
Grid-based Collaboration in Interactive Data Language Applications

Minjun Wang

EECS Department, Syracuse
University, U.S.A

Community Grid Laboratory,
Indiana University, U.S.A
501 N Morton, Suite 222,
Bloomington IN 47404
minwang@indiana.edu

Geoffrey Fox
Community Grid Laboratory,

Computer Science
Department, School of

Informatics and Physics
Department, Indiana

University, U.S.A
 gcf@indiana.edu

Marlon Pierce
Community Grid Laboratory,

Indiana University, U.S.A
501 N Morton, Suite 224,
Bloomington IN 47404

mpierce@cs.indiana.edu

Abstract

Interactive Data Language (IDL) is an array-oriented
data analysis and visualization application, which is
widely used in research, commerce, and education.

It is meaningful to make user IDL applications
collaborative between computers over networks, using a
common message broker as the underlying communication
system.

In order to achieve the global collaboration, we have
brought together in the research a Grid-based
Collaboration paradigm, a Shared Event model, different
implementing structures, methodologies and technologies.
We have succeeded in our prototype codes, and we are
currently working on a real life IDL application package
to make it collaborative. At the same time, we are trying to
find better structures and methods for the collaboration in
general user IDL applications.

1. Introduction

Interactive Data Language (IDL) is an array-oriented
data analysis and visualization application, which is
widely used in research, commerce, and education [1, 2].
Its application areas include engineering, medical physics,
astronomical and space science, earth science, etc.

It offers rapid interactive data analysis and visualization,
a programming environment, and end user applications.

IDL is available for Windows, UNIX, Linux,
Macintosh and VMS platforms and Operating Systems.
This high availability facilitates data analysis and
visualization in multi-platform environment, and ensures
high code portability among platforms and systems.

People from different categories around the world have
developed and been using diverse IDL applications in their
respective areas.

Also, users worldwide are continually contributing to
Internet-based IDL libraries [3], and they are freely
available.

It is contributing and meaningful to make IDL
applications collaborative between computers of same or
different platforms, using a common message broker –
such as NaradaBrokering Message Service – as the
underlying communication system.

In today’s Information revolution society, collaboration
is becoming more and more important. It means
breakthroughs in new abilities, which otherwise would be
hardly possible; it means achievements in the advances of
science and technology; it also means great contributions
to economy.

We design the overall structure of the collaborative
IDL applications to consist of a type of Master (or Master
Client) and a type of Participant (or Participating Client)
using small text event messages for the communication
between them. During a session, the Master captures
events in its process, deal with them, and send the event
messages to the participant for rendering the displays in
the participant’s process, so that both of them can share
the screen displays simultaneously. There can be multiple
participants working with the Master concurrently and
independently. We use NaradaBrokering Message Service
[4] for the message communication. The RSI IDL software
should be installed on both the hosts of the Master and the
Participant, and if files are needed in a session, they are
deployed beforehand on the same directories on the hosts.

We research and explore this area by proposing and
using:

• A Grid-base Collaboration paradigm, in which
Shared Event Model as messenger, and Peer-
to-Peer Grid computing [5] as basis.

• Different Implementation Structures for the
collaborative IDL applications -- Notifying
Structure and Polling Structure.

We illustrate the mechanisms, methodologies and
technologies used in each structure, and analyze their
strengths and limitations in the context of applications.

We have developed event-driven GUI programs and
made them collaborative through networks to demonstrate
in the Notifying and Polling structures. We are working on
a real IDL application package – ReviewPlus [6] from
General Atomics (USA) [7], which is a general-purpose
data visualization tool – and trying to make it collaborative
by using the Polling structure. We will describe the
development and special issues in the implementation in
this paper.

We think our work will contribute to Grid-based
Collaboration in Interactive Data Language Applications.

2. Grid-based Collaboration Model

We use a Grid-based Collaboration Model in the design
and development of the collaborative Interactive Data
Language (IDL) applications, as shown in Figure 1.

Figure 1. A Grid-based Collaboration Model

In this model, there are two categories of computing –

Grid computing and Peer-to-Peer computing.
Grid computing is the basis; it largely comprises stable,

formal, and efficient high-functionality services like Web
Services, Grid Services, Common Message Brokers, etc.,
which are deployed as Grids on structured, well-organized
and powerful supercomputers. They are in the core of the
model.

Peer-to-Peer computing is the interface to this world; it
offers user-friendly, convenient, intuitive and easy
accessible applications and services such as the popular

commodity software used daily and everywhere. They are
installed on a variety of personal devices, such as desktops,
laptops, PDAs, smart phones, etc. They are at the edge of
the model.

The infrastructure of Networks and the Internet ties up
and correlates the two computing categories. It enables
Peer-to-Peer Grids computing to be a trend, which
harnesses the advantages of the two categories so that they
complement each other, which also brings new
opportunities and challenges to computing in all.

Grid computing offers robust, structured, security
services that scale well in pre-existing hierarchically
arranged enterprises or organizations; it is largely
asynchronous and allows seamless access to
supercomputers and their datasets.

Peer-to-Peer computing is more convenient and
efficient for the low-end clients to advertise and access the
files on the communal computers; it is more intuitive,
unstructured, and largely synchronous.

In our design and development of the collaborative IDL
applications, we realize the Peer-to-Peer Grids computing
idea. We deploy the Narada Message Broker as a Grid and
use it for message communication between the Master and
Participants of the applications; and we deploy the Master
and Participants as Peers at the edge and make them
collaborate on events.

3. Shared Event Model

We use a Shared Event Model in the communication
between Peers. In this model, small text event messages
are transmitted via the Grids of common message brokers
and used to coordinate the operations between the peers so
that they can cooperate concurrently and share the output
screen simultaneously.

