
General Collaboration Structures for Interactive Data Language Applications

Minjun Wang

EECS Department,
Syracuse University, U.S.A

Community Grid Lab,
Indiana University, U.S.A
501 N Morton, Suite 222,
Bloomington IN 47404
minwang@indiana.edu

Geoffrey Fox
Community Grid

Laboratory, Computer
Science Department,

School of Informatics and
Physics Department,

Indiana University, U.S.A
 gcf@indiana.edu

Marlon Pierce
Community Grid

Laboratory, Indiana
University, U.S.A

501 N Morton, Suite 224,
Bloomington IN 47404

mpierce@cs.indiana.edu

Abstract

Interactive Data Language (IDL) is an array-
oriented data analysis and visualization application,
which is widely used in research, commerce, and
education.

It is meaningful to make end user IDL
applications collaborative on events between
computers over networks, using a common message
broker as the underlying communication system, and
deploy them in Peer-to-Peer Grid architecture.

In order to make a specific user application
collaborative, we normally have to program on it,
here and there throughout the whole package, mostly
in places related to event handlers.

While this approach is workable, it seems not a
general solution for every application.

We then propose two potential general solutions
for solving the problem – the Dynamic Structure and
the Embedded Structure. We specially focus on the
Embedded Structure, analyzing the reasons, possible
ways and points to conquer the problem, and the
benefit out of it. We propose the “embedded
collaboration object” concept for it.

1. Introduction

Interactive Data Language (IDL) is an array-
oriented data analysis and visualization application,
which is widely used in research, commerce, and
education [1, 2]. Its application areas include
engineering, medical physics, astronomical and space
science, earth science, etc.

It offers rapid interactive data analysis and
visualization, a programming environment, and
support for end user applications.

IDL is available for Windows, UNIX, Linux,
Macintosh and VMS platforms and Operating Systems.
This high availability facilitates data analysis and
visualization in multi-platform environment, and
ensures high code portability among platforms and
systems.

People from different categories around the world
have developed and been using diverse IDL end user
applications in their respective areas.

It is contributing and meaningful to make IDL end
user applications (especially interface-intensive ones)
collaborative between computers of same or different
platforms, using a common message broker as the
underlying communication system, and deploy them in
Peer-to-Peer Grid [3, 4, and 5] architecture.

Normally such collaborative applications consist
of a type of Master (or Master Client) and a type of
Participant (or Participating Client) using small text
event messages for the communication between them.
During a session, the Master captures events in its
process, deals with them, and sends the event
messages to the participant for rendering the displays
in the participant’s process, so that both of them can
share the screen displays simultaneously. There can be
multiple participants working with the Master
concurrently and independently [5, 6, and 7].

The places to develop the codes for collaboration
are usually within the end user applications; i.e., we
have to change, modify and add new codes to
programs, here and there throughout the whole
application, mostly where are related to the event
handlers.

mailto:minwang@indiana.edu
mailto:gcf@indiana.edu

We have been working this way on a real IDL
application package – ReviewPlus [8] from General
Atomics (USA) [9], which is a general-purpose data
visualization tool – and have developed most of it to
be collaborative on a Polling structure [7, 10].

This solution to collaboration is just constrained
to specific applications; we have to start the
developing process all over again for each and every
application. This means a general solution for all end
user IDL applications is highly appreciated.

In this paper, we propose two potential general
solutions: Dynamic Structure and Embedded Structure.

The Dynamic Structure is supposed to
dynamically generate collaborative IDL codes from
any standalone, event-related IDL applications; it
takes as input standalone IDL application(s), and
outputs either a Master client or a Participating client,
or both, depending on the options the user chose
before its execution of the process.

The Embedded Structure encapsulates all the
collaboration factors and embeds in the end user IDL
applications in the form of embedded objects; we need
to modify some IDL system library routines and add
new ones to include collaboration codes, deploy them
with and embed the orchestrating ones in the end user
IDL applications. This is more feasible, we will
discuss the possibility and benefit out of it.

2. Previous Work

We have been working on a real life IDL
application package – ReviewPlus from General
Atomics (USA), which is a general-purpose data
visualization tool – and have developed most of it to
be collaborative on a Polling structure.

The result collaborative software consists of a
type of Master (or Master Client) and a type of
Participant (or Participating Client) using small text
event messages in the communication between them.

We use a common message broker –
NaradaBrokering Message Service [11, 12] – for the
message communication.

 During a session, the Master captures events in
its process, deal with them, and send the event
messages to the participant for rendering the displays
in the participant’s process, so that both of them can
share the screen displays simultaneously. There can be
multiple participants working with the Master
concurrently and independently.

In the Polling structure, both the Master and
Participant connect to NaradaBrokering Message
Service. On the master side, it captures events in the
event handlers, processes and sends the event
messages to NaradaBrokering for broadcasting to
participants. On the participant side, whenever the

broker has an event message to broadcast, it updates
the public variables in one of its interface, i.e., it
modifies the event flag by increasing one, and puts the
message in a synchronized message queue. The main
loop of the participant is constantly polling on the
event flag; as long as there are still messages in the
queue, it modifies the event flag by decreasing one,
removes a message from the head of the queue, and
then renders the display according to the instructions
of the message.

We use a Grid-based Collaboration Model in the
design and development, as shown in Figure 1.

Figure 1. A grid-based collaboration model

In this model, there are two categories of
computing – Grid computing and Peer-to-Peer
computing.

Grid computing [3, 13, 14, and 15] is the basis; it
largely comprises stable, formal, and efficient high-
functionality services like Web Services, Grid
Services, Common Message Brokers, etc., which are
deployed as Grids on structured, well-organized and
powerful supercomputers. They are in the core of the
model.

Peer-to-Peer computing [16] is the interface to
this world; it offers user-friendly, convenient, intuitive
and easy accessible applications and services such as
the popular commodity software used daily and
everywhere. They are installed on a variety of personal
devices, such as desktops, laptops, PDAs, smart
phones, etc. They are at the edge of the model.

The infrastructure of Networks and the Internet
ties up and correlates the two computing categories. It
enables Peer-to-Peer Grids computing to be a trend,
which harnesses the advantages of the two categories
so that they complement each other, which also brings
new opportunities and challenges to computing in all.

We realize the Peer-to-Peer Grids computing idea
in this process. We deploy the Narada Message Broker
as a Grid and use it for message communication
between the Master and Participants of the

Common Message
Brokers

Web
Services

Grid
Services

applications; and we deploy the Master and
Participants as Peers at the edge and make them
collaborate on events (Shared Event Model).

3. The Problem

The normal way to make a specific IDL
application collaborative is to work on the programs of
that application, delete, change, and add codes. On the
master version of it, writing codes to catch events and
send messages to the participant version of it for
rendering. Events are caught in the event handlers of
the Master and on the Participant the event structures
are passed as parameters to the event handlers in the
calls to them. However, in the overall programming,
the IDL system routines and libraries are kept
untouched; the abstraction is kept in the system.

For instance, we have been working this way on
the specific IDL application package – ReviewPlus,
and have made most part of it collaborative. All we
have done is developing on this package and
programming it here and there through the whole
package, mainly in event handlers and places related
to event handlers to achieve collaboration.

This solution proves to be workable and efficient,
but for every different user application we have to
repeat the whole developing process again and use the
same or similar technologies and skills on that specific
application. It is like reinventing the wheel or building
another house using the same blueprint. It just costs
unnecessary time and effort, and therefore it seems not
a general solution for all end user IDL applications to
be collaborative.

To solve this problem, we propose for it two
potential general solutions – the Dynamic Structure
and the Embedded Structure.

4. Dynamic Structure

While the Polling structure is feasible and
practical for real life IDL applications to be
collaborative, we keep asking a question:

Is there a general structure that can dynamically
generate collaborative IDL codes from any standalone,
event-related IDL applications?

Or, is it possible to develop a general application
that generates collaborative IDL applications, taking a
standalone IDL application or applications as its input,
yet still integrating and using common message
brokers like NaradaBrokering?

We would call this potential general structure
Dynamic Structure, and the potential general
application will use this structure in its implementation.
This general application takes as input standalone IDL

application(s), does lexical, syntax and semantic
analyses, proceeds collaborative IDL code generation,
and potentially code optimization. It would output
either a Master client or a Participating client, or both,
depending on the options the user chose before its
execution of the process. This general application
would be a specific compiler because it would go
through the steps of the life-cycle of compilation
theory [17].

This is illustrated in Figure 2.

Standalone IDL Applications as Input

Collaborative IDL Applications as Output

User Interface deciding the generation of
Collaborative IDL applications for either
Master client or Participant client or both

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Code Generator and
Optimizer

Collaborative IDL Applications Generator

Compilation Phases

Figure 2. Dynamic structure for generating
collaborative IDL applications

The Dynamic Structure is based on the Polling

Structure; it is more innovative and a potential general
solution for collaboration in IDL applications. If
succeeded in implementation, it would mean great
time, effort and cost savings, and efficiency and ability
improvements.

This structure can be implemented on UNIX
platform, using C/C++, lex and yacc in the

programming. Lex and yacc are tools in the aids of
lexical and semantic analyses.

The difficulties and problems of this might come
from that it might be too ambitious. Apart from the
fact that it has to deal with all the cases and situations
in the input applications, it also has to take into
account the platform, system and environment. As we
have experienced in the implementing of the
collaborative ReviewPlus on the Polling structures, it
is hard to wrestle with the system and environment,
and the problems suddenly showing up were often
unforeseen.

5. Embedded Structure

While it is possible for the dynamic structure to
be a general solution for generating collaborative IDL
applications from standalone ones, the complexity in
doing that would be high and the effort would be huge,
since compilers and operating systems always cost
many people many years’ smart-and-hard working and
cooperation.

Is there an alternate solution that can achieve the
generality of collaboration in IDL applications yet is
much simpler and easier than the dynamic structure to
save time, effort and cost?

After investigating the functionality of the IDL
system and observing the routines from the system
library, we realize that there could be such a chance.
We address this discovery in the following sub-
sections.

5.1. Potential Breakthroughs

To find a general solution for user desktop IDL
applications to be collaborative globally, why not
explore the opposite territory? Why don’t we keep the
user IDL applications “untouched” (or almost
“untouched”) and accommodate the IDL system
routines and libraries to satisfy the end user IDL
applications’ collaboration needs?

More specifically, why can’t we modify and
develop the IDL system library routines such as
“XMANAGER.pro”, whose codes are accessible, and
add new ones to mimic some system functions, whose
codes are private? If this way works, we can just put
our time and effort here once and for all, and expect
the developed package would suit every end user
application’s need for global collaboration over the
Internet.

How could this be possible?
To answer this question, let us begin with the IDL

system library routine “XMANAGER.pro”.
XMANAGER is written in IDL and its code is

open in the library of the RSI [2] IDL commodity

software; it provides the main event loop and
management of widgets created in widget programs,
and registers the widget programs with it. It then takes
control of the event processing until all the widgets
have been destroyed in a session.

XMANAGER is not called much and often;
usually the statement appears once at the end of a
widget program, like:

Xmanager, ‘ReviewPlusSetup’, self.wTLB, /no_block

It also orchestrates other system routines,

including the function WIDGET_EVENT, which
returns events for widget hierarchies.

It is possible for us to deal with all the event
handling and processing in this routine and all other
related system routines to achieve collaboration. In
other words, we can develop our codes regarding
collaboration issues within these system routines only,
thus save the necessity of programming in the end user
IDL applications and keep them untouched.

Specifically, we can modify and develop these
IDL system routines, let the XMANAGER orchestrate
the performance, and make a version for the Master
client (“XMANAGER_MASTER.pro”) and a version
for the Participant client
(“XMANAGER_PARTICIPANT.pro”). The Master
part captures, processes, and dispatches events in
message to a common broker, while the Participant
part receives message from the broker, processes and
renders the events.

Then we can deploy the two versions to the end
user’s IDL applications supposed to be Master and
Participant respectively, and replace
“XMANAGER.pro” with
“XMANAGER_MASTER.pro” on Master and
“XMANAGER_PARTICIPANT.pro” on Participant.

This implies the benefit described in the next sub-
section.

5.2. The Benefit

Had we succeeded, all we have to do in any end
user IDL applications is to deploy our routines with
the applications, and just replace the string
“Xmanager” with “Xmanager_Master” in the user
programs on the Master client side, and with
“Xmanager_Participant” on the Participant.

Usually in a simple widget program, only one
“Xmanager” statement is called at the end. Suppose
there is a huge IDL application in which there are a
hundred calls for “Xmanager”, all we have to do (or
let some utility software do it) is to replace 100
strings for both Master and Participant. This effort is
almost nothing.

5.3. Embedded Collaboration Object

Usually, such a general solution for achieving
collaborative IDL applications from standalone ones
should be a standalone software application like the
dynamic structure we have mentioned in the previous
section; but in this case, it is “embedded”, the opposite
of a standalone one. Just like the name “embedded
operating system” is a trend nowadays, we can
analogously name it as “embedded collaboration
object.”

6. Conclusion

In this paper we described our previous work
about Grid-base collaboration on a specific end user
IDL application package (ReveiwPlus) and the way to
make it collaborative on events via message broker.
We pointed out the limitation or problem with the
implementation by working on specific IDL
applications. We then proposed two potential general
solutions for solving the problem – the Dynamic
Structure and the Embedded Structure. We specially
focused on the Embedded Structure, analyzing the
reasons, possible ways to conquer the problem, and
the benefit out of it. We proposed the “embedded
collaboration object” concept for it. At this early stage
of the research, much more interesting work needs to
be done.

References

[1] Liam E. Gumley, Practical IDL Programming, Morgan
Kaufmann Publishers, San Francisco, CA 94104-3205, USA,
2002.
[2] Research Systems Inc. http://www.rsinc.com/
[3] Fran Berman, Geoffrey Fox, and Tony Hey, Grid
Computing: Making the Global Infrastructure a Reality,
John Wiley & Sons Ltd, Chichester, West Sussex PO19 8SQ,
England, 2003.
See http://www.grid2002.org
[4] Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon
Ko, Sangmi Lee, Sangyoon Oh, Shrideep Pallickara,
Xiaohong Qiu, Ahmet Uyar, Minjun Wang, and Wenjun Wu,
“Collaborative Web Services and Peer-to-Peer Grids“, or in
sxw, presented at 2003 Collaborative Technologies
Symposium (CTS'03).
[5] Minjun Wang, Geoffrey Fox, and Shrideep Pallickara,
“Demonstrations of Collaborative Web Services and Peer-
to-Peer Grids”, Journal Of Digital Information Management,
June 2004, Volume 2, Issue 2, pp. 93-96.
[6] Minjun Wang and Geoffrey Fox, “Design of a
Collaborative System” for Open Office, Proceedings of
IASTED KSCE 2004 Conference, US Virgin Islands,
November 2004.

[7] Minjun Wang, Geoffrey Fox and Marlon Pierce, “Grid-
based Collaboration in Interactive Data Language
Applications”, Proceedings of IEEE International
Conference on Information Technology, Las Vegas, Nevada,
April 4-6, 2005.
http://grids.ucs.indiana.edu/ptliupages/publications/GridColl
abIDL_ITCC2005.pdf
[8] ReviewPlus Data Visualization Software User Manual
http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/
[9] General Atomics and Affiliated Companies
http://www.ga.com/
[10] Minjun Wang, Geoffrey Fox and Marlon Pierce
Instantiations of Shared Event Model in Grid-based
Collaboration to be published.
[11] Geoffrey Fox, Shrideep Pallickara, and Xi Rao, “A
Scalable Event Infrastructure for Peer to Peer Grids”,
proceedings of 2002 Java Grande/ISCOPE Conference,
Seattle, November 2002, ACM Press, ISBN 1-58113-599-8,
pp. 66-75.
http://grids.ucs.indiana.edu/ptliupages/publications/Scaleabl
eEventArchForP2P.doc
[12] Shrideep Pallickara and Geoffrey Fox, “Efficient
Matching Of Events in Distributed Middleware Systems”,
Journal Of Digital Information Management, June 2004,
Volume 2, Issue 2, pp. 79-87.
[13] Ian Foster and Carl Kesselman, The GRID: Blueprint
for a New Computing Infrastructure, Morgan Kaufmann
Publishers, Inc., San Francisco, CA 94104-3205, USA, 1999.
[14] The Globus Alliance
http://www.globus.org
[15] Geoffrey Fox, “Grids of Grids of Simple Services”, for
CISE Magazine, July/August 2004.
[16] Andy Oram, PEER-TO-PEER: Harnessing the Power
of Disruptive Technologies, O’Reilly & Associates, Inc.,
Sebastopol, CA 95472, USA, 2001.
[17] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
Compilers: Principles, Techniques, and Tools, Addison-
Wesley Publishing Company, USA, 1988.

http://www.rsinc.com/
http://www.grid2002.org/
http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc03keynote.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/collabws.sxw
http://www.scs.org/confernc/wmc/wmc03/cfp/cts03.htm
http://grids.ucs.indiana.edu/ptliupages/publications/P2PGrids_JDIM_PDF.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/P2PGrids_JDIM_PDF.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/OpenOfficeCollaborativeSystemFINAL.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/OpenOfficeCollaborativeSystemFINAL.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/GridCollabIDL_ITCC2005.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/GridCollabIDL_ITCC2005.pdf
http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/
http://www.ga.com/
http://grids.ucs.indiana.edu/ptliupages/publications/InstantiationsGridCollab.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/InstantiationsGridCollab.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEventArchForP2P.doc
http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEventArchForP2P.doc
http://grids.ucs.indiana.edu/ptliupages/publications/jdim-vol2-num2.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/jdim-vol2-num2.pdf
http://www.globus.org/
http://grids.ucs.indiana.edu/ptliupages/publications/Cisegridofgrids.pdf
http://www.computer.org/cise

