system, so that only
active nodes and fast links are employed for the routing at every broker node where such decisions
are made. To ensure that a client misses no interesting event and also to ensure that uninteresting
events are not routed to parts of the system not interested in receiving the events, we employ an
intelligent dissemination scheme. This dissemination scheme is hierarchical, as is the calculation of
destinations and the propagation of profiles. The profile changes are routed to relevant nodes in the
system. A client would thus route profile changes to the broker it is attached to, while the broker
propagates its profile changes to its cluster controllers (there could be more than one for a cluster)
and so on. The hierarchical destinations computed for an event ensure that only the relevant parts
of the sub-system receive the event. This scheme is capable of handling dense and sparse interests in
different parts of the system equally well. The logarithmic pathlengths achieved by the organization
scheme for the broker nodes, combined with the calculation of fastest routes to reach destinations at
every broker node hop and the exact sub-systems to route an event provides a near optimal routing
scheme for the events.
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2 The distributed model for the servers

One of the reasons why one would use a distributed model is high availability. Having a centralized
model would imply a single server hosting multiple clients. While, this is a simple model, the inherent
simplicity is more than offset by the fact that it constitutes a single point of failure. Thus all the
clients present in the system would be unable to use any of the services provided by the system till
a recovery mechanism kicks in.

A highly available distributed solution would have data replication at various server nodes in
the network. Solving issues of consistency while executing operations, in the presence of replication,
leads to a model where other server nodes can service a client despite certain server node failures.
The underlying network that we consider for our problem is one made up of the nodes that are
hooked onto the Internet or Intranets. We assume that the nodes which participate in the event
delivery can crash or be slow. Similarly the links connecting these node may fail or get overloaded.
These assumptions are drawn based on real life experiences. One of the immediate implications of
our delivery guarantees and the system behavior is that profiles are what become persistent, not the
client connection or its active presence in the digital world at all times.

2.1 The Server Node Topology

The smallest unit of the system is a server node and constitutes a unit at level-0 of the system.
Server nodes grouped together form a cluster, the level-1 unit of the system. Clusters could be
clusters in the traditional sense, groups of server nodes connected together by high speed links. A
single server node could also decide to be part of such traditional clusters, or along with other such
server nodes form a cluster connected together by geographical proximity but not necessarily high
speed links.

Cluster-A

Cluster-D Cluster-C

Cluster-B

dc

a b

lk

i j

po

m n

hg

e f

Figure 1: A Super Cluster - Cluster Connections

Several such clusters grouped together as an entity comprises a level-2 unit of our network and
is referred to as a super-cluster, shown in figure 1. Clusters within a super-cluster have one or more
links with at least one of the other clusters within that super-cluster. When we refer to the links
between two clusters, we are referring to the links connecting the nodes in those individual clusters.
Referring to figure 1 Cluster-A has links to Clusters B, C and D while Cluster-B has links to Clusters
A and C. For two clusters with at least one link between them, any node in either of the clusters
can communicate with any other node of the other cluster. In general there would be multiple links
connecting a single cluster to several other clusters. This approach provides us with a greater degree
of fault-tolerance, by providing us with multiple routes to reach nodes within other clusters.
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SuperCluster-I

SuperCluster-II

SuperCluster-III

SuperCluster-IVSuperCluster-V

Figure 2: A Super-Super-Cluster - Super Cluster Connections

This topology could be extended in a similar fashion to constitute a super-super-cluster (level-3
unit) as shown in figure 2, super-super-super-clusters (level-4 units) and so on. A client thus connects
to a server node, which is part of a cluster, which in turn is part of a super-cluster and so on and
so forth. We limit the number of super-clusters within a super-super-cluster, the number of clusters
within a super cluster and the number of nodes within a cluster viz. the block-limit to 64. In an
N -level system this scheme allows for 26

N × 26
N−1 × · · · 26

0 i.e 26∗(N+1) server nodes to be present in
the system.

What we essentially have here is a set of strongly connected server nodes comprising a cluster
and a set of links connecting a cluster to other clusters. We are interested in the delays that would
be involved in connecting from one node in the network to another node in the network. This is
proportional to the server node hops that need to be taken en route to the final destination.

We now delve into the small world graphs introduced in [35] and employed for the analysis of
real world peer-to-peer systems in [31, pages 207 – 241]. In a graph comprising several nodes,
pathlength signifies the average number of hops that need to be taken to reach from one node to the
other. Clustering coefficient is the ratio of the number of connections that exist between neighbors
of node and the number of connections that are actually possible between these nodes. For a regular
graph consisting of n nodes, each of which is connected to its nearest k neighbors – for cases where
n ≫ k ≫ 1, the pathlength is approximately n/2k. As the number of vertices increases to a large
value the clustering coefficient in this case approaches a constant value of 0.75.

At the other end of the spectrum of graphs is the random graph, which is the opposite of a regular
graph. In the random graph case the pathlength is approximately log n/ log k, with a clustering
coefficient of k/n. The authors in [35] explore graphs where the clustering coefficient is high, and
with long connections (inter-cluster links in our case). They go on to describe how these graphs have
pathlengths approaching that of the random graph, though the clustering coefficient looks essentially
like a regular graph. The authors refer to such graphs as small world graphs. This result is consistent
with our conjecture that for our server node network, the pathlengths will be logarithmic too. Thus
in the topology that we have the cluster controllers provide control to local classrooms etc, while
the links provide us with logarithmic pathlengths and the multiple links, connecting clusters and
the nodes within the clusters, provide us with robustness.
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2.1.1 GES Contexts

Every unit within the system, has a unique Grid Event Service (GES) context associated with it.
In an N -level system, a server exists within the GES context C1

i of a cluster, which in turn exists
within the GES context C2

j of a super-cluster and so on. In general a GES context Cℓ
i at level ℓ

exists within the GES context Cℓ+1
j of a level (ℓ + 1). In an N -level system the following hold —

C0
i = (C1

j , i) (1)

C1
j = (C2

k , j) (2)

...

CN−2
p = (CN−1, p) (3)

CN−1
q = q (4)

In an N -level system, a unit at level ℓ can be uniquely identified by (N−ℓ) GES context identifiers
of each of the higher levels. Of course, the units at any level ℓ within a GES context Cℓ+1

i should
be able to reach any other unit within that same level. If this condition is not satisfied we have a
network partition.

2.1.2 Gatekeepers

Within the GES context C2
i of a super-cluster, clusters have server nodes at least one of which

is connected to at least one of the nodes existing within some other cluster. In some cases there
would be multiple links from a cluster to some other cluster within the same super-cluster C2

i . This
architecture provides a greater degree of fault tolerance by providing multiple routes to reach the
same cluster. Some of the nodes in the cluster thus maintain connections to the nodes in other
clusters. Similarly, some nodes in a cluster could be connected to nodes in some other super-cluster.
We refer to such nodes as gatekeepers. Nodes, which maintain connections to other nodes in the
system, have different GES contexts. Depending on the highest level at which there is a difference
in the GES contexts of these node, the nodes that maintain this active connection are referred to
as the gatekeeper at that level. Nodes, which are part of a given cluster, have GES contexts that
differ at level-0. Every node in a cluster is connected to at least one other node within that cluster.
Thus, every node in a cluster is a gatekeeper at level-0.

Let us consider a connection, which exists between nodes in a different cluster, but within the
same super-cluster. In this case the nodes that maintain this connection have different GES cluster
contexts i.e. their contexts at level-1 are different. These nodes are thus referred to as gatekeepers
at level-1. Similarly, we would have connections existing between different super-clusters within a
super-super-cluster GES context C3

i . In an N -level system gatekeepers would exist at every level
within a higher GES context. The link connecting two gatekeepers is referred to as the gateway,
which the gatekeepers provide, to the unit that the other gatekeeper is a part of. A gatekeeper at
level ℓ within a higher GES context Cℓ+1

j , denoted gℓ
i (C

ℓ+1
j ), comprises of –

• The higher level GES Context Cℓ+1
j

• The gatekeeper identifier i

• The list of gatekeepers at level ℓ that it is connected to, within the GES context Cℓ+1
j .

It should be noted that a gatekeeper at level ℓ can be a gatekeeper at any other level. In fact, every
node within the system is a gatekeeper at level-0. Figure 3 shows a system comprising of 78 nodes
organized into a system of 4 super-super-clusters, 11 super-clusters and 26 clusters. When a node
establishes a link to another node in some other cluster, it provides a gateway for the dissemination
of events. If the node it connects to is in a different cluster within the same super-cluster GES
context C2

i both the nodes are designated as cluster gatekeepers. In general, if a node connects to
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Link connecting super-super-cluster gateways.
Link connecting super-cluster gateways.

Link connecting cluster gateways.

Figure 3: Gatekeepers and the organization of the system

another node, and the nodes are such that they share the same GES context Cℓ+1
i but have differing

GES contexts Cℓ
j , Cℓ

k, the nodes are designated as gatekeepers at level − ℓ i.e. gℓ(Cℓ+1). Thus, in
figure 3 we have 12 super-super-cluster gatekeepers, 18 super-cluster gatekeepers (6 each in SSC-A
and SSC-C, 4 in SSC-B and 2 in SSC-D) and 4 cluster-gatekeepers in super-cluster SC-1.

2.1.3 The addressing scheme

The addressing scheme provides us with a way to uniquely identify each server node within the
system. This scheme plays a crucial role in the delivery and dissemination of events to nodes in the
system. As discussed earlier, units at each level are defined within the GES context of a unit at the

next higher level. In an N -level system the GES context Cℓ
j is Cℓ

i =

N−l
︷ ︸︸ ︷

CN
j (CN−1

k (· · · (Cℓ+1
m (Cℓ

i )) · · ·)).
Thus in a 4-level system, to identify a server node, the addressing scheme specifies the super-super-
cluster C3

i , super-cluster C2
j and cluster C1

k that the node is a part of, along with the node-identifier

within C1
k . Thus for server node a, within cluster B, within super-cluster C and super-super-cluster

D the logical address within the system is D.C.B.a. This addressing scheme is very similar to the
IP addressing scheme.
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3 The problem of event delivery

Clients in the system specify an interest in the type of events that they are interested in receiving.
Some examples of interests specified by clients could be sports events or events sent to a certain
discussion group. A particular event may thus be consumed by zero or more clients registered
with the system. Events have explicit or implicit information pertaining to the clients, which are
interested in (supposed to receive) the event . In the former case we say that the destination list
is internal to the event, while in the latter case the destination list is external to the event. In the
case of external destination lists, it is the system that computes the clients that should receive a
certain event.

An example of an internal destination list is “Mail” where the recipients are clearly stated.
Examples of external destination lists include sports score, stock quotes etc. where there is no way
for the issuing client to be aware of the destination lists. External destination lists are a function
of the system and the types of events that the clients, of the system, have registered their interest
in. The problem of event delivery pertains to the efficient delivery of events to the destinations
which could be internal or external to the event. In the latter case the system needs to compute the
destination lists pertaining to the event. The system merely acts as a conduit to efficiently route
the events from the issuing client to the interested clients. A simple approach would be to route all
events to all clients, and have the clients discard the events that they are not interested in. This
approach would however place a strain on network resources. Under conditions of high load and
increasing selectivity by the clients, the number of events that a client discards would far exceed the
number of events it is actually interested in. This scheme also affects the latency associated with
the reception of real time events at the client. The increase in latency is due to the cumulation
of queuing delays associated with the uninteresting/flooded events. The system thus needs to be
very selective of the kinds of events that it routes to a client. In this section we describe a suite of
protocols that are used to aid the process of efficient dissemination of events in the system.

In section 3.1 we describe the Node Addition Protocol (NAP), which provides for adding a server
node or a complete unit to an existing system. The Gateway Propagation Protocol (GPP) discussed
in Section 3.2 is responsible for the dissemination of connection information within relevant parts of
the sub system to facilitate creation of abbreviated system interconnection graphs. Providing precise
information for the routing of events, and the updating of this information in response to the addition,
recovery and failure of gateways is in the purview of the GPP. To snapshot the event constraints that
need to be satisfied by an event prior to dissemination within a unit and subsequent reception at a
client we use the Profile Propagation Protocol (PPP) discussed in Section 3.3.5. PPP is responsible
for the propagation of profile information to relevant nodes within the system to facilitate hierarchical
dissemination of events. Section 3.4 describes the Event Routing Protocol (ERP) which uses the
information provided by PPP to compute hierarchical destinations. Information provided by GPP,
such as system inter-connections and shortest paths, are then employed to efficiently disseminate
events within the units and to clients subsequently.

Different systems address the problem of event delivery to relevant clients in different ways.
In [17] each subscription is converted into a deterministic finite state automaton. This conversion
and the matching solutions nevertheless can lead to an explosion in the number of states. In [33]
network traffic reduction is accomplished through the use of quench expressions. Quenching prevents
clients from sending notifications for which there are no consumers. Approaches to content based
routing in Elvin are discussed in [34]. In [8, 9] optimization strategies include assembling patterns
of notifications as close as possible to the publishers, while multicasting notifications as close as
possible to the subscribers. In [5] each server (broker) maintains a list of all subscriptions within
the system in a parallel search tree (PST). The PST is annotated with a trit vector encoding link
routing information. These annotations are then used at matching time by a server to determine
which of its neighbors should receive that event. [4] describes approaches for exploiting group based
multicast for event delivery. These approaches exploit universally available multicast techniques.

The approach adopted by the OMG [30] is one of establishing channels and registering suppliers
and consumers to those event channels. The channel approach in the event service [29] approach
could entail clients (consumers) to be aware of a large number of event channels. The two serious
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limitations of event channels are the lack of event filtering capability and the inability to configure
support for different qualities of service. These are sought to be addressed in the Notification Service
[28] design. However the Notification service attempts to preserve all the semantics specified in the
OMG event service, allowing for interoperability between Event service clients and Notification
service clients. Thus even in this case a client needs to subscribe to more than one event channel.
In TAO [21], a real-time event service that extends the CORBA event service is available. This
provides for rate-based event processing, and efficient filtering and correlation. However even in this
case the drawback is the number of channels that a client needs to keep track of.

In some commercial JMS implementations, events that conform to a certain topic are routed
to the interested clients. Refinement in subtopics is made at the receiving client. For a topic with
several subtopics, a client interested in a specific subtopic could continuously discard uninteresting
events addressed to a different subtopic. This approach could thus expend network cycles for routing
events to clients where it would ultimately be discarded. Under conditions where the number of
subtopics is far greater than the number of topics, the situation of client discards could approach
the flooding case.

In the case of servers that route static content to clients such as Web pages, software downloads
etc. some of these servers have their content mirrored on servers at different geographic locations.
Clients then access one of these mirrored sites and retrieve information. This can lead to problems
pertaining to bandwidth utilization and servicing of requests, if large concentrations of clients access
the wrong mirrored-site. In an approach sometimes referred to as active mirroring, websites powered
by EdgeSuite [10] from Akamai, redirect their users to specialized Akamized URLs. EdgeSuite then
accurately identifies the geographic location from which the clients have accessed the website. This
identification is done based on the IP addresses associated with the clients. Each client is then
directed to the server farm that is closest to the client’s network point of origin. As the network
load and server loads change clients could be redirected to other servers.

3.1 The node organization protocol

Each node within a cluster has set of connection properties. These pertain to the rules of adding
new nodes to the cluster, specifically some node may employ an IP-based discrimination scheme to
add or accept new nodes within the cluster. In addition to this, nodes also maintain a connection
threshold vector, which pertains to the number of gateways at each level that the node can maintain
concurrent connections to at any given time.

Nodes wishing to join the network do so by issuing a connection set up request to one of the
nodes in the existing network. The organization and logical addresses assigned are relative to the
existing logical address of the node to which this request was sent to. Nodes issuing such a set up
request could be a single stand-alone node or part of an existing unit. New addresses are assigned
based on whether the node is either part of the existing system or is part of a new unit being merged
into the system. In the former case no new logical address are assigned, while in the latter case new
logical addresses need to be assigned. Clients of the merged system need to renegotiate their new
logical address using an address renegotiation protocol.

3.1.1 Adding a new node to the system

Nodes which issue a connection setup request need to indicate the kind of gatekeeper that it seeks
to be within the existing system. An indication of whether it seeks to be a level-0 system or not
dictates the GES context, the requesting node seeks to share with the node, to which it has issued
the request. If the node wishes to be a level-0 gatekeeper with the node in question, the two nodes
would end up sharing a similar GES context C1

i . The level-0 indication establishes the to and from
relationship between the requester and the addressee. The GES context varies depending on this
relationship. In the event that the requester seeks to be a level-0 gatekeeper, the GES contextual
information varies at the lowest level C0

i . In the event that the requester seeks a to relationship
with the addressee, the GES contextual information of the requester varies starting from the highest
level-ℓ gatekeeper that it seeks to be. Thus if the requester seeks to be a level-3, level-2 gatekeeper
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the GES contextual information vis-a-vis the addressee varies from level-3 and above.
A node requests the connection setup in a bit vector specifying the kind of gatekeeper it seeks

to be. The position of 0’s and 1’s dictates the kind of gatekeeper that a node seeks to be. The
first position specifies the to/from characteristics of the node seeking to be a part of the system.
A 0 signifies the to relationship while the 1 specifies the from relationship. A connection request
< 00000011 > from node s indicates that it wishes to be configured as a cluster gatekeeper in cluster
n to one of the clusters within super-cluster SC-6. Similarly a connection request < 00000110 >
from node s signifies that it wishes to be configured as a level-2 gateway to supercluster SC-6 and
as a level-1 (cluster) gateway within the super-cluster (SC-4/SC-5) that it would be a part of.
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Figure 4: Adding nodes and units to an existing system

Figure 4 depicts a node s requesting a connection setup request. If s requests to be a level-0
node, then it needs to be part of the cluster n. Now, if node n.21 has not exceeded the connection
threshold limit for level-0 connections and also if the node s satisfies the IP-discrimination scheme
for accepting nodes within the cluster then node s is configured as a level-0 node with a connection
to node n.21. If however, node n.21 has reached its connection threshold for level-0 connections,
but node s has satisfied the IP-discrimination requirements for cluster n, then n.21 forwards the
request to other nodes within the cluster n. If there is a node within the cluster n, which has not
reached the connection threshold limit, then node s is configured as a level-0 gateway to that node in
cluster n. If however, all the nodes have reached their connection threshold limit, the node responds
by providing a list of level-1 gatekeepers that are connected to cluster n. Node s then proceeds with
the same process discussed earlier.

If node s doesn’t seek to be a level-0 gatekeeper within cluster n but seeks to be a level-ℓ (
ℓ > 0), gateway to cluster n the procedures for setting up connections are different. Depending on
the kind of gatekeeper that node s seeks to be, the location of suitable nodes, which could satisfy the
request, varies. If the node seeks to be a level-1 gatekeeper to cluster n, then node n.21 confirms
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the connection threshold vector. If all the nodes have reached their connection threshold for level-1
gateways the cluster returns a failed response. If however there is such a node in cluster n which has
not reached its threshold for level-1 connections node n.21 provides the address for such a node, and
also the addresses of level-1 gatekeepers within supercluster SC-6 to which it is connected. Node s
then tries to be a level-0 gateway within cluster m which is also a level-1 gateway to the nodes in
cluster n. If there are no clusters within super-cluster SC-6 other than cluster n which can accept
s as a level-0 gatekeeper, then the request fails.

3.1.2 Adding a new unit to the system

A unit that can be added to the system could be a cluster, a super-cluster and so on. The process
of adding a new unit to the system must follow rules which are consistent with the organization of
the system. These rules are simple, a node can be a level-0 gatekeeper of only one cluster. Thus a
node in an existing cluster cannot seek to be part of another cluster in the system. In general for a
unit at level-ℓ which is being added to the system, any node in the unit being added cannot seek to
be a level-(ℓ − i) (where i = 1, 2, · · · , ℓ) gatekeeper to any sub-system of the existing system.

The process of adding a unit to the system, results in the update of the GES contextual informa-
tion pertaining to every node within the added unit. This update is only for the highest level of the
system, lower level GES contextual information remains the same. Nodes within a cluster have a
context with respect to the GES cluster context C1

i . When this cluster is added to the system, what
changes is the GES context C1

i while the individual GES contexts C0 of the nodes with respect to
newly assigned GES cluster context C1

j remains the same.
Figure 4 depicts the addition of a super cluster SC-10 to the system. Only one node within

the unit that needs to be added can issue the connection setup request. The node which issues this
request in figure 4 is the node SC-10.v.23. Since this is a level-2 system that is unit-added, node
23 or any other node within SC-10 can not be a level-1 (cluster) gateway to the other nodes within
the super-super-cluster SSC-B. Node 23 thus issues a request specifying that it seeks to be a level-3
gateway within super-super-cluster SSC-B. Upon a successful connection set up, a new address is
assigned for SC-10 (say SC-8), the identifiers for clusters within SC-10 remain the same. However,
the complete address of these clusters change to SSC-B.SC-8.w and so on.

3.2 The gateway propagation protocol - GPP

The gateway propagation protocol (GPP) accounts for the process of adding gateways and is re-
sponsible for the dissemination of connection information within relevant parts of the sub system
to facilitate creation of abbreviated system interconnection graphs. However, GPP should also ac-
count for failure suspicions/confirmations of nodes and links, and provide information for alternative
routing schemes.

3.2.1 Organization of gateways

The organization of gateways reflects the connectivities, which exist between various units within
the system. Using this information, a node should be able to communicate with any other node
within the system. Any given node within the system is connected to one or more other nodes
within the system. We refer to these direct links from a given node to any other node as hops. The
routing information associated with an event specifies the units, which should receive the event. At
each gℓ+1(Cℓ+1

i ) finer grained disseminations targeted for units uℓ within Cℓ+1
i are computed. When

presented with such a list of destinations, based on the gateway information the best hops to take
to reach the destinations needs to be computed. A node is required to route the event in such a way
that it can service both the coarser grained disseminations and the finer grained ones. Thus, a node
should be able to compute the hops that need to be taken to reach units at different levels. A node
is a level-0 unit, however it computes the hops to take to reach level-ℓ units within its GES context
Cℓ+1 (where ℓ = 0, 1, · · · , N – N being the system level).

What is required is an abstract notion of the connectivities that exist between various units
(sub-units and super-units alike) within the system. This constitutes the connectivity graph of the
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Figure 5: Connectivities between units

system. At each node the connectivity graph is different while providing a consistent overall view
of the system. The view that is provided by the connectivity graph at a node should be of the
connectivities that are relevant to the node in question. Figure 5 depicts the connections that exist
between various units of the 4 level system which we would use as an example in further discussions.

3.2.2 Constructing the connectivity graph

The organization of gateways should be one which provides an abstract notion of the connectivity
between units uℓ within the GES context Cℓ+1 of the node. This interconnection can span multiple
levels, where, if the gateway level is ℓ, a unit ux

i (x < ℓ) within the GES context Cx+1 is connected
to uℓ

j within Cℓ+1. Units ux
i and uℓ

j share the same Cℓ+1 GES context. For any given node within

the system, the connectivity graph captures the connections that exist between units uℓ’s within the
GES context Cℓ+1

i that it is a part of. Thus every node is aware of all the connections that exist
between the nodes within a cluster, and also of the connections that exist between clusters within a
super cluster and so on. The connectivity graph is constructed based on the information routed by
the system in response to the addition or removal of gateways within the system. This information
is contained within the connection.

Not all gateway additions or removals/failures affect the connectivity graph at a given node. This
is dictated by the restrictions imposed on the dissemination of connection information to specific
sub-systems within the system. The connectivity graph should also provide us with information
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regarding the best hop to take to reach any unit within the system. The link cost matrix maintains
the cost associated with traversal over any edge of the connectivity graph. The connectivity graph
depicts the connections that exist between units at different levels. Depending on the node that
serves as a level-ℓ gatekeeper, the cluster that the node is a part of is depicted as a level-1 unit
having a level-ℓ connection to a level-ℓ unit, by all the other clusters within the super cluster that
the gatekeeper node is a part of.

3.2.3 The connection

A connection depicts the interconnection between units of the system, and defines an edge in the
connectivity graph. Interconnections between the units snapshot the kind of gatekeepers that exist
within that unit. A connection exists between two gatekeepers. A level-ℓ node denoted nℓ

i in the
connectivity graph, is the level-ℓ GES context of the gatekeeper in question and is the tuple < uℓ

i , ℓ >.
A level−ℓ connection is the tuple < nx

i , ny
j , ℓ > where x | y = ℓ and x, y ≤ ℓ. Units ux

i and

uy
j share the same level-(ℓ + 1) GES context Cℓ+1

k . For any given node nℓ
i in the connectivity

graph we are interested only in the level ℓ, ℓ + 1, · · · , N connections that exist within the unit and
not the ℓ − 1, ℓ − 2, · · · , 0 connections that exist within that unit. Thus, if a level-ℓ connection is
established, the connection information is disseminated only within the higher level GES context
Cℓ+1

i of the sub-system that the gatekeepers are a part of. This is ensured by never sending a level-ℓ
gateway addition information across any gateway gℓ+1. Thus, in figure 5 for a super-cluster gateway
established within SSC-A, the connection information is disseminated only within the super-clusters
SC-1, SC-2 and SC-3, and subsequently the nodes in super-super-cluster SSC-A.

When a level-ℓ connection is established between two units, the gatekeepers at each end create
the connection information in the following manner —

(a) For the gatekeeper at the far end of the connection, the node information in the connection is
constructed using its level-ℓ GES context.

(b) The other node of the connection is constructed as level-0 node using its level-0 GES context.

(c) The last element of the connection tuple, is the connection level ℓc.

When the connection information is being disseminated throughout the GES context Cℓ+1
i , it arrives

at gatekeepers at various levels. Depending on the kind of link this information is being sent over,
the information contained in the connection is modified. Every gatekeeper gp ∋ p ≤ ℓc, at which
the connection information is received, checks to see if any of the node information depicts a node
nx where x < ℓc. If this is the case the next check is to see if p > x. If p > x the node information
is updated to reflect the node as level-p node by including the level-p GES contextual information
of gp. If p �> x the connection information is disseminated as is. Thus, in figure 5 the connection
between SC-2 and SC-1 in SSC-A, is disseminated as one between node 5 and SC-2. When
this information is received at 4, it is sent over as a connection between the cluster c and SC-2.
When the connection between cluster c and SC-2 is sent over the cluster gateway to cluster b, the
information is not updated. As was previously mentioned, the super cluster connection (SC-1,SC-
2) information is disseminated only within the super-super-cluster SSC-A and is not sent over the
super-super-cluster gateway available within the cluster a in SC-1 and cluster g in SC-3.

3.2.4 Link count

For every connection that is created there is a unique identifier associated with that connection.
All connections relevant for a node are maintained in a connection table. This scheme allows us
to detect if the connection table already contains a certain connection. There could be multiple
connections between two specific units, this feature provides for greater fault tolerance. However,
what is maintained in the connectivity graph is simply the connection, which exists between the two
units. The edge thus created also has a link count associated with it, which is incremented by one
every time a new connection is established between two units that were already connected. This
scheme also plays an important role in determining if a connection loss would lead to partitions.
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3.2.5 The link cost matrix

The link cost matrix specifies the cost associated with traversing a link. The cost associated with
traversing a level-ℓ link from a unit ux increases with increasing values of both x and ℓ. Thus the
cost of communication between nodes within a cluster is the cheapest, and progressively increases
as the level of the unit that it is connected to increases. The cost associated with communication
between units at different levels increases as the levels of the units increases. One of the reasons
why we have this cost scheme is that the dissemination scheme employed by the system is selective
about the links employed for finer grained dissemination. In general a higher level gateway is more
overloaded than a lower level gateway. Table 1 depicts the cost associated with communication
between units at different levels.

level 0 1 2 3 ℓi ℓj
0 0 1 2 3 ℓi ℓj

1 1 2 3 4 ℓi + 1 ℓj + 1
2 2 3 4 5 ℓi + 2 ℓj + 2
3 3 4 5 6 ℓi + 3 ℓj + 3
ℓi ℓi ℓi + 1 ℓi + 2 ℓi + 3 2 × ℓi ℓi + ℓj

ℓj ℓj ℓj + 1 ℓj + 2 ℓj + 3 ℓj + ℓi 2 × ℓj

Table 1: The Link Cost Matrix

The link cost matrix can be dynamically updated to reflect changes in link behavior. Thus, if a
certain link is overloaded, we could increase the cost associated with traversal along that link. This
check for updating the link cost matrix could be done every few seconds.

3.2.6 Organizing the nodes

The connectivity graph is different at every node, while providing a consistent view of the connections
that exist within the system. This section describes the organization of the information contained
in connections (section 3.2.3) and super-imposing costs as specified by the link cost matrix (section
3.2.5) resulting in the creation of a weighted graph. The connectivity graph constructed at the node
imposes directional constraints on certain edges in the graph.

The first node in the connectivity graph is the vertex node, which is the level-0 server node hosting
the connectivity graph. The nodes within the connectivity graph are organized as nodes at various
levels. Associated with every level-ℓ node in the graph are two sets of links, the set LUL, which
comprises of connections to nodes na

i ∋ a ≤ ℓ and LD with connections to nodes nb
i ∋ b > ℓ. When

a connection is received at a node, the node checks to see if either of the graph nodes (representing
the corresponding units at different levels) is present in the connectivity graph. If any of the units
within the connection is not present in the connectivity graph, the corresponding graph node is
added to the connectivity graph. For every connection, < nx

i , ny
j , ℓ > where x | y = ℓ and x, y ≤ ℓ,

that is received; if y ≤ x then –

• Graph node ny
j is added to the set LUL associated with node nx

i

• Graph node nx
i is added to the set LD associated with node ny

j .

The process is reversed if x ≤ y. For the edge created between nodes nx
i and ny

j , the weight is given
by the element (x, y) in the link cost matrix.

Figure 6 depicts the connectivity graph that is constructed at the node SSC-A.SC-1.c.6 in figure
5. The set LUL at the node SC-3 in the figure comprises of node SC-2 at level-2 and node b at
level-1. The set LD at SC-3 comprises of the node SSC-B at level-3. The cost associated with
traversal over a level-3 gateway between a level-2 unit b and a level-3 unit SC-3 as computed from
the linkcost matrix is 3, and is the weight of the connection edge. There are two connections between
the super-super-cluster units SSC-B and SSC-D, this is reflected in the link count associated with
the edge connecting the corresponding graph nodes. The directional issues associated with certain
edges are imposed by the algorithm for computing the shortest path to reach a node.
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Figure 6: The connectivity graph at node 6.

3.2.7 Computing the shortest path

To reach the vertex from any given node, a set of links need to be traversed. This set of links
constitutes a path to the vertex node. In the connectivity graph, the best hop to take to reach a
certain unit is computed based on the shortest path that exists between the unit and the vertex.
This process of calculating the shortest path, from the node to the vertex, starts at the node in
question. The directional arrows indicate the links, which comprise a valid path from the node in
question to the vertex node. Edges with no imposed directional constraints are bi-directional. For
any given node, the only links that come into the picture for computing the shortest path are those
that are in the set LUL associated with any of the nodes in a valid path.

The algorithm proceeds by recursively computing the shortest paths to reach the vertex node,
along every valid link (LUL) originating at every node that falls within the valid path. Each fork of
the recursion keeps track of the nodes that were visited and the total cost associated with the path
traversed. This has two useful features -

(a) It allows us to determine if a recursive fork needs to be sent along a certain edge. If we do not
keep track of the nodes that were visited, we could end up in an infinite recursion where we
revisit the same node over and over again.

(b) It helps us decide on the best edge that could have been taken at the end of every recursive
fork.

For example in the connectivity graph of figure 6 we are interested in computing the shortest path
to SSC-B from the vertex. This process would start at the node SSC-B. The set of valid links
from SSC-B include edges to reach nodes a, SC-3 and SSC-D. At each of these three recursions
the paths are reflected to indicate the node traversed (SSC-B) and the cost so far i.e 4,5 and 6
to reach a, SC-3 and SSC-B respectively. Each recursion at every node returns with the shortest
path to the vertex. Thus the recursions from a, SC-3 and SSC-D return with the shortest paths
to the vertex. This along with the shortest path to reach those nodes, provides us with the means
to decide on the shortest path to reach the vertex.

3.2.8 Building and updating the routing cache

The best hop to take to reach a certain unit is the last node that was reached prior to reaching the
vertex, when traversing the shortest path from the corresponding unit graph node to the vertex.
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This information is collected within the routing cache, so that messages can be disseminated faster
throughout the system. The routing cache should be used in tandem with the routing information
contained within a routed message to decide on the next best hop to take to ensure efficient dissem-
ination. Certain portions of the cache can be invalidated in response to the addition or failures of
certain edges in the connectivity graph.

In general when a level-ℓ node is added to the connectivity graph, connectivities pertaining
to units at level ℓ, ℓ + 1, · · · , N are effected. For a level-N system if a gateway gℓ within uℓ+1

i is
established, the information contained in the routing cache to reach units at level ℓ, ℓ+1, · · ·N needs
to be updated for all the units within uℓ+1

i . The cases of gateway failures, node failures, detection
of partitions and the updating of the routing cache in response to these failures are dealt with in a
later section.

3.2.9 Exchanging information between super-units

When a subsystem uℓ
i is added to an existing system uℓ+j+1; information regarding gℓ+j , gℓ+j−1, · · · , gℓ

connections are exchanged between the system and the newly added sub system. Thus when a super
cluster is added to an existing system comprising of super-super-clusters, the existing system routes
information regarding super-cluster and super-super-cluster connections to the newly added super-
cluster. The way the set of connections, comprising the connectivity graph, is sent over the newly
established link is consistent with the rules, which we had set up for sending a connection informa-
tion over a gateway as discussed in section 3.2.3. Thus, if a new super cluster SC-4 is added to the
SSC-A sub-system and a super cluster gateway is established between SC-4 and node SC-1.c.6,
then, the connectivity graphs at node 6 would be as depicted in figure 7.(a) while the connectivity
graph at the gatekeeper in SC-4 would comprise of the connections that were sent over the newly
established gateway by node 6.
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Figure 7: Connectivity graphs after the addition of a new super cluster SC-4.

Figure 7.(b) depicts only the connections which describe the connections involving level-2 gate-
ways and upwards at node 99 in SC-4. There would be clusters comprising of strongly connected
server nodes in SC-4, we however do not need to depict these, in figure 7.(b), for the present
discussion regarding connection information exchange.
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3.3 Organization of Profiles and the calculation of destinations

Every event conforms to a signature which comprises of an ordered set of attributes {a1, a2, · · · , an}.
The values these attributes can take are dictated and constrained by the type of the attribute.
Clients within the system that issues these events, assign values to these attributes. The values
these attributes take comprise the content of the event. All clients are not interested in all the
content, and are allowed to specify a filter on the content that is being disseminated within the
system. Thus a filter allows a client to register its interest in a certain type of content. Of course
one can employ multiple filters to signify interest in different types of content. These filters specified
by the client constitutes its profile. The organization of these profiles, dictates the efficiency of
matching content. A level-ℓ gatekeeper snapshots the profiles of all the level-(ℓ-1) units that share
the same GES context Cℓ

i with it.

3.3.1 The problem of computing destinations

Clients express interest in certain types of content, and events which conform to that content need
to be routed to the client. A simple approach would be to route all events to all clients, and have
the clients discard the content that they are not interested in. This approach would however place a
strain on network resources. Under conditions of high load and increasing selectivity by the clients,
the number of events a client discards would far exceed the number of events it is actually interested
in. This scheme also affects the latency associated with the reception of real time events at the
client. The system thus needs to be very selective of the kinds of events that it routes to a client.
In other words the system should be able to efficiently compute destination lists associated with the
event. Depending on the event this destination list could be internal to the event or external to the
event. In the case of events with external destination lists, the system relies on information contained
within the client’s profile and also the content of the event to arrive at the set of destinations that
need to receive the event.

These destinations should be computed in such a way that it exploits the network topology in
place, as also the routing algorithms that make use of abbreviated views of inter-connections existing
within the system. Profiles need to be organized so that they lend themselves to very efficient
calculation of destinations upon receiving a relevant event. In our approach a level-ℓ gatekeeper
maintains the profiles of all the level-(ℓ-1) units that share the same GES context Cℓ

i with it. This
scheme fits very well with our routing algorithms, since the destinations contained within the event
are those that are consistent with the node’s abbreviated view of the system. To allow for a node
to maintain profiles contained at different units (clusters, servers, clients etc.) we need to be able
to be able to propagate profile additions and changes to nodes responsible for the generation of
destination lists.

The problem of computing destinations for a certain event comprises of the following –

(a) Organization of profiles in a profile graph

(b) Propagation of profiles to the nodes that are responsible for the calculation of hierarchical
destination lists.

(c) Navigation of the profile graph to compute the destinations associated with the content.

A given node can compute destinations only at certain level. Thus the computation of destinations
is itself a distributed process in our model.

3.3.2 Constructing a profile graph

As mentioned earlier, events encapsulate content in an ordered set of < attribute, value > tuples.
The constraints specified in the profiles should maintain this order contained within the event’s
signature. Thus to specify a constraint on the second attribute (a2) a constraint should have been
specified on the first attribute (a1). What we mean by constraints, is the specification of the value
that a particular attribute can take. We however also allow for the weakest constraint, denoted ∗,
on any of the attributes. The ∗ signifies that the filtered events can take any of the valid values
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within the range permitted by the attribute’s type. By successively specifying constraints on the
event’s attributes, a client narrows the content type that it is interested in. It is not necessary
that a constraint be specified on all the attributes {a1, a2, · · · , an}. What is necessary is that if a
constraint is imposed on an attribute ai constraints for attributes a1, a2, · · · , ai−1 must be in place,
even if some or all of these constraints is the weakest constraint ∗. Thus if a constraint is specified
till attribute ai and no constraints are imposed on some of the attributes a1, a2, · · · , ai−1, the system
assigns these attributes the weakest constraint ∗. It makes more sense imposing the constraint ∗ on
higher order attributes ai+1 · · · an than on the lower order attributes a1, a2, · · · ai−1. Such a scheme
has the effect of narrowing content down to the ones which are very closely related to each other.
For every event type we maintain a profile chain. Different profile chains when added up constitute
the profile graph.

We use the general matching algorithm, presented in [2], of the Gryphon system to organize
profiles and compute the destinations associated with the events. Constraints from multiple profiles
are organized in the profile graph. Every attribute on which a constraint is specified constitutes
a node in the profile graph. When a constraint is specified on an attribute ai, the attributes
a1, a2, · · · , ai−1 appear in the profile graph. A profile comprises of constraints on successive attributes
in an event’s signature. The nodes in the profile graph are linked in the order that the constraints
have been specified. Any two successive constraints in a profile result in an edge connecting the
nodes in the profile graph. Depending on the kinds of profiles that have been specified by clients,
there could be multiple edges, originating from a node. Following the scheme in [2] we do not allow
multiple edges terminating at a node since it results in a situation where the event matching results
in an invalid destination, due to that event having satisfied partial constraints of different profiles
from within the same unit.

s1= {A=a, B=*, C=c}
s2= {A=a, B=b,C=c}
s3= {A=f, D=d, C=c}
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Figure 8: The profile graph - An example.

Figure 8 depicts the profile graph constructed from three different profiles. The example depicts
how some of the profiles share partial constraints between them, some of which result in profiles
sharing edges in the profile graph. A certain edge is marked as traversed by an event if the two
successive constraints that created the edge, have been satisfied by that event. The presence of an
edge signifies the existence of at least one client, which is interested in the content satisfying at least
two of the constraints contained in that edge. An event’s traversal along an edge simply indicates
that the event’s content has satisfied some partial constraint imposed by one or more of the clients.
As we traverse further down the profile chain, the events we are looking for get more fine grained.
The final constraint on an attribute leads to the creation of a destination edge. The edges arising
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out of node C in figure 8 are destination edges.

3.3.3 Information along the edges

To support hierarchical disseminations and also to keep track of the addition and removal of edges,
besides the basic organization of constraints, the graph needs to maintain additional information
along its edges. This additional information also plays a very important role in the reliable delivery
of events to clients (we discuss this in a later section). Along every edge we maintain information
regarding the units that are interested in its traversal. For each of these units we also maintain the
number of predicates δω within that unit that are interested in the traversal of that edge. The first
time an edge is created between two constraints as a result of the profile specified by a unit, we add
the unit to the route information maintained along the edge. For a new profile ωnew added by a
unit, if two of its successive constraints already exist in the profile graph, we simply add the unit to
the existing routing information associated with the edge. If the unit already exists in the routing
information, we increment the predicate count associated with that destination.
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D C

C

C

a [s1,s2][1,1]

f [s
3][1]

d [s3][1] c [s3][1]

b [s2][1]
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c [s2][1]

s1= {A=a, B=*, C=c}
s2= {A=a, B=b,C=c}
s3= {A=f, D=d, C=c}

Figure 9: The complete profile graph with information along edges.

The information regarding the number of predicates δω per unit that are interested in two
successive constraints allows us to remove certain edges and nodes from the profile graph, when
no clients are interested in the constraints any more. Figure 9 provides a simple example of the
information maintained along the edges. We discuss how the profiles are propagated, where they
are propagated and how this information along the edges is modified and updated in section 3.3.5.

3.3.4 Computing destinations from the profile graph

Once the profile graph has been constructed, we can compute the destinations that are associated
with an event. Traversal along an edge is said to be complete if two successive constraints at end
points of the edge have been satisfied by the content in question. When an event comes in we first
check to see if the profile graph contains the first attribute contained in the event. If that is the case
we can proceed with the matching process. When an event’s content is being matched, the traversal
is allowed to proceed only if -

(a) There exists a wildcard (∗) edge connecting the two successive attributes in the event.

(b) The event satisfies the constraint on the first attribute in the edge, and the node that this edge
leads into is based on the next attribute contained in the event.

As an event traverses the profile graph, for each destination edge that is encountered if the event
satisfies the destination edge constraint, that destination is added to the destination list associated
with the event.
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3.3.5 The profile propagation protocol - Propagation of ±δω changes

In the hierarchical dissemination scheme that we have, gatekeepers gℓ+1 compute destination lists
for the uℓ units that it serves as a gℓ+1 for. A gatekeeper gℓ+1 should thus maintain information
regarding the profile graphs at each of the uℓ units. Profile graph Pℓ+1

i maintains information
contained in profiles Pℓ at all the uℓ units within uℓ+1

i . This should be done so that when an event
arrives over a gℓ+1 in uℓ+1

i –

(a) The events that are routed to destination uℓ’s, are those with content such that at least one
destination exists for those events within the sub-units that comprise the profile for uℓ.

(b) There are no events, that were not routed to uℓ
i , with content such that uℓ

i would have had a
destination within the sub-units whose profile it maintains.

Properties (a) and (b) ensure that the events routed to a unit, are those that have at least one client
interested in the content contained in the event. When an event is received over a cluster gateway,
there would be at least one client attached to one of the nodes in the cluster which is interested in
that event.

When we send the profile graph information over to the higher level gatekeeper gℓ, the information
contained along the edges in the graph needs to be updated to reflect the nodes logical address at
that level. Thus when a node propagates the clients profile to the cluster gatekeeper, it propagates
the edges created/removed with the server as the destination associated with the profile predicate.
Similarly, when this is being propagated to a super-cluster gatekeeper the profile change is sent across
as a profile change in the cluster. Any change in the client’s profile is propagated to gatekeepers
at higher levels, that the server node in its abbreviated view of the system is aware of. What we
are trying to do is to maintain information in the profile graph, in a manner which is consistent
with the dissemination constraints imposed by properties (a) and (b). The reason we maintain
destination information the way we do is that this model ties in very well with our topology and the
routing algorithms that are in place. The connectivity graph provides us with an overall view of the
interconnections between units at different levels. The organization and calculation of destinations
from the profiles comprising the profile graph, feeds right into our routing algorithms that compute
the shortest path to reach the units (destinations) where an event needs to be routed. In general
for a level-N system, if there is a subscribing client with GES context CN

j and the issuing client

has GES context CN
i the destinations are computed (N+1) times. Thus, in a system comprising of

super-super-clusters, the destinations are computed four times prior to reception at the client.
For profile changes that result in a profile change of the unit, the changes need to be propagated

to relevant nodes, that maintain profiles for different levels. A cluster gateway snapshots the profile
of all clients attached to any of the server nodes that are a part of that cluster. Thus a change in
the profile of a client needs to be propagated to its server node. The change in profile of the server
node should in turn be propagated to the cluster gateway(s) within the cluster that the node is a
part of. Similarly a super-cluster gateway snapshots the profiles of all the clusters contained in the
super-cluster. When a profile change occurs at any level, the updates need to be routed to relevant
destinations. The connectivity graph provides us with this information. From the connectivity
graph, it can be seen that node 4 is the cluster gateway. Thus, changes in profiles at level-0 (i.e.
δω0) at any of the nodes in cluster SSC-A.SC-1.c are routed to node 4. δω1 changes need to be
routed to level-2 gateways within SSC-A. In general the gatekeepers to which the profile changes
need to be propagated are computed as follows —

(a) Locate the level-(ℓ) node in the connectivity graph.

(b) The uplink from this node of the connectivity graph to any other node in the graph, indicates
the presence of a level-ℓ gateway at the unit corresponding to the graph node.

This scheme provides us with information regarding the level-ℓ gateway, within the part of the
system that we are interested in. We are not interested in the lateral links since they provide us
with information regarding all the level-ℓ gateways within the next higher level GES context Cℓ+1.
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Figure 10: The connectivity graph at node 6.

In the figure 10, any δω0 changes at any of the nodes within cluster c, are need to be routed
to node 4. Any δω1 changes at node 4 need to be routed to node 5, and also to a node in cluster
b. Similarly δω2 changes at node 5 needs to be routed to the level-3 gatekeeper in cluster a
and superclusters SC-3, SC-2. When such propagations reach any unit/super-unit the process is
repeated till such time that the gateway that the node seeks to reach is reached. Every profile change
has a unique-id associated it, which aids in ensuring that the reference count scheme does not fail
due to delivery of the same profile change multiple times within the same unit.

Summarizing the discussion so far, the profile graph snapshots the profiles of units at a certain
level, and as such can compute destinations only for this set of units. The profile snapshot that is
created ensures that there is at least one sub-unit attached to one of the units within the super unit
under consideration which should receive the event. Thus the profile matching scheme ensures that
there is at least one client which will receive the event when it is received within a unit. If we do
not have a scheme which snapshots profiles in the following manner, we could end up in a scenario
where none of the events received in a unit have any clients which are interested in that event.

3.3.6 Unit additions and the propagation of profiles

When a unit (with publishing and subscribing clients) is being added to a larger existing server
network, besides the sequence of actions pertaining to the generation/update of logical addresses
and the exchange of system inter connectivities, profiles would need to be propagated in exactly
the same way that we described. Thus when a cluster is added to the system, the server nodes
within the cluster route their profiles to the newly created cluster gatekeeper. This gatekeeper is in
turn responsible for the propagation of profiles to the super-cluster gatekeepers in the newly merged
system.

3.3.7 Active profiles

The profile propagation protocol aids in the creation of destination lists at units within different
levels. These destination lists are then employed at each level for finer grained disseminations. Since
the profile add/change propagates through the system to higher level gateways, it is possible that
a gateway at a higher level has not yet been notified about the profile add/change. Thus though
it may receive an event which would match the profile change, the destination list may not include
the lower level unit. It is possible that a client may receive events issued by clients within a certain
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unit, though it may not receive similar events from clients published by units within a different GES
context.

What interests us is the precise instant of time from which point on we can say that all events
that satisfy the client’s profile will be delivered to the client. To address this issue we introduce
the concept of active profiles, which provides guarantees in the routing of events within a unit. The
active profile approach provides us with a unit-based incremental approach towards achieving system
guarantees during a profile add/change. If a profile is super-cluster active all events issued by clients
attached to any of the server nodes within a super-cluster C2

i will be routed to the interested client.
Thus the first event that is received by the client is an indication that all subsequent events routed
to that unit, matching the same profile would also be received by the client. When we say that a
profile is unit-active2 what we mean is that for every event that is being routed within that unit
the destination lists calculated would include information to facilitate routing to the client. Since a
client profile is unit active, all events, issued within the unit, will be routed to the client if it satisfies
the client profile.

Events contain routing information in them, which indicate the units where these events were
disseminated. The routing information contained in an event thus includes the unit in which the
event was issued. Since the dissemination is hierarchical, an event will not be routed to a client
till such time that the client’s profile change has been propagated to higher level gatekeepers. If
a profile change issued by a client cA is routed to a super-cluster gatekeeper, all events issued by
clients attached to any of the nodes within this super-cluster, will be routed to the client cA if these
events match the corresponding profile change. The routing information, for events issued by clients
in this super-cluster, indicate the dissemination within the units in that super-cluster. If this event
matches the profile change initiated by one of the attached clients, and if this event is routed to
such a client then the profile change associated with that client is said to be super-cluster active. In
an N -level system if the routing information depicts the dissemination of the event within another
level-N unit within the system, the profile change issued by the client is said to be system active.
When a profile change initiated by a client is system active, events issued by any other clients within
the system will be routed to this client, if those events match the system active profile change that
was initiated by this client.

3.4 The event routing protocol - ERP

Event routing is the process of disseminating events to relevant clients. This includes matching the
content, computing the destinations and routing the content along to its relevant destinations by
determining the next node that the event must be relayed to. Every event has routing information
associated with it, which could be used by the system to determine the route the event would take
next. This routing information is not added by the client issuing this event but by the system to
ensure faster dissemination and recovery from failures. When an event is first issued by the client,
the server node that the client is attached to adds the routing information to the event. This routing
information is the GES contextual information (see Section 2.1.1) pertaining to this particular node
in the system. As the event flows through the system, via gateways the routing information is
modified to snapshot its dissemination within the system. This information is then used to avoid
routing the event to the same unit twice. What a node also needs to decide is when it would be futile
to try and find a higher order gateway, and also when all the higher level units that could possibly
be covered have been covered. Of course it should also know if there is a higher order gateway that
needs to be reached. This decision is based on the event routing information and the information
pertaining to gateways that’s available at a node. If there are no such units that need to be reached,
the event routing would proceed with lower order disseminations. However if there is a unit that
needs to be reached, gateways would have to be employed to reach this unit as fast as possible. The
event routing information contained with an event simply indicates the units, which were present
en route to reception at the node.

2The unit we are referring to in this case are the clusters, super-clusters, super-super-clusters etc. Of course these
units are assumed to be within some higher level GES context of the server node to which the interested client is
attached to or was last attached to
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Figure 11: Routing events

A gateway gℓ+1 in uℓ+1
i is responsible for the dissemination of events throughout the relevant

uℓ units within uℓ+1
i . This is a recursive process and the gateway gℓ+1 delegates this dissemination

process to the lower level gateways gℓ, gℓ−1, · · · , g1 to aid in finer grained disseminations. Thus a
super-super-cluster gateway is responsible for disseminating the event to all the super-clusters which
comprise the super-super-cluster that it is a part of. A gateway gℓ is concerned with the routing
information from level-ℓ to level-N . When an event has been routed to a gatekeeper gℓ the routing
information associated with the event is modified to reflect the fact that the event was received at
that particular unit. It is the gatekeeper gℓ’s responsibility to ensure that the event is routed to all
the relevant nodes within the level-ℓ unit, using the delegation mechanism described earlier. Prior
to routing an event across the gateway a level-ℓ gatekeeper takes the following sequence of actions –

• Check the level-ℓ routing information for the event to determine if the event has already been
consumed by the unit at level-ℓ. If this is the case the event will not be sent over the gateway
to that unit.

There could be multiple links connecting a unit to some other unit. This scheme provides us
with a greater degree of fault-tolerance. This also leads to the situation3 where the event could
be routed to the same unit over multiple links. In this case the duplicate detection algorithm
detects this duplicate event and halts any further routing for this event.

3One of the reasons that this situation arises is a fork in the event’s routing which send it to two gateways within
the same unit



3.5 Routing real-time events 26

• In case the gateway decides to send the event over the gateway, all routing information per-
taining to lower level disseminations are stripped from the event routing information.

This is because the routing information pertaining to the lower level disseminations is within
the GES context of a specific level-ℓ unit and will not be valid within other level-ℓ units.
Also, in general a higher order gateway would be more overloaded4 compared to a lower
order gateway. Reducing the amount of information being transferred over the gateway helps
conserve bandwidth.

Figure 11 depicts the routing scheme which we have discussed so far. The routings depicted in the
figure outline how routing information is updated to reflect the traversal at units in different levels.

In addition to the information regarding where the event has been delivered already, events also
need to contain information regarding the units which an event should be routed to. Gatekeepers
gℓ(Cℓ+1) decide the level-(ℓ − 1) units which are supposed to the receive the event. This decision
is based on the profiles available at the gatekeeper as outlined in the profile propagation protocol.
This calculation of the targeted units is a recursive process with the lower order disseminations being
handled by the corresponding lower order gatekeepers. Thus two levels of routing information are
contained within an event —

(a) Units where an event should be routed within a unit.

(b) Units which have already received the event.

This routing scheme plays a crucial role in determining which events need to be stored to a stable
storage during failures and partitions.

When a gatekeeper gℓ with GES context Cℓ
i is presented with an event it computes the uℓ−1’s

within Cℓ
i that the event must be routed to. At every node the best hops to reach the destinations are

computed. Thus, at every node the best decision is taken. Nodes and links that have not been failure
suspected are the only entities that can be part of the shortest path. The event routing protocol,
along with the profile propagation protocol and the gateway information ensure the optimal routing
scheme for the dissemination of events in the existing topology.

3.5 Routing real-time events

Real time events can have destination lists, which are internal or external to the event. In each case
the routing differs, in the case of internal lists the destination’s location needs to be precisely located
by the system. Routing events with external destination lists involves the system calculating the
destinations for delivery.

3.5.1 Events with External Destination lists

When an event arrives at a gatekeeper gℓ, the gatekeeper checks to see if the event satisfies its
profile. The profile maintained at gℓ snapshots the profile of the level-ℓ unit that the gatekeeper
belongs to. This check is necessary to confirm if the event needs to be disseminated within the level-ℓ
unit. Routing events based on the gatekeeper profile is the process which calculates the destination
lists. This is a recursive process in which each higher order gatekeeper performs this check before
disseminating the event to lower order gatekeepers.

When an event doesn’t match the gatekeeper gℓ’s profile, gℓ decides upon the next route that
event would take based on the routing information encoded into the event by the event routing
protocol.

• The gatekeeper gℓ
j(C

ℓ+1
i ) checks the routing information provided by ERP to see if it needs to

relay the event to other gatekeepers gℓ within the GES context Cℓ+1
i .

4This is because a lower order gateway is primarily employed for finer grained dissemination of events, and only
rarely if at all would be used to get to a higher order gateway. Besides this a higher order gateway gℓ

i
(Cℓ+1

i
) is the

one responsible for deciding if the event needs to be routed to any of the lower units comprising the level-ℓ.
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• The gatekeeper also uses the information provided by ERP to check if it could route the event
to a higher order gateway which has not received the event.

In the event that these steps lead to no actions on part of the gatekeeper gℓ the gatekeeper takes
no further actions to route this event. If the gatekeeper decides to route this event to other level-ℓ
and higher order gatekeepers, the system can employ lower order gateways within the GES context
Cℓ+1

i to relay this event.

3.5.2 Events with Internal Destination lists

These are events which require the system to be able to route the event to a specific client in the
system. Clients which are interested in receiving point-to-point events thus need to include their
identifier in their profile. The sequence of steps that are needed to route the event are similar to the
steps we take to route events with external destination lists as discussed in section 3.5.1.

3.6 Unique Events - Generation of unique identifiers

Associated with every event e sent by client nodes in the system is an event-ID, denoted e.id, which
uniquely determines the event e, from any other event e′ in the system. These ID’s thus have the
requirement that they be unique in both space and time. Clients in the system are assigned Ids,
ClientID, based on the type of information issued and other factors such as location, application
domain etc. To sum it up clients use pre-assigned Ids while sending events. This reduces the
uniqueness problem, alluded earlier to a point in space. The discussion further down implies that
the problem has been reduced to this point in space.

Associating a timestamp, e.timeStamp, with every event e issued restricts the rate (for uniquely
identifiable5 events) of events sent by the client to one event per granularity of the clock of the
underlying system. Resorting to sending events without a timestamp, but with increasing sequence
numbers, e.sequenceNumber, being assigned to every sent event results in the ability to send events
at a rate independent of the underlying clock. However, such an approach results in the following
drawbacks

a) If the client node issues an infinite number of events, and also since the sequence numbers are
monotonically increasing, the sequence number assigned to events could get arbitrarily large
i.e. e.sequenceNumber → ∞.

b) Also, if the client node were to recover from a crash failure it would need to issue events
starting from the sequence number of the last event prior to the failure, since the event would
be deemed a duplicate otherwise.

A combination of timestamp and sequence numbers solves these problems. The timestamp is
calculated the first time a client node starts up, and is also calculated after sending a certain
number of events sequenceNumber.MAX. In this case the maximum sending rate is related to
both sequenceNumber.MAX and the granularity of the clock of the underlying system. Thus the
event ID comprises of a tuple of the following named data fields : e.PubID, e.timeStamp and
e.sequenceNumber. Events issued with different times t1 and t2 indicate which event was issued
earlier, for events with the same timestamp the greater the timestamp the later the event was issued.

Systems such as Gnutella [1] propagate events through the network without duplication, using
the IETF UUID [27] which gives a unique 128-bit identifier on demand. The authors guarantee the
uniqueness until 3040 A.D. for the ID’s generated using their algorithm. Such a scheme of unique
ID’s could also be very conveniently incorporated into the Grid Event Service for a unique identifier
for every event.

5When events are published at a rate higher than the granularity of the underlying system clock, its possible for
events e and e′ to be published with the same timestamp. Thus, one of these events e or e’ would be garbage collected
as a duplicate message.
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3.7 Duplicate detection of events

Multiple copies of an event can exist in the system. This occurs due to multiple gateways existing
between units and also due to events taking multiple routes to the reach destinations in response to
failure suspicions. Events need to be duplicate detected because for any event e that is a duplicate
event, the path taken by the event as dictated by ERP is exactly the same as that taken by the event
e which was previously received. In section 3.6 we discussed the generation of unique identifiers for
events. This scheme of unique ID generation provides us with information pertaining to unrelated
events (events issued by different clients) and in the case of related events (events issued by the same
client) the order of their occurrence. In our scheme of duplicate event detection we use this unique
ID generation as the basis for our duplicate event detection scheme.
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Figure 12: Duplicate detection of events

Our unique ID generation scheme allows us to determine which of the two related events e and
e′ was issued earlier. If the last event received at a node is e and if the node receives a related event
e′, then our duplicate detection scheme works as follows –

• If e′ > e then e′ was not received earlier, else it was and it is duplicate detected. The >
relation between two related events is based on the timestamp and the sequence number that
is associated with the two events.

Consider the case in figure 12.(a), at nodes A and B events e1, e2, e3, e4 and e5 are all events
issued by the same client. Node C maintains the last event that was received. The links we assume
in the system are unreliable and unordered. Since these links allow the events to overtake each other,
if node C receives e3 first node C could errantly conclude that it had received e1 and e2. To resolve
this we impose the requirement that the events be received in order (this is more so in the case
of events issued by the same client), i.e. we do not let events overtake each other in the reception
sequence at any node within the system.

Now even though the events arrive at different times, since they arrive in order, the event e
(either from A or B) that arrives first is not duplicate detected while the event e that arrives later
is duplicate detected.

from-A e1 e2 e3 e4 e5

from-B e1 e2 e3 e4 e5

at-C eA
1 eB

2 eB
3 eA

4 eA
5

t → 1 2 3 4 5 6 7 8 9

Table 2: Reception of events at C

Consider the case in figure 12.(b), node A has sent events e1, e2 and e3 over link lAC at time t.
At time t + δ node A suspects a node C failure which could either be due to an overcrowded link
lAC or a slow process at C. Now if A were to compute the alternate route to C that goes via B; if



3.8 Interaction between the protocols and performance gains 29

it doesn’t send e1, e2, e3 prior to sending e4 and e5, the events e1, e2, e3 would be duplicate detected
if e4 arrives before e1. Once we make this minor change of resending unacknowledged events across
the alternate route in response to suspicions it simply reduces to the case depicted in figure 12.(a).
As an optimization feature we could also send anti-events down the failed/slow link whenever we
resort to computing an alternate route.