In our design of the collaborative IDL applications, one
type of the Peers is Master Client, another type is
Participant. During a session, the Master captures events
in its process, deals with them, and sends the event
messages to the participant for rendering the displays in
the participant’s process, so that both of them can share
the screen displays simultaneously. There can be multiple
participants working with the Master concurrently and
independently. We use Narada Message Broker as the
Grid for the message communication. The RSI IDL
software should be installed on both the hosts of the
Master and the Participant, and if files are needed in a
session, they are deployed beforehand on the same
directories on the hosts. This deployment guarantees the
access of the files is correct on the hosts under the control
of event messages.

There are a variety of primitive widgets in IDL, such as
Button, Slider, Text field, Draw area, etc. The event
structure for each widget is different; each one contains
state information specific to that widget, e.g., flags and

Common Message
Brokers

Web
Services

Grid
Services

values. However, there are three common items in all the
event structures, they are: ID, TOP, and HANDLER. They
are long integers and the first three items in the structure.

1. ID is the widget ID number of the widget that
generates the event.

2. TOP is the widget ID number of the top-level
base that contains all the widgets.

3. HANDLER is the widget ID number of the
widget that is associated with an event handler.

For instance, the event structure for BASE widget is:

{WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L,

X:0L, Y:0L}

Where X is the width of the base, and Y is the height.
On the Master, the client captures the event, gets the

event structure, and packages the information from it into
a delimited string, as in {widget_base|id 0|top 0|handler
0|x 0|y 0}, with possibly other information like session,
source, destination, etc., and sends the result message
string to Narada message broker for broadcasting to
participants. This is a serialization process.

On the participant, the client parses the received
message string, gets the different part of the delimited
information, and rebuilds the IDL event structure by
interpreting the sub-string sections like “id 0” to
corresponding IDL types. This is a de-serialization process.

The constructed event structure is then used as a
parameter for its event handler which is invoked by the
participant client programs to generate the same event
results as that happened on the Master client.

4. Notifying Structure

We have developed and made a simple IDL GUI
application collaborative between the Master and
Participating clients based on the Notifying structure.

The master client displays a GUI containing a lot of
button widgets which represent JPEG images.

When a user clicks a button:
• The corresponding image displays in IDL

environment.
• The master client captures the event and

sends the message to NaradaBrokering to
broadcast to participating clients for
rendering.

The participant receives the event message broadcasted
from NaradaBrokering, and renders the display as that of
the Master in its own IDL environment. There can be
multiple instances of participant clients. The interface and
IDL display on both the Master and Participant are shown
in Figure 2.

Figure 2. The Interface and Display from a
Collaborative IDL Application

In this structure, we just naturally followed the nature

and technologies in IDL and NaradaBrokering (written in
Java) required being collaborative. The technologies for
this issue include IDL-Java Bridge, Callable IDL, Shared
Library, Java Native Language (JNI) [8], Subscribe/Notify
mechanism. Whenever NaradaBrokering receives an event
message from the Master client, it will be Notifying the
participating clients through its method onMessage(),
which in turn gets the message and invokes all kinds of
IDL routines accordingly to render the display.

More specifically, the Master client is written in IDL
programs. It consists of a GUI building and managing part,
and an event handling part.

• It captures an event and gets the event message in
an event handler whenever a user clicks a button
in the GUI.

• It makes use of the IDL-Java Bridge, calls
methods in a Java program to connect to
NaradaBrokering, and sends the event message
over there for broadcasting to participants.

This process is elaborated in Figure 3.

GUI calls methods of Narada Message Broker via IDL-Java Bridge

User interacts with GUI through Physical Events (mouse clicks,

Event Handler associates to GUI; GUI Notifies Event Handler

Event Handler processes event and sends message to Narada

Narada Message Broker broadcasts message to all subscribed clients

1
and connects Master client to the Broker

2
keyboard strokes) to control session

3
whenever a GUI event occurs

4
Message Broker via IDL-Java Bridge

5

Master Client in IDL

GUI

Event Handler

IDL-Java Bridge

Physical Events

1

2

3

4

Narada Message Broker

5

Figure 3. The Mechanism of Master Client

The participant is written in Java programs.

• It connects to NaradaBrokering and receives
event messages from it.

• The Java program controls the rendering
process according to the event messages it
receives.

 It makes use of the Callable IDL
technology and JNI technology.

 It calls the IDL routines (procedures
or functions) for the rendering.

 In order to do that, it has to call the
IDL routines through a C program,
in other words, that C program calls
IDL routines directly through
Callable IDL technology.

 A shared library (libCallableIDL.so)
is generated from the C program,
and the Java program calls the

native functions in the shared
library through JNI.

This process is elaborated in Figure 4 and 5.
This way, it renders the images simultaneously with the

master client.

C/C++ program calls IDL routines through Callable IDL
A Shared Library is generated from C/C++ program

1

2
which calls IDL Routines

Shared Library
(libCallableIDL.so)

2

C/C++
Program

Callable IDL

IDL Routines
(Procedures/
Functions)

1

Figure 4. Generating of a Shared Library

Participant client connects to Narada Message Broker; the Broker

Narada Message Broker invokes method onMessage() whenever it

The invoked method calls native functions in the Shared Library via

1 broadcasts event messages to the client

2
receives message to broadcast from Master client

3 JNI, under the instructions of the received event message

Participant Client in Java

Narada Message Broker

Method onMessage()

Java Native Interface
(JNI)

Shared Library
(libCallableIDL.so)

1

2

3

Figure 5. The Mechanism of Participant Client

This structure works just fine for our small

demonstