
A Description of the Implementation of Collaborative ReviewPlus

We describe the implementation issues of the Collaborative ReviewPlus project, mainly
focus on event and logic with it. We shall see that the Master and Participant objects
share a common Deterministic Finite Automaton (DFA) in a session, and so have the
same logic with regard to the state transitions, and converge on the same sate on each
event. We describe the issues as follows.

1. Unit and Unity

We have developed the Collaborative ReviewPlus applications – the Master and
Participant collaboration objects – from the original ReviewPlus application, without
changing the overall logic related to state transitions. So they have the same logic with
regard to the state transitions on events.

The logic corresponds to the transition function δ of the DFA, or the extended transition
function ∆. The logic is composed of many IDL routines – procedures and functions with
unique names. We can think of the routines as the building blocks or units of the logic,
and the logic as the unity of the routines. So, routine is the unit, and δ or ∆ is the unity of
the units.

On any event, only one or some routines are executing to do the transition; in other words,
only one part or some parts of the unity are actually functioning. But we can
indistinguishably say that δ or ∆ is reacting on the event and transiting to the next state.

2. Divergence and Convergence

The Master and Participant collaboration objects are designed for different purposes, in
different architectures and implementing mechanisms; they are divergent. At the same
time, they have the same logic as to the state transitions on events, and get to the same
state at the end of the process of each event; they are convergent.

Let us describe in more detail about the implementation.

On the Master client, each widget that fires event is associated with an event handler –
either a procedure or a function – in the widget construction program, which is registered
at the end of the construction with the IDL system routine “xmanager.pro”, which in turn
is managing the life-cycle of the widget and listening for events for it. Whenever the
widget is triggered by the user through the interface, the system automatically gathers the
information for the event and fits in the event structure, and invokes the event handler
with the structure as the only parameter.

We add the code for collaboration here at the beginning of each event handler to capture
the event and get the information of it for every field of the event structure, convert them
into flat strings, and serialize them into a delimited single string, along with names of the

event structure and the event handler, and send this result string to NB message broker
for broadcasting to participant clients.

NB broadcasts the string to the participant and saves it in a public variable which is one
element of a synchronized linked list added in one of NB’s interface class, and also
updates its event flag variable which reflects the number of strings saved.

The Participant client is developed using a Polling Structure. It is a main loop that is
constantly polling the public variables – testing the event flag to see if it is non-zero, if it
is, then removing a string from the head of the linked list to do further process.

In the process, it parses the string on the delimiter to get all the field pieces, the event
structure name (or widget name) and the event handler name, converts the field pieces to
native type values of the event structure, constructs the event structure using these values
according to the event structure name, and finally renders the display by calling the event
handler routine with the event structure as parameter, according to the event handler
name.

As to the interactive input value in an input field such as text field, on the Master side, the
user input them physically; on the Participant side, after it gets the value, it sets it in the
field programmatically.

From the description above, the objects of the Master and Participant clients diverge in
the shape of codes, architectures, implementing mechanisms and purposes. They are in
diversity under the goal of collaboration.

However, on each event, we have made them have the same input value in the input field
if there is one, call the same routine of event handler with the event structure as
parameter, and hence, at the end of the processes of the event, have the same output
display; in other words, they converge on the same state of the DFA on each event, from
the start state to the final accepting state, which is a well-defined session.

3. Collaboration on Event and Transition Function

We describe the collaboration between the objects of Master and Participant clients using
pieces of code from the project, mainly focusing on event and the transition function.
Instead of using exhausting enumeration of each and every widget cases in the interfaces,
we give out the typical and interesting ones that sufficiently illustrate the idea of
collaboration in terms of convergence on the same state of the DFA at the end of the
process of each event, with the transition function doing the real job of state transitions.

Since the output display of both the Master and Participant object at each event are the
same, we just show a single image capture in the demonstration at each step.

We begin with the invocation of the collaboration objects, as shown in Fig. 1. This
corresponds to the start state q0 of the DFA.

Figure 1

From this interface of the Master object, if we click on the “Edit” item from the main
menu, a sub-menu will appear, as shown in Fig. 2.

Figure 2

If we then click on the “Set Signals” item from the sub-menu, an event is fired. This is a
button widget, and an event handler routine is defined for the event. We describe the

pieces of code for both the Master and Participant objects in response of this cooperation
as follows.

The Master Object Side

• Widget creation

 x = widget_button(mEdit, value='Set Signals', $
 event_pro='ReviewPlus_SignalDialog_event')

From the code above we know that this button widget has 'Set Signals' as its value
shown on its appearance, and is associated with an event procedure named
'ReviewPlus_SignalDialog_event'. When the button is clicked, the procedure is
called by the IDL system.

• Definition of event structure for widget

Here is the definition of the event structure for widget button:

{WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L, SELECT:0L}

It has a name WIDGET_BUTTON and 4 fields – ID:0L, TOP:0L, HANDLER:0L, and SELECT:0L, each
with a field name, a colon, and a type value. In this case all the values of the fields are of
long type indicated by the suffix letter L.

SELECT: If the button is pressed, the value is 1; if it is released, the value is 0.

