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Abstract — In this paper we present a short introduction to the 
Granules system, which is a lightweight streaming-based 
runtime for cloud computing. This paper provides a summary 
of the capabilities supported by the runtime.  
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I.  INTRODUCTION 
Cloud computing enables applications to harness 

capabilities, both computing and storage, that are available in 
computational clouds that comprise thousands of computers. 
In the past year, cloud computing environments have gained 
significant traction. Salesforce allows clients to purchase 
entire solutions that are hosted on their cloud. In some cases, 
such as Google, the generated responses are the result of 
processing that was performed in the cloud. Amazon, on the 
other hand, allows direct access to its cloud: users can 
allocate and deallocate entire virtual machines. Typically, 
most of these cloud computing solutions have been used for 
commercial applications such as processing web documents, 
videos, images, payroll, and so forth.  

The sheer scale of the computing and storage capabilities 
available in datacenters make cloud computing particularly 
well-suited for scientific applications. These scientific 
applications can be compute-intensive, data-intensive or 
both: in each case the processing needs are significant 
enough to mandate concurrent processing. 

It can be argued that cloud computing is a natural 
evolution of the grid computing paradigm wherein the 
services are hosted on a compute cloud that can comprise a 
much larger set of machines. 

II. GRANULES 
The Granules project is a lightweight streaming-based 
runtime for cloud computing. Granules orchestrates the 
concurrent execution of applications on multiple machines. 
The runtime manages an application’s execution through 
various stages of its lifecycle: deployment, initialization, 
execution and termination. Granules uses NaradaBrokering 
[1] as the content distribution network for disseminating 
streams. At each computational resource, Granules manages 
the concurrent execution of multiple application instances. 
Fig. 1 depicts the components that comprise Granules. 

 
Figure 1.  Figure 1: Overview of the Granules runtime 

One of the characteristics of cloud computing is that the 
resources are dynamic. If an application programmer is 
forced to keep track of all the available computational 
resources, the concomitant increase in the application’s 
complexity would be significant. Granules obviates the need 
for applications to track resource availability. Instead, 
applications delegate the responsibility of discovering and 
harnessing computational resources to Granules. Depending 
on the requirements, Granules can deploy application 
instances on one or more computational resources. 

Besides incorporating the processing functionality, 
application instances need to specify the datasets (or sources 
thereof) that will be processed during execution. An 
application may generate its own inputs or operate on 
external datasets such as files, streams and databases. The 
application can also generate outputs in a variety of formats.  

Granules performs two key steps during the deployment 
of the application instance. First, it initializes the state of the 
application instance based on the specified initialization 
directives. Second, it initializes the datasets that the 
application operates on. Dataset initializations involve 
subscribing to the appropriate data streams, configuring 



access to files on the networked file system, or setting up 
connections to databases. 

Granules also allows application instances to specify an 
execution profile that will govern their lifetime and 
scheduling strategy. In addition to the traditional exactly-
once semantics for execution, application instances can be 
executed a specified number of times, at regular intervals, or 
a combination thereof. Application instances can also be 
stay-alive with the execution being scheduled periodically, 
whenever additional data is available, or until the application 
instance asserts that the processing is complete.  

After every scheduled execution, Granules checks to see 
if the application instance is ready for termination based on 
the specified execution profile. If it is determined that an 
application instance is ready for termination, Granules 
removes it from the concurrent execution queue and reclaims 
any allocated resources. Reclaiming involves unsubscribing 
from any of the streams that the application instance was 
consuming and clearing any file locks that were established. 
Components that register for diagnostic messages related to 
task executions are notified about any lifecycle transitions. 

III. STREAMING MAPREDUCE 
The map-reduce [2] programming model (depicted in 

Fig. 2) facilitates the concurrent processing of large 
datasets. Here, large datasets are split into smaller more 
manageable sizes which are then processed by multiple map 
instances. The results produced by individual map functions 
are then sent to reducers, which collate these partial results 
to produce the final output. A clear benefit of such 
concurrent processing is a speed-up that is proportional to 
the number of computational resources. The most popular 
implementation of the MapReduce framework is Hadoop 
[3], which relies on the Hadoop Distributed File System.  

In Granules, we have incorporated support for a stream-
based implementation of the MapReduce framework. The  
streaming implementation of MapReduce in Granules has 
two distinct advantages over file-based  implementations. 
First, intermediate results are shared between the 
computational units using streaming, instead of files that 
require disk IO, which can add considerable overheads. The 
second advantage stems from the fact that results can be 
streamed to the reducers as they become available instead of 
having to wait for the entire processing to be complete. This 
feature is particularly relevant in situations where there is 
often a need to get as many results as possible within a fixed 
amount of time. We have demonstrated [4] the suitability of 
streaming-based MapReduce for certain classes of data 
intensive scientific applications. 

Typical MapReduce stages look like a directed acyclic 
graph with the MapReduce execution progressing in 
monotonically increasing stages. Besides the basic support 
for MapReduce, we have incorporated support for variants 
of the MapReduce framework that are particularly suitable 
for scientific applications. This includes support for iterative 
and recursive implementations of the framework. We are 
incorporating support for cycles wherein the outputs of the 
reduction stage could themselves be inputs to the preceding 
map stages.  This feature  is particularly useful in clustering 

 
Figure 2.  Figure 2: The MapReduce programming model 

algorithms where the computed (reduced) results  need to be 
refined, to meet a targeted error rate, by the map stages. 

IV. RELATED WORK 
 In this section we present a brief overview of the some 
of the related work in this area. Dryad [5] is a distributed 
execution engine for coarse grain data parallel applications. 
Dryad combines the MapReduce programming style with 
dataflow graphs, that are directed and acyclic, to orchestrate 
computational tasks.  Phoenix [6] is an implementation of 
MapReduce for multi-core and multiprocessor systems. 
Disco [7] is an open source MapReduce runtime developed 
using the Erlang functional programming language. Similar 
to the Hadoop architecture, Disco stores the intermediate 
results in local files and accesses them using HTTP 
connections from the appropriate reduce tasks. 
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