1 a

54
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2
e1,e2,e3

e4,e5
a

Client a 'roam'

Slow /
Overloaded
Link

Figure 13: Duplicate detection of events during a client roam

Figure 13 depicts the scenario where a client roam could lead to duplicate detection of events
which are not truly duplicate events. The case in which our duplicate detection scheme breaks
down, is detailed in table 3. To account for such a scenario we include the incarnation number in
our duplicate detection scheme. Incarnation numbers would be incremented for every roam and
reconnection of the issuing client. The events would then be treated as events with a different
clientID thus preventing the duplicate detection of events which should not have been duplicate
detected in the first place.

t → t + ∆ t + 2∆ t + 3∆ t + 4∆ t + 5∆
at 2 e1, e2, e3

at 1 ACK(e1, e2, e3) roam + send(e4, e5)
at 4 e4, e5 e1, e2, e3

Table 3: Reception of events at 4: Client roam

3.8 Interaction between the protocols and performance gains

In our system the node organization protocol could be used in the creation of small world [35,
31] networks. This organization, which comprises of strongly connected server nodes in clusters
connected by long links ensures that the pathlength increases logarithmically for geometric increases
in the size of the server node network. The feature of having multiple links between two units/super-
units ensures a greater degree of fault tolerance. Links could fail, and the routing to those units
could still be performed using the alternate links. The organization of connection information ensures
that connection losses (or additions) are incorporated into the connectivity graph hosted at relevant
nodes. Certain sections of the routing cache are invalidated in response to this addition (or loss) of
connections. This invalidation and subsequent calculation of best hops to reach units (at different
levels) ensure that the paths computed are consistent with the state of the network, and include
only valid/active links. The ability to compute routes to reach destinations at different levels lends
the scheme very useful for hierarchical disseminations.

In our scheme for the organization of profiles we employ an approach where profiles of sub-units
are maintained at the unit gatekeeper. Events almost always arrive at the unit gatekeepers first,
since they provide a gateway to the unit. The only exception is in the cluster where a client issues
an event. Having this unit gatekeeper intelligently decide on the sub-units, which should receive
an event helps eliminate redundant routing of events. By maintaining sub-unit profiles at the unit
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gatekeeper we ensure that the only events that are routed to a unit are those for which there is
at least one client, attached to one of the server nodes in that unit, which is interested in the
specific event. We obtain information regarding the nodes/units to route profile changes based on
the information contained in the connectivity graph. We then employ hops (at every server node en
route) obtained from the routing cache to ensure that this profile dissemination is the fastest. The
information maintained in the profile graph is consistent with the dissemination scheme and can be
used to compute destinations at different levels. In an N-level system, an event is matched (N+1)
times prior to routing the event to a client.

The event routing protocol uses the profile information available at the unit gatekeepers to
compute the sub-units that the event should be routed to. To reach these destinations every node,
at which this event is received, employs the best hops to reach the destinations. This best hop is
computed based on the cost of traversal as also the number of links connecting the different units.
Thus in our system, based on the organization of profiles and subsequent matching of events, the
only units to which an event is routed are those that have clients interested in that event. Further,
based on the connectivity graph and the associated routing cache we compute the fastest/reliable
hops to take to reach the relevant destinations. The routing information encoded into the event along
with the duplicate detection scheme ensures that we eliminate continuous event echoing, where the
event is routed to the same unit over and over again.

These approaches result in only the relevant links and functioning nodes being employed for
disseminations. The small world behavior that would exist in server network, when appropriately
organized, ensures that the pathlengths for these disseminations would only increase logarithmically
with the number of server nodes.
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4 Results

In this section we present results pertaining to the performance of our protocols. We first proceed
with outlining our experimental setups. We use two different topologies with different clustering
coefficients. The factors that we measure include latencies in the delivery of events, variance in the
latencies and system throughputs among others. We measure these factors under varying publish
rates, event sizes, event disseminations and system connectivity. We intend to highlight the benefits
of our routing protocols and how these protocols perform under the varying system conditions, which
were listed earlier.

4.1 Experimental Setup

The system comprises of 22 server node processes organized into the topology shown in the Figure
14. This set up is used so that the effects of queuing delays at higher publish rates, event sizes and
matching rates are magnified.

Each server node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128 MB RAM,
333 MHz), with no SPARC Ultra-5 machine hosting two or more server node processes. For the
purpose of gathering performance numbers we have one publisher in the system and one measuring
subscriber (the client where we do our measurements). The publisher and the measuring subscriber
reside on the same SPARC Ultra-5 machine and are attached to nodes 22 and 10 respectively in the
topology outlined in figure 14. In addition to this there are 100 subscribing client processes, with 5
client processes attached to every other server node (nodes 22 and 10 do not have any other clients
besides the publisher and measuring subscriber respectively) within the system. The 100 client node
processes all reside on a SPARC Ultra-60 (512 MB RAM, 360 MHz) machine. The publisher is
responsible for issuing events, while the subscribers are responsible for registering their interest in
receiving events. The run-time environment for all the server node and client processes is Solaris
JVM (JDK 1.2.1, native threads, JIT).

4.2 Factors to be measured

Once the publisher starts issuing events the factor that we are most interested in is the latency
in the reception of events. This latency corresponds to the response times experienced at each of
the clients. We measure the latencies at the client under varying conditions of publish rates, event
sizes and matching rates. Publish rate corresponds to the rate at which events are being issued
by the publisher. Event size corresponds to the size of the individual events being published by
the publisher. Matching rate is the percentage of events that are actually supposed to be receieved
at a client. In most publish subscribe systems, at any given time for a certain number of events
being present in the system, any given client is generally interested in a very small subset of these
events. Varying the matching rates allows us to simulate such a scenario, and perform measurements
under conditions of varying selectivity. For a sample of events received at a client we calculate the
mean latency for the sample of received events, the variance in the sample of these events and the
system throughput measured in terms of the number of events received per second at the measuring
subscriber. We also measure the highest and lowest event latencies within the sample of events
that have been received. Another very important factor that needs to be measured is the change in
latencies as the connectivity between the nodes in a server network is increased. This increase in
connectivity has the effect of reducing the number of server hops that an event has to take prior to
being received at a client. The effects of change in latencies with decreasing server hops is discussed
in section 4.3.4.

4.2.1 Measuring the factors

For events published by the publisher the number of tag-value pairs contained in every event is 6,
with the matching being determined by varying the value contained in the fourth tag. The profile
for all the clients in the system, thus have their first 3 <tag=value> pairs identical to the first 3
pairs contained in every published event. This scheme also ensures that for every event for which



4.2 Factors to be measured 32

SSC-BSC-4

SC-5

SC-6

l20 19

21

n
9

10

i11 4
5

j
15 6

7

m17 18
16

k1 2
3

h
14 12

13

8

22
Publisher

Measuring
Subscriber 8

1 Level-3 Storage

Level-2 Storage

Persistent
Subscriber

Figure 14: Testing Topology - (I)

destinations are being computed there is some amount of processing being done. Clients attached
to different server nodes specify an interest in the type of events that they are interested in. This
matching rate is controlled by the publisher, which publishes events with different footprints. Since
we are aware of the footprints for the events published by the publisher, we can accordingly specify
profiles, which will allow us to control the dissemination within the system. When we vary the
matching rate we are varying the percentage of events published by the publisher that are actually
being received by clients within the system. Thus, when we say that the matching rate is set at
50%, any given subscribing client within the system will receive only 50% of the events published
by the publisher. To vary the publish rates, we control the sleep time associated with the publisher
thread, and also the number of events that it publishes at a time, once the publisher thread wakes
up. This requires some preliminary tuning. Once the values for the sleep time and the number of
events that are published at a time have been fixed (for the publisher and the server node that it is
attached to), we proceed to compute the real publish rates for the sample of events that we send.
This is the publish rate that we report in our results.

For each matching rate we vary the size of the events from 30 to 500 bytes, and vary the publish
rates at the publisher from 1 Event/Sec to around 1000 Events/second. For each of these cases we
measure the latencies in the reception of events. To compute latencies we have the publishing client
and the measuring subscriber residing on the same machine. Events issued by the publisher are
timestamped and when they are received at the subscribing client the difference between the present
time and the timestamp contained in the received event constitutes the latency in the dissemination
of the event at the subscriber via the server network. In case the publisher and the subscriber
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are on two different machines, with access to different underlying system clocks, we would need to
synchronize the clocks and also account for the drift in clock rates prior to computing the latencies in
event reception. Having the publisher and one of the subscribers on the same physical machine with
access to the same underlying clock, obviates this need for clock synchronization and also accounts
for clock drifts. It should be noted that though the publisher and the measuring subscriber are on
the same machine, they are connected to two different server nodes within the server network, as
depicted in figure 14. In fact it takes 9 server hops for an event issued by the publisher to be received
at the measuring subscriber.

4.3 Discussion of Results

In this section we discuss the latencies gathered for varying values of publish rates, event sizes
and matching rates. We then proceed to include a small discussion on system throughputs at the
clients. We also discuss the trends in the variance of the latencies, associated with the sample of
events received at a client. The results also discuss the latencies involved in the delivery of events
to persistent clients in units with different replication schemes.

4.3.1 Latencies for the routing of events to clients

At high publish rates and increasing event sizes, the effects of queuing delays come into the picture.
This queuing delay is a result of the events being added to the queue faster than they can be
processed. In general, the mean latency associated with the delivery of events to a client is directly
proportional to the size of the events and the rate at which these events were published. The latencies
are the lowest for smaller events issued at low publish rates. The mean latency is further influenced
by the matching rates for events issued by the publisher. The results clearly demonstrate the effects
of flooding/queuing that take place at high publish rates and high event sizes and high matching
rates at a client. It is clear that as the matching rate reduces the latencies involved also reduce, this
effect is more pronounced for cases involving events of a larger size at higher publish rates.

Figures 15 through 18, depict the pattern of decreasing latencies with decreasing matching rates.
The latencies vary from 391.85 mSecs to 52.0 mSecs, with the <publish rate, event size> varying
from <952 events/Sec , 450 Bytes> for a matching rate of 100% to <952 events/Sec, 400 Bytes>
for a matching rate of 10%. This reduction in the latencies for decreasing matching rates, is a result
of the routing algorithms that we have in place. These routing algorithms ensure that events are
routed only to those parts of the system where there are clients, which are interested in the receipt
of those events. The routing algorithms are very selective about the links that are employed for
event dissemination. Thus, events are queued only at those server nodes which –

• Have attached clients interested in those events

• Are en route to server nodes which are interested in these events. These server nodes generally
fall in the shortest path to reach the destination node.