• Event handler

pro ReviewPlus_signaldialog_event,event
;;;;;;;; collaboration code added ;;;;;;;;
eventMessage = "ReviewPlus_signaldialog_event;"+"WIDGET_BUTTON;"+"ID;"$
 +string(event.ID)+";TOP;"+string(event.TOP)+";HANDLER;"$
 +string(event.HANDLER)+";SELECT;"+string(event.SELECT)

 COMMON BROKER, joChat2
 joChat2 -> writeMessage, eventMessage
;;;;;;;; end of collaboration code ;;;;;;;;

 widget_control,event.top,get_uvalue=info
 info.oReview->SignalDialog
end

From the code above we can see that the collaboration code captures the event and gets
its field information from event.ID, event.TOP, event.HANDLER, etc., converts them
into strings and serializes the strings into a semicolon delimited string, along with the
event structure name "WIDGET_BUTTON" and the event handler name
"ReviewPlus_signaldialog_event". This result string is the event message, and is sent
to the NB broker for broadcasting to Participants.

The Participant Object Side

• Parsing of event message

 result = STRSPLIT(uval, ';', COUNT=count, /EXTRACT,
/PRESERVE_NULL)

 which_event = result[0]
 which_widget = result[1]

The next event message string for the Participant Object to process is saved in variable
uval. The IDL system function STRSPLIT is called to parse it with ';' as the delimiter.
All the pieces of information around the delimiter are extracted and saved in the array
result with null string preserved as a piece, and the total number of them is saved in
variable count. The event handler name is in result[0] or which_event, and the event
structure name (or widget name) is in result[1] or which_widget. The rest of the
pieces are all for the fields of the event structure and are saved in the rest elements of the
array starting with result[2].

• Conversion to IDL native types

 FOR i=2, count-1, 2 DO BEGIN
 IF (result[i] EQ 'ID') THEN BEGIN
 id_name = 'ID'
 id_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'TOP') THEN BEGIN
 top_name = 'TOP'
 top_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'HANDLER') THEN BEGIN
 handler_name = 'HANDLER'
 handler_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'SELECT') THEN BEGIN
 select_name = 'SELECT'
 select_value = long(result[i+1])

:

 ENDIF
 ENDFOR

The code above converts the information (in string) of the fields of the button event
structure to its IDL native types; each pair of the strings, i.e. those stored in
result[i]and result[i+1], decide the field’s value and the type of the value, with the
former indicating the name and type of the value (due to the unique association of a name
with a type, the name alone can also indicate a type, e.g. ID is a long type), and the
latter the value in string.

In this case, all the values of the fields are of long type, and therefore the strings are
converted to IDL type long.

• Construction of event structure

 IF (which_widget EQ 'WIDGET_BUTTON') THEN $
 event_structure = {WIDGET_BUTTON,id:id_value,$
 top:top_value,handler:handler_value,select:select_value}$
 ELSE IF ...

The code above constructs the widget button event structure using the converted native
values for each field, with the field name followed by a colon and then by the value, as in
id:id_value.

• Invocation of the routine of event handler

 ...
 ELSE IF (which_event EQ 'ReviewPlus_signaldialog_event') THEN BEGIN
 ReviewPlus_signaldialog_event, event_structure
 ENDIF ELSE IF ...

The code above calls the routine of the event handler ReviewPlus_signaldialog_event
with the constructed event structure event_structure as the only parameter.

Step Summary

In the process on the event, both the Master and Participant objects call the same routine
– the event handler ReviewPlus_signaldialog_event – which is a unit of the
transition function δ, with the event structure as the only parameter. The event message
acts as the messenger, the information source, and the coordinator.

With δ (q0, a0) = q1, the Master and Participant objects converge on the same state q1 of
the DFA on event message a0 at the end of the process of the event, and therefore they
have the same output display, as in Fig. 3 and Fig. 4, which are two parts of a big
interface.

Note that, inside the event handler, other routines can be called in any sequence and order,
which we don’t have to worry about and just think of it as the encapsulation and
abstraction of the event handler.

Figure 3

Figure 4

At the upper part of this interface is a widget table. Different types of events can happen
to it, such as Insert Single Character, Insert Multiple Characters, Delete Text, Select Text,
Select Cell, Change Row Height, Change Column Width, etc., each with a different
definition of event structure. Some of the events are of time sequence priority, for
example, in order to enter a single or multiple characters, we must first select the cell, and
there must be some content in the cell before we can delete or select the text. However,
the process for each event is similar. So not loosing generality, we can choose to just
describe its Insert Single Character event.

Suppose we enter some data in row 0 of the widget table. Let us input “ip” in the cell
under column “Z Data Signal” in Fig. 3, and “104276” in the cell under column “Shot” in
Fig. 4. In this case, each character entered including the line feed and carriage return will
cause an event, and therefore a state transition in the DFA. We just describe one of them
in representation because the rest are the same in process.

The Master Object Side

• Widget creation

 oColumns = objarr(17)

 oColumns[0] = obj_new("GATableColumnEdit", label="Z Data Signal",
width=300)
...

 oColumns[6] = obj_new('GATableColumnEdit', label="Shot", width=60,
alignment=2)
...

 oTable = obj_new("GATable", self.wTLB, oColumns, Y_SCROLL_SIZE=10,
X_SCROLL_SIZE=5, /RESIZEABLE_COLUMNS)
...

 info = self->_GetColumnInfo()
 self.wID = widget_table(self.wParent, $
 column_labels=info.label, $
 /edit, /all_events, $
 ...
 event_pro='GATable_event', uvalue=self)

From the code above we can see that this table widget is associated with an event
procedure named 'GATable_event', and whenever an event is occurred, the procedure
is called by the IDL system; that it is editable, indicated by the keyword /edit; that an
event is fired whenever the content of the text field of a cell has changed, indicated by the
keyword /all_events. This table consists of 17 columns; each is an object of a module,
or class. The listed one that is of interest to us now is GATableColumnEdit. The table
itself oTable is an aggregated object consisting of the column objects; during its
instantiation obj_new("GATable", ...), it calls widget_table(...)to build up the
widget.

• Definition of event structure for widget

Here is the definition of the Insert Single Character event structure for widget table:

{WIDGET_TABLE_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L, CH:0B, X:0L, Y:0L}

It has a name WIDGET_TABLE_CH and 8 fields. The field CH:0B is of byte type indicated by
the suffix letter B, the field TYPE:0 is of int type indicated by a value only, and the others
are of long type.

TYPE: The event type from the widget table event types.
CH: The ASCII value of the inserted character.
OFFSET: The zero-based character position after insertion.
X: The zero-based column address of the cell in the widget table.
Y: The zero-based row address of the cell in the widget table.

• Event handler

pro GATable_event, ev
;;;;;;;; collaboration code added ;;;;;;;;
 COMMON BROKER, joChat2

 case (ev.TYPE) of
 0 : BEGIN
 eventMessage =
 "GATable_event;"+"WIDGET_TABLE_CH;"+"ID;"+string(ev.ID)$
 +";TOP;"+string(ev.TOP)+";HANDLER;"+string(ev.HANDLER)$
 +";TYPE;"+string(ev.TYPE)+";OFFSET;"+string(ev.OFFSET)$
 +";CH;"+string(ev.CH)+";X;"+string(ev.X)+";Y;"+string(ev.Y)

 joChat2 -> writeMessage, eventMessage
 END
 ...
 endcase
;;;;;;;; end of collaboration code ;;;;;;;;

 widget_control,ev.id,get_uvalue=oSelf
 oSelf->_HandleEvent,ev
end

From the code above we can see that the collaboration code captures the event and gets
its field information from ev.ID, ev.TOP, ev.HANDLER, etc., converts them into
strings and serializes the strings into a semicolon delimited string, along with the event
structure name "WIDGET_TABLE_CH" and the event handler name "GATable_event".
This result string is the event message, and is sent to the NB broker for broadcasting to
Participants.

This event handler handles different types of widget table events such as Insert Single
Character, Insert Multiple Characters, Delete Text, Select Cell, etc., depending on the
event structure’s field value ev.TYPE to decide the current case. We just list the one in
question Insert Single Character above.

The Participant Object Side

• Parsing of event message

Same as previously described.

• Conversion to IDL native types

 FOR i=2, count-1, 2 DO BEGIN
 IF (result[i] EQ 'ID') THEN BEGIN
 id_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'TOP') THEN BEGIN
 top_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'HANDLER') THEN BEGIN
 handler_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'TYPE') THEN BEGIN
 type_value = fix(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'OFFSET') THEN BEGIN
 offset_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'CH') THEN BEGIN
 ch_value_array = byte(result[i+1])
 ch_value = ch_value_array[0]

 ENDIF ELSE IF (result[i] EQ 'X') THEN BEGIN
 x_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'Y') THEN BEGIN
 y_value = long(result[i+1])

:

 ENDIF
 ENDFOR

The code above converts the information (in string) of the fields of the Insert Single
Character event structure of widget table to its IDL native types; each pair of the strings,
i.e. those stored in result[i]and result[i+1], decide the field’s value and the type of
the value, with the former indicating the name and type of the value (due to the unique
association of a name with a type, the name alone can also indicate a type, e.g. ID is a
long type), and the latter the value in string.

In this case, the field TYPE is of int type and the string is converted to IDL type fix, the
field CH is of byte type and the string is converted to IDL type byte and then the first
element of the byte array is pulled out for the character, and the other fields are of long
type, and therefore the strings are converted to IDL type long.

• Construction of event structure

 IF (which_widget EQ 'WIDGET_TABLE_CH') THEN $
 event_structure = {WIDGET_TABLE_CH,id:id_value,$
 top:top_value,handler:handler_value,$
 type:type_value,offset:offset_value,$
 ch:ch_value,x:x_value,y:y_value}

The code above constructs the Insert Single Character event structure of widget table
using the converted native values for each field, with the field name followed by a colon
and then by the value, as in id:id_value.

• Invocation of the routine of event handler

 ...
 ELSE IF (which_event EQ 'GATable_event') THEN BEGIN
 GATable_event, event_structure
 ENDIF ELSE IF ...

The code above calls the routine of the event handler GATable_event with the
constructed event structure event_structure as the only parameter.

The event handler GATable_event calls the following procedure indirectly to insert the
new character into the content of the current cell of the widget table programmatically.

pro GATableColumnEdit::_HandleInsertCharacter, cell, ev
 ...
 self->_AddToBuffer, string(ev.ch), ev.offset

 cell = {column:ev.x, row:ev.y}
 s = self.oTable->GetBuffer()
 self.oTable->SetCellValue, cell, s
 ...
end

Step Summary

In the process on the event, both the Master and Participant objects call the same routine
– the event handler GATable_event – which is a unit of the transition function δ, with
the event structure as the only parameter. The event message acts as the messenger, the
information source, and the coordinator.

With δ (qi, ai) = r, the Master and Participant objects converge on the same state r of the
DFA on event message ai at the end of the process of the event, and therefore they have
the same output display – in this case, whenever a character is entered on the Master side,
it is immediately reflected on the Participant side, so that the entire detailed entering
process is showing on both sides. We show the final display about this in Fig. 5.

Figure 5

At this point, if we click on the widget button “Done” at the lower part of the interface, as
shown in Fig 4, we get the result as shown in Fig. 6. We can omit the description of this
event process because we have done button event previously, except in this case the
routine of event handler ReviewPlusSetup_done_event is called on both sides. So, they
converge to the same state r of DFA.

Figure 6

If we click on the “Change Plot Grid” item from the sub-menu of Fig. 2, an event is fired.
This is a button widget, and the Master and Participant objects will converge to a same
state r of DFA and have the same display, as follows in Fig. 7.

Figure 7

Most of the widgets in this interface are widget sliders. We shall describe one of them,
and the rest will be clear. Let us click on the exclusive button “Manually” in Fig. 7, and
we get the display as follows in Fig. 8.

Figure 8

We shall drag the widget slider “Number of rows”, change its value from 1 to 2, and see
how this action will also affect the graphics output in the main interface.

The Master Object Side

• Widget creation

 ...
 baseMan = widget_base(bboard, /column, map=0,$
 event_pro='ga_plot_window_griddialog_man_event')

 r = widget_base(baseMan, /row)
 slrow = widget_slider(r, title="Number of rows", min=1, max=16)
 ...

From the code above we can see that this widget slider is associated with an event
procedure named 'ga_plot_window_griddialog_man_event' through its ancestor
widget in the widget hierarchy. The two base widgets determine the layout of the grid for
component widgets. Whenever an event is occurred to the widget slider, it bubbles up
through the hierarchy to the widget base with the handler, and the event procedure is
called with the event by the IDL system. The widget slider has the title "Number of
rows" and the range of values with min=1, max=16.

• Definition of event structure for widget

Here is the definition of the event structure for widget slider:

{WIDGET_SLIDER, ID:0L, TOP:0L, HANDLER:0L, VALUE:0L, DRAG:0}

It has a name WIDGET_SLIDER and 5 fields. The field DRAG:0 is of int type indicated by a
value only, and the others are of long type.

VALUE: The new value of the widget slider.
DRAG: The value that indicates whether the event is generated during or at the end of a
slider drag, with the value 1 or 0.

• Event handler

pro ga_plot_window_griddialog_man_event,ev
;;;;;;;; collaboration code added ;;;;;;;;
 tag = tag_names(ev,/str)
 if (tag eq 'WIDGET_SLIDER') then begin
 eventMessage = "ga_plot_window_griddialog_man_event;"$
 +"WIDGET_SLIDER;"+"ID;"+string(ev.ID)$
 +";TOP;"+string(ev.TOP)+";HANDLER;"$
 +string(ev.HANDLER)+";VALUE3;"+string(ev.VALUE)$
 +";DRAG;"+string(ev.DRAG)
 COMMON BROKER, joChat2
 joChat2 -> writeMessage, eventMessage
 endif
;;;;;;;; end of collaboration code ;;;;;;;;

 widget_control,ev.top,get_uvalue=u
 widget_control,u.slrow,get_value=row
 widget_control,u.slcol,get_value=col
 u.self->UserSetGrid,[col,row],/draw
end

From the code above we can see that the collaboration code captures the event and gets
its field information from ev.ID, ev.TOP, ev.HANDLER, etc., converts them into
strings and serializes the strings into a semicolon delimited string, along with the event
structure name "WIDGET_SLIDER" and the event handler name
"ga_plot_window_griddialog_man_event". This result string is the event message,
and is sent to the NB broker for broadcasting to Participants.

The Participant Object Side

• Parsing of event message

Same as previously described.

• Conversion to IDL native types

 FOR i=2, count-1, 2 DO BEGIN
 IF (result[i] EQ 'ID') THEN BEGIN
 id_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'TOP') THEN BEGIN
 top_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'HANDLER') THEN BEGIN
 handler_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'VALUE3') THEN BEGIN
 value3_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'DRAG') THEN BEGIN
 drag_value = fix(result[i+1])

:

 ENDIF
 ENDFOR

The code above converts the information (in string) of the fields of the event structure of
widget slider to its IDL native types; each pair of the strings, i.e. those stored in
result[i]and result[i+1], decide the field’s value and the type of the value, with the
former indicating the name and type of the value (due to the unique association of a name
with a type, the name alone can also indicate a type, e.g. ID is a long type), and the
latter the value in string.

In this case, the field DRAG is of int type and the string is converted to IDL type fix, and
the other fields are of long type, and therefore the strings are converted to IDL type long.
The field VALUE is of long type in this event structure, but in some other structures, the
field VALUE is used for int or float. To resolve this conflict in programming, we use
VALUE3 to exclusively indicate that it is of long type.

• Construction of event structure

 ...
 ELSE IF (which_widget EQ 'WIDGET_SLIDER') THEN $
 event_structure = {WIDGET_SLIDER,id:id_value,$
 top:top_value,handler:handler_value,$
 value:value3_value,drag:drag_value}$
 ELSE IF ...

The code above constructs the event structure of widget slider using the converted native
values for each field, with the field name followed by a colon and then by the value, as in
id:id_value.

• Invocation of the routine of event handler

 ...
 ELSE IF (which_event EQ 'ga_plot_window_griddialog_man_event')$
 THEN BEGIN
 ReviewPlus_widget_slider_event, event_structure
 ga_plot_window_griddialog_man_event, event_structure
 ENDIF ELSE IF ...

The code above first calls the routine of ReviewPlus_widget_slider_event with the
constructed event structure event_structure to set up the value of the widget slider
programmatically as that of the Master, and it then calls the routine of the event handler
ga_plot_window_griddialog_man_event with the event structure to have the function
as that of the Master.

The routine of ReviewPlus_widget_slider_event is listed below.

pro ReviewPlus_widget_slider_event,event
 widget_control,event.id,set_value=event.value
end

Step Summary

In the process on the event, both the Master and Participant objects call the same routine
– the event handler ga_plot_window_griddialog_man_event – which is a unit of the
transition function δ, with the event structure as the only parameter. On the Participant,
an extra routine ReviewPlus_widget_slider_event is called to set up the value of the
slider in order to simulate the slider drag on the Master, so that the sliders on both the
Master and Participant have the same value and appearance. We can think of this as
another unit of the transition function δ, and hence in this process of the event, two units
are called to get to the same state.

With δ (qi, ai) = r, the Master and Participant objects converge on the same state r of the
DFA on event message ai at the end of the process of the event, and therefore they have
the same output display – in this case, the same appearance of the widget slider and the
look of the output in the main interface, as shown in Fig. 9.

Figure 9

If we click on the “Preferences” item from the sub-menu of Fig. 2, an event is fired. This
is a button widget, and the Master and Participant objects will converge to a same state r
of DFA and have the same display, as follows in Fig. 10.

Figure 10

This interface mainly contains a new type of widget – tab widget. Tab widget usually
contains multiple different pages, each with a tab for labeling. Only one page can be

displayed at a time in the widget’s display area by selecting the appropriate tab. The titles
of the tabs above are “Basic Settings”, “GAPlotObj Settings”, “GA_Signal Settings” and
“ReviewPlus Behaviors”.

Let us select the tab with the title “GAPlotObj Settings” and describe the process of this
event on the collaboration objects.

This action actually triggers two events – one related to the widget tab, and the other
related to a widget base in the upper level of the widget hierarchy.

A function event handler is associated with the tab widget. A function event handler not
only processes the event happened to its associated widget, but also returns the event,
possibly with modifications, to the parent widget in the higher level of the widget
hierarchy. The event keeps bubbling up through the hierarchy until it is consumed or
swallowed by an associated event handler, or if not, by the IDL system at last.

The function event handler in charge of the widget tab processes the event, and then it
returns it as new event to the event handler associated with the widget base for further
process to change the result of the output.

The Master Object Side

• Widget creation

 ...
 wBase = widget_base(title="ReviewPlus Preferences", /column,$
 /floating, group_leader=self.wTLB, tlb_frame_attr=3)

 wTabs = WIDGET_TAB(wBase, event_func='ReviewPlus_widget_tab_event')

 wBasic = WIDGET_BASE(wTabs, TITLE='Basic Settings', /COLUMN)
 self.oWindow->PreferencesDialog,wTabs,TITLE='GAPlotObj Settings'
 wSigs = WIDGET_BASE(wTabs, TITLE='GA_Signal Settings', /COLUMN, $
 /ALIGN_LEFT)
 wBehaviors = WIDGET_BASE(wTabs, TITLE='ReviewPlus Behaviors',$
 /COLUMN)
 ...

From the code above we can see that this tab widget is associated with an event function
named 'ReviewPlus_widget_tab_event', and has 4 tabs with the title names “Basic
Settings”, “GAPlotObj Settings”, “GA_Signal Settings” and “ReviewPlus Behaviors”,
respectively; that the tabs are its children, and it is the child of the base widget wBase in
the widget hierarchy.

• Definition of event structure for widget

Here is the definition of the event structure for widget tab:

{WIDGET_TAB, ID:0L, TOP:0L, HANDLER:0L, TAB:0L}

It has a name WIDGET_TAB and 4 fields. All the fields are of long type.

TAB: The zero-based index of the selected tab in the tab widget.

• Event handlers

function ReviewPlus_widget_tab_event,event
 tag = tag_names(event,/str)
 if (tag eq 'WIDGET_TAB') then begin
 eventMessage = "ReviewPlus_widget_tab_event;"+"WIDGET_TAB;"$
 +"ID;"+string(event.ID)+";TOP;"+string(event.TOP)$
 +";HANDLER;"+string(event.HANDLER)$
 +";TAB;"+string(event.TAB)
 COMMON BROKER, joChat2
 joChat2 -> writeMessage, eventMessage
 endif

 return, event
end

From the code above we can see that the collaboration code captures the event and gets
its field information from event.ID, event.TOP, event.HANDLER, etc., converts them
into strings and serializes the strings into a semicolon delimited string, along with the
event structure name "WIDGET_TAB" and the event handler name
"ReviewPlus_widget_tab_event". This result string is the event message, and is sent to
the NB broker for broadcasting to Participants.

The main purpose of this event function is to capture and get the event message when the
Master clicks on the tab “GAPlotObj Settings”. Later on the event message acts as the
messenger and the information source, and coordinates the Participant to change to the
same tab programmatically.

The second purpose of this event function is to return the event, without modification, to
its parent widget, which is a base widget with the widget ID wBase and associated with
an event handler named reviewplus_preferences_apply_event, as listed below.

 xmanager, 'ReviewPlus_preferencesdialog', wBase, $
 event_handler='reviewplus_preferences_apply_event', /no_block

The event acts as new event to this event handler, and is further processed and consumed
by it.

pro ReviewPlus_preferences_apply_event,event
;;;;;;;; collaboration code added ;;;;;;;;
 tag = tag_names(event,/str)
 if ...
 ...
 endif else if (tag eq 'WIDGET_TAB') then begin
 eventMessage = "ReviewPlus_preferences_apply_event;"+"WIDGET_TAB;"$

 +"ID;"+string(event.ID)+";TOP;"+string(event.TOP)$
 +";HANDLER;"+string(event.HANDLER)$
 +";TAB;"+string(event.TAB)
 endif else ...

 COMMON BROKER, joChat2
 joChat2 -> writeMessage, eventMessage
;;;;;;;; end of collaboration code ;;;;;;;;

...
;;; other statements and commands
...

end

From the code above we can see that the collaboration code captures the event and gets
its field information from event.ID, event.TOP, event.HANDLER, etc., converts them
into strings and serializes the strings into a semicolon delimited string, along with the
event structure name "WIDGET_TAB" and the event handler name
"ReviewPlus_preferences_apply_event". This result string is the event message, and
is sent to the NB broker for broadcasting to Participants.