In the flooding approach, all events would still have been routed to all clients irrespective of the
matching rates.

Figure 15 depicts the case for matching rates of 100%. In this case the mean latency for the
sample of events varies from 15.54 mSec for <1 event/Sec, 50 Bytes> at a throughput of 1 event/Sec
to 391.85 mSec for <952 events/Sec, 450 Bytes> with a throughput of 78 events/Sec at the client.
The variance in the sample of events varies from 2.3684 mSec2 to 69,713.93 mSec2 for the 2 cases
respectively. The maximum throughput achieved was 480.76 events/Sec at publish rates of 492
events/Sec with events of size 75 bytes.

Figure 16 depicts the case for matching rates of 50%. In this case the mean latency for the
sample of events varies from 13.02 mSec for <20 events/Sec, 50 Bytes> to 178.66 mSec for <952
events/Sec, 350 Bytes>. The variance in the sample of events varies from 56.8196 mSec2 to 14,634
mSec2 for the 2 cases respectively.

Figure 17 depicts the case for matching rates of 25%. In this case the mean latency for the sample
of events varies from 14.40 mSec for <20 events/Sec, 50 Bytes> to 66.6 mSec for <961 events/Sec,
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Figure 17: Match Rates of 25

400 Bytes>. The variance in the sample of events varies from 0.24 mSec2 to 587.04 mSec2 for the
2 cases respectively.

Figure 18 depicts the case for matching rates of 10%. In this case the mean latency for the sample
of events varies from 14.40 mSec for <20 events/Sec, 50 Bytes> to 52.0 mSec for <952 events/Sec,
400 Bytes>. The variance in the sample of events varies from 0.44 mSec2 to 103 mSec2 for the 2
cases respectively.

4.3.2 System Throughput

We also depict the system throughputs at the client under conditions of varying event sizes and
publish rates. We choose to depict the system throughputs at a matching rate of 100%. At matching
rates other than 100% only the relevant events are being routed to the clients. The events received
do not reveal the true throughputs that can be achieved at a client. Figure 19 depicts the system
throughputs achieved at a client under conditions of different publish rates and event sizes. The
maximum throughput achieved was 480.76 events/Sec at a publish rate of 492 events/Sec with the
sample of events being of size 75 bytes.

4.3.3 Variance

Variance for the sample of received events at a client, demonstrate how queueing delays can add up to
increase the mean latency. Variance also snapshots how this mean latency has high deviations from
the highest and lowest latencies contained in the sample of latencies, associated with the events
that are received at a client. The variance in the sample of events varies from 69713 mSec2 to
133.76 mSec2 for <952 events/Sec , 450 Bytes> at matching rates of 100% to <877 events/Sec, 450
Bytes> at matching rates of 5%. Thus variance in the sample of events for higher event sizes at
higher publish rates also reduces with decreasing matching rates for the published events.
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4.3.4 Pathlengths and Latencies

The topology in figure 14 allows us to magnify the latencies, which occur by having the queuing
delays at individual server hops add up. In that topology the number of server hops taken by
an event prior to delivery at the measuring subscriber is 9. We now proceed with testing for the
topology outlined in figure 20. The layout of the server nodes is essentially identical to the earlier
one, with the addition of links between nodes resulting in a strongly connected network. We have 5
subscribing clients at each of the server nodes. The mapping of server nodes and subscribing client
nodes to the physical machines is also identical to the earlier topology. As can be seen the addition
of super-cluster link between super-clusters SC-5 and SC-6, and level-0 links between nodes 8 and
10 in cluster SC-6.n reduces the number of server hops, for the shortest path from the publisher to
the measuring subscriber at node 10, from 9 to 4.
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Figure 20: Testing Topology - Latencies versus server hops

In this setting we are interested in the changes in latencies as the number of server hops vary. We
measure the latencies at three different locations, the measuring subscriber at node 10 has a server
hop of 4 while the measuring subscribers at nodes 1 and 22 have server hops of 2 and 1 respectively
for events published by the publisher at node 22.

In general, as the number of server hops reduce the latencies also reduce. The patterns for
changes in latency as the event size and publish rates increase is however similar to our earlier cases.
We depict our results, gathered at the three measuring subscribers for matching rates of 50% and
10%. The pattern of decreasing latencies with a decrease in the number of server hops is clear by
looking at figures 21 through 26. We had also made measurements for a matching rate of 25%, and
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the pattern is the same in those results too. However, we have not included the figures for that case.
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Figure 21: Match Rates of 50% - Server Hop of 4
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Figure 22: Match Rates of 50% - Server Hop of 2
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Figure 23: Match Rates of 50% - Server Hop of 1



4.3 Discussion of Results 40

Subscriber 4 server hops from publisher - Matching 10%

0 100 200 300 400 500 600 700 800 9001000
Publish Rate (Events/Sec) 0

50
100

150
200

250
300

350
400

450
500

Event Size (Bytes)

5
10
15
20
25
30
35
40
45
50
55
60

Latencies  (MilliSeconds)

Figure 24: Match Rates of 10% - Server Hop of 4
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Figure 25: Match Rates of 10% - Server Hop of 2
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Figure 26: Match Rates of 10% - Server Hop of 1

4.4 Summary of results

In this section we have seen how the latencies vary with event sizes, matching rates, publish rates
and connectivities. In general latencies decrease with increase in system connectivity, this being
a result of the decrease in average pathlengths as the connectivity increases. On the other hand,
increase in event sizes and publish rates result in an increase in the latency associated with event
delivery. With decreasing matching rates, the latencies in event delivery decreases.



42

5 Future Directions: The need for dynamic topologies

This pertains to the scheme for the dynamic creation of servers, to optimize the routing character-
istics for events. The routing characteristics pertain to the bandwidth usage, response times and
also on the protocols that would be employed for the dissemination of events. Consider the scenario
where there are server nodes at Syracuse and Rochester. A large number of client nodes attached
to one of these servers reside in Boston, Houston and Albany. For a set of clients at either of the
aforementioned locations this scheme has the obvious disadvantage that messages routed to each of
the clients utilizes the same bandwidth between the server and client’s location. For 10 clients (at
the same geographic location) attached to the same server node, for a certain event, the bandwidth
could be utilized 10 times for the same event.

The system in response to such a scenario should proceed with the instantiation of server nodes
at the client locations. In the present discussion we are referring to locations where a large number
of clients reside. Inducing a roam in clients based on their geographic location would then follow this
dynamic instantiation of a server node at one of the clients. The induced roam should be towards
the newly created server node. Thus in the scheme for routing messages the bandwidth between two
locations is utilized only once per message. The long links created between the original server node
and the newly created one would normally employ TCP for communication. The newly created
server nodes could employ a different approach, e.g. IP Multicast, for disseminating the received
events to relevant clients. This when employed with the routing schemes in place would greatly
improve system performance, and response times at the clients. Similarly publishing clients could
be induced to roam to a location where there is a high concentration of clients interested in receiving
the published events.

Other schemes that could be employed include dynamically creating connections between nodes in
different units, to create small world networks. Further use of schemes to identify slow links, removal
of these links and the creation of new fast links would also greatly improve system performance.
Interesting variances of parallel computing algorithms could be employed for this purpose. An
analogy resides in hyper cubes where links are created/removed from the 3D mesh of nodes to
achieve logarithmic pathlengths.

In our failure model a unit can fail and remain failed forever. The server nodes involved in
disseminations compute paths based on the active nodes and traversal times within the system. The
routing scheme is thus based on the state of the network at any given time. Thus servers could be
dynamically created, connections established or removed, and the events would still be routed to
the relevant clients. Any given node in the system, would thus see the server network undulate as
the servers are being added and removed.
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6 Conclusion

In this paper, we have presented the Grid Event Service (GES), a distributed event service designed
to run on a very large network of server nodes. GES comprises of a suite of protocols, which are
responsible for the organization of nodes, creation of abbreviated system views, management of
profiles and the hierarchical dissemination of content based on these profiles. Creating small world
networks, using the node organization protocol ensures that the pathlengths would only increase
logarithmically with geometric increases in the size of the server network. The feature of having
multiple links between two units/super-units ensures a greater degree of fault tolerance. Links could
fail, and the routing to the affected units is performed using the alternate links. The protocols in
the GES protocol suite exchange information collected and processed by the other protocols. Thus
when a new connection is added the information is used to update the connectivity graph, which is
used to identify the relevant nodes for the propagation of profiles to. This information contained in
the profile graphs is then used for the hierarchical dissemination of content. All these protocols can
run concurrently, adding a lot of flexibility to the overall system.

The system views at each of the server nodes respond to changes in system inter-connections,
aiding in the detection of partitions and the calculation of new routes to reach units within the
system. The organization of connection information ensures that connection losses (or additions)
are incorporated into the connectivity graph hosted at the server nodes. Certain sections of the
routing cache are invalidated in response to this addition (or loss) of connections. This invalidation
and subsequent calculation of best hops to reach units (at different levels) ensure that the paths
computed are consistent with the state of the network, and include only valid/active links. The
event routing protocol uses the profile information available at the unit gatekeepers to compute the
sub-units that the event should be routed to. To reach these destinations every node, at which this
event is received, employs the best hops to reach those destinations. This best hop is computed based
on the cost of traversal and also the number of links connecting the different units. Thus, in our
system, based on the organization of profiles and subsequent matching of events, the only units to
which an event is routed to are those that have clients interested in that event. The protocols in
GES ensure that the routing is intelligent and can handle sparse/dense interest in certain sections
of the system. GES’s ability to handle the complete spectrum of interests equally well, lends itself
as a very scalable solution under conditions of varying publish rates, matching rates and message
sizes.

The results in section 4 demonstrated the efficiency of the routing algorithms and confirmed the
advantages of our dissemination scheme, which intelligently routes messages. Industrial strength
JMS solutions, which support the publish subscribe paradigm generally are optimized for a small
network of servers. The seamless integration of multiple server nodes in our framework provides for
very easy maintenance of the server network.
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