The Participant Object Side

• Parsing of event message

Same as previously described.

• Conversion to IDL native types

 FOR i=2, count-1, 2 DO BEGIN
 IF (result[i] EQ 'ID') THEN BEGIN
 id_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'TOP') THEN BEGIN
 top_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'HANDLER') THEN BEGIN
 handler_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'TAB') THEN BEGIN
 tab_value = long(result[i+1])

:

 ENDIF
 ENDFOR

The code above converts the information (in string) of the fields of the event structure of
widget tab to its IDL native types; each pair of the strings, i.e. those stored in
result[i]and result[i+1], decide the field’s value and the type of the value, with the
former indicating the name and type of the value (due to the unique association of a name
with a type, the name alone can also indicate a type, e.g. ID is a long type), and the
latter the value in string.

In this case, all the fields are of long type, and therefore the strings are converted to IDL
type long.

• Construction of event structure

 ...
 ELSE IF (which_widget EQ 'WIDGET_TAB') THEN $
 event_structure = {WIDGET_TAB,id:id_value,top:top_value,$
 handler:handler_value,tab:tab_value}$
 ELSE IF ...

The code above constructs the event structure of widget tab using the converted native
values for each field, with the field name followed by a colon and then by the value, as in
id:id_value.

• Invocation of the routines of event handlers

 ...
 ELSE IF (which_event EQ ‘ReviewPlus_widget_tab_event’) THEN BEGIN
 ReviewPlus_widget_tab_event, event_structure
 ENDIF ELSE IF (which_event EQ ‘ReviewPlus_preferences_apply_event’)$
 THEN BEGIN
 ReviewPlus_preferences_apply_event, event_structure
 ENDIF ELSE IF ...

The Master captured and sent out the event message
‘ReviewPlus_widget_tab_event…’ and ‘ReviewPlus_preferences_apply_event…’
in that order. The Participant should receive them in the same order (there is other
mechanism to guarantee this order).

Therefore, the code above (within a loop) first calls the routine of
ReviewPlus_widget_tab_event with the constructed event structure
event_structure to change to the tab of the tab widget programmatically as that of the
Master, and it then calls the routine of the event handler
ReviewPlus_preferences_apply_event with the event structure to have the function as
that of the Master. This is to reflect to the routine any changes in the previous page with
the tab we have switched from.

The routine of ReviewPlus_widget_tab_event is listed below.

Pro ReviewPlus_widget_tab_event,event
 widget_control,event.id,set_tab_current=event.tab,/show
end

Step Summary

In the processes on the events, both the Master and Participant objects call the same
routines in the same order – the event handlers ReviewPlus_widget_tab_event and
ReviewPlus_preferences_apply_event, which are two units of the transition function

δ, with the event structure as the only parameter. As we have noticed, the event handler
ReviewPlus_widget_tab_event is of different shape, purpose and function on the
Master and Participant; on the Master, it is a function, and it is for capturing and sending
out the event message and returning the event to upper widget, while on the Participant, it
is a procedure, and it is for changing to the page of the desired tab. Nevertheless, it has
the goal to coordinate both sides to have the same function and appearance at the end of
the process of the event, in other words, to converge to the same state r of DFA.

With δ (qi, ai) = r, the Master and Participant objects converge on the same states r of the
DFA on event messages ai at the end of the processes of the events, and therefore they
have the same output display – in this case, the same appearance of the widget tab and the
output in the main interface. We list the appearance of the widget tab in Fig. 11.

Figure 11

Now, in this interface, if we click on the button “White on Black” from the exclusive
button group beside the title “SCREEN Foreground/Background”, it will be set and at the
same time the other one “Black on White” will be unset, and the colors of the foreground
and the background of the output will be exchanged.

As the step above, this action triggers several events in sequence, and it is related to event
functions and the bubbling up of event through the widget hierarchy. We describe it
below.

The Master Object Side

• Widget creation

pro ga_plot_window::PreferencesDialog,parent, title=title
 ...

 tlb = widget_base(parent, /column, frame=1, title=title, $
 pro_set_value='ga_plot_window_preferences_set',$
 event_func='ga_plot_window_pref_applyfunc_event')
 ...
 baseReverse = widget_base(tlb, /row,$
 event_func='ReviewPlus_cw_bgroup_index_func_event')

 x = widget_label(baseReverse, value="SCREEN Foreground/Background: ")
 butsRev = cw_bgroup(baseReverse,['White on Black', 'Black on White'],
 /exclusive, /row, /frame, /no_release)
 ...

From the code above we can see that this compound widget CW_BGROUP is associated
with an event function named 'ReviewPlus_cw_bgroup_index_func_event' through
its parent widget widget_base with ID baseReverse; that the group of buttons in its
base are exclusive indicated by the keyword /exclusive and are laid horizontally
indicated by /row. The parent of widget baseReverse is widget_base with ID tlb, and
the parent of widget tlb is the widget with ID parent. If we list again some piece of the
code we have described in the last step as follows,

 ...
 wBase = widget_base(title="ReviewPlus Preferences", /column,$
 /floating, group_leader=self.wTLB, tlb_frame_attr=3)

 wTabs = WIDGET_TAB(wBase, event_func='ReviewPlus_widget_tab_event')

 ...
 self.oWindow->PreferencesDialog,wTabs,TITLE='GAPlotObj Settings'
 ...

We can see that ID parent and ID wTabs are equivalent algebraically in execution, and
the parent of widget wTabs is the base widget with ID wBase.

For clarity, we list the related widgets in question along the path from the upper to lower
levels of the widget hierarchy showing part of the relationships of the family, with each
member having the format of widget ID, widget type, and associated event handler.

wBase, widget_base, pro ReviewPlus_preferences_apply_event,event
↑

wTabs, WIDGET_TAB, function ReviewPlus_widget_tab_event,event
↑

tlb, widget_base, function ga_plot_window_pref_applyfunc_event,event
↑

baseReverse, widget_base, function
ReviewPlus_cw_bgroup_index_func_event,event

↑
butsRev, cw_bgroup,

• Definition of event structure for widget

Here is the definition of the event structure for CW_BGROUP widget:

{ID:0L, TOP:0L, HANDLER:0L, SELECT:0L, VALUE:0}

It has 5 fields, but unlike most of the widgets, it doesn’t have a structure name with it.
The field VALUE is of int type, and the rest are of long type.

SELECT: The value passed through from the button event with 1 indicating the button is set
and 0 otherwise.

VALUE: The value of the button. It can be “INDEX” (the index of the button in the base),
“ID” (the widget ID of the button), “NAME” (the name of the button), or “BUTTON_UVALUE”
(the user value for the button).

• Event handlers

Whenever an event happens to CW_BGROUP widget butsRev, e.g. a button is set or
unset in the base, it automatically bubbles up to the parent of butsRev, which is
baseReverse, because butsRev doesn’t have its own event handler. The baseReverse
has an event function as follows to deal with the event.

function ReviewPlus_cw_bgroup_index_func_event,event
 tag = tag_names(event,/str)
 if (tag ne 'WIDGET_BASE') then begin
 eventMessage = "ReviewPlus_cw_bgroup_index_event;"$
 +"CW_BGROUP_INDEX;"+"ID;"+string(event.ID)$
 +";TOP;"+string(event.TOP)+";HANDLER;"$
 +string(event.HANDLER)$
 +";SELECT;"+string(event.SELECT)$
 +";VALUE_CW_BGROUP;"+string(event.VALUE)
 COMMON BROKER, joChat2
 joChat2 -> writeMessage, eventMessage
 endif

 return, event
end

From the code above we can see that the collaboration code captures the event and gets
its field information from event.ID, event.TOP, event.HANDLER, etc., converts them
into strings and serializes the strings into a semicolon delimited string, along with the
event structure information string "CW_BGROUP_INDEX" (meaning it is a CW_BGROUP
widget and created using INDEX to refer to a button in the base) and the event handler
name "ReviewPlus_cw_bgroup_index_event" to be called on the Participant. This
result string is the event message, and is sent to the NB broker for broadcasting to
Participants.

The main purpose of this event function is to capture and get the event message when the
Master clicks on a button from the button group in the base. Later on the event message
acts as the messenger and the information source, and coordinates the Participant to
set/unset the same button programmatically.

The second purpose of this event function is to return the event, without modification, to
its parent widget, which is a base widget with the widget ID tlb and associated with an
event handler named ga_plot_window_pref_applyfunc_event, as listed below.

function ga_plot_window_pref_applyfunc_event,event
 return,event
end

This function does nothing but returns the event to the widget in the upper level of the
hierarchy. It contributes nothing to the state transitions of the DFA as long as the
Participant object is concerned. So we would just leave it alone.

From here, the event continues to bubble up to the parent of tlb, which is WIDGET_TAB
with the widget ID wTabs and associated with the function event handler named
ReviewPlus_widget_tab_event. We have described previously the process and action
happened here in the last step. We list again the part of interest to this step as follows.

function ReviewPlus_widget_tab_event,event
 tag = tag_names(event,/str)
 if (tag eq 'WIDGET_TAB') then begin
 eventMessage = ...
 ...
 endif

 return, event
end

Because CW_BGROUP widget is not a WIDGET_TAB, the mechanism of conditional test
guarantees that no event message will be generated and sent out to NB, but the event
will be returned untouched to the parent widget.

Once more, the event continues to bubble up to the parent of wTabs, which is
widget_base with the widget ID wBase and associated with the procedure event handler
named ReviewPlus_preferences_apply_event. The event gets processed and finally
gets swallowed here. We list this procedure once again as follows only with the relevant
part of it.

pro ReviewPlus_preferences_apply_event,event
;;;;;;;; collaboration code added ;;;;;;;;
 ...
 endif else begin
 eventMessage = "ReviewPlus_preferences_apply_event;"$
 +"CW_BGROUP_INDEX;"+"ID;"+string(event.ID)$
 +";TOP;"+string(event.TOP)+";HANDLER;"$
 +string(event.HANDLER)$
 +";SELECT;"+string(event.SELECT)$
 +";VALUE_CW_BGROUP;"+string(event.VALUE)
 endelse
 ...

 COMMON BROKER, joChat2

 joChat2 -> writeMessage, eventMessage
;;;;;;;; end of collaboration code ;;;;;;;;

...
;;; other statements and commands
...

end

From the code above we can see that the collaboration code captures the event and gets
its field information from event.ID, event.TOP, event.HANDLER, etc., converts them
into strings and serializes the strings into a semicolon delimited string, along with the
event structure information string "CW_BGROUP_INDEX" (meaning it is a CW_BGROUP
widget and created using INDEX to refer to a button in the base) and the event handler
name "ReviewPlus_preferences_apply_event" to be called on the Participant. This
result string is the event message, and is sent to the NB broker for broadcasting to
Participants.

The Participant Object Side

• Parsing of event message

Same as previously described.

• Conversion to IDL native types

 FOR i=2, count-1, 2 DO BEGIN
 IF (result[i] EQ 'ID') THEN BEGIN
 id_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'TOP') THEN BEGIN
 top_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'HANDLER') THEN BEGIN
 handler_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'SELECT') THEN BEGIN
 select_value = long(result[i+1])
 ENDIF ELSE IF (result[i] EQ 'VALUE_CW_BGROUP') THEN BEGIN
 cw_bgroup_value = result[i+1]

:

 ENDIF
 ENDFOR

The code above converts the information (in string) of the fields of the event structure of
CW_BGROUP widget to its IDL native types, except the VALUE field. Because it can be
“INDEX” (the index of the button in the base), “ID” (the widget ID of the button), “NAME”
(the name of the button), or “BUTTON_UVALUE” (the user value for the button), depending
on how the widget is created, we need further information from the event message to
decide its type. For example, if we get the event structure information string
"CW_BGROUP_INDEX", then we know it is an index and so its type is of int. So, for the

moment, we just save it in a variable cw_bgroup_value and wait for further treatment in
the construction of event structure.

• Construction of event structure

 IF (which_widget EQ 'CW_BGROUP_INDEX') THEN BEGIN
 bgroup_value = fix(cw_bgroup_value)
 event_structure = {CW_BGROUP_INDEX,id:id_value,$
 top:top_value, handler:handler_value,$
 select:select_value, value:bgroup_value}
 ENDIF

The code above constructs the event structure of CW_BGROUP widget with the value
field of INDEX type, using the converted native values for each field, with the field name
followed by a colon and then by the value, as in id:id_value. The type of the value
field is finally decided with the information indicated in 'CW_BGROUP_INDEX', and the
value is converted from string to integer via fix().

• Invocation of the routines of event handlers

 ...
 IF (which_event EQ 'ReviewPlus_cw_bgroup_index_event') THEN BEGIN
 ReviewPlus_cw_bgroup_index_event, event_structure
 ...
 ...
 IF (which_event EQ 'ReviewPlus_preferences_apply_event') THEN BEGIN
 ReviewPlus_preferences_apply_event, event_structure
 ...

The Master captured and sent out the event message
'ReviewPlus_cw_bgroup_index_event…' and
'ReviewPlus_preferences_apply_event…' in that order. The Participant should
receive them in the same order (there is other mechanism to guarantee this order).

Therefore, the code above (within a loop) first calls the routine of
ReviewPlus_cw_bgroup_index_event with the constructed event structure
event_structure to set/unset the button of the CW_BGROUP widget programmatically
as that of the Master, and it then calls the routine of the event handler
ReviewPlus_preferences_apply_event with the event structure to have the function as
that of the Master. This is to exchange the colors of the foreground and the background of
the output display within the main interface.

The routine of ReviewPlus_cw_bgroup_index_event is listed below.

pro ReviewPlus_cw_bgroup_index_event,event
 widget_control,event.id,set_value=event.value
end

Step Summary

In the processes on the events, both the Master and Participant objects have the same
functionality of the routines by executing them in the same order – the event handlers
ReviewPlus_cw_bgroup_index_event and ReviewPlus_preferences_apply_event,
which are two units of the transition function δ, with the event structure as the only
parameter. As we have noticed, the event handler ReviewPlus_cw_bgroup_index_event
is of different shape, purpose and function on the Master and Participant; on the Master,
it is a function, and it is for capturing and sending out the event message and returning
the event to upper widget, while on the Participant, it is a procedure, and it is for
setting/unsetting the button of the CW_BGROUP widget programmatically as that of the
Master. Nevertheless, it has the goal to coordinate both sides to have the same function
and appearance at the end of the process of the event, in other words, to converge to the
same state r of DFA. The ReviewPlus_preferences_apply_event in this case
exchanges the colors of the fore- and background of the output display.

With δ (qi, ai) = r, the Master and Participant objects converge on the same states r of the
DFA on event messages ai at the end of the processes of the events, and therefore they
have the same output display – in this case, the same appearance of the CW_BGROUP
widget and the output in the main interface. We list the appearance of them in Fig. 12.

Figure 12

Now, in the interface of Fig. 11, if we click on the CW_FIELD widget beside the title
“Character size multiplier”, input “2” and hit the carriage return, the output on both the
Master and Participant objects will be displayed as in Fig. 13.

Figure 13

The process of this step is very similar as that of the last step, so we would not bother to
describe it. The only difference is that, this is a CW_FIELD widget, and we would like to
list its event structure and specialties below.

Here is the definition of the event structure for CW_FIELD widget:

{ID:0L, TOP:0L, HANDLER:0L, VALUE:’’, TYPE:0, UPDATE:0}

It has 6 fields, but unlike most of the widgets, it doesn’t have a structure name with it.
The field VALUE is of string type, and the TYPE and UPDATE are of int type.

VALUE: The value of the field.
TYPE: The type of the data in the field, with 0=string, 1=floating point, 2=integer, and
3=long integer.
UPDATE: 0 if the field has not been updated, 1 if it has.

Widget CW_FIELD is not defined with keyword event_pro or event_func and
therefore it has to be associated with event handler through its parent or ancestor widget,
normally base widget.

As before, this step converges to the same states r of DFA and so has the same output as
in Fig. 13.

There are a lot more interfaces and widgets in ReviewPlus, such as WIDGET_DRAW,
WIDGET_DROPLIST, WIDGET_LIST, WIDGET_TEXT, CW_FORM, etc. The
descriptions of their processes of events are similar to those we have done so far. So we
would like to get off the stage and leave the imaginations to the reader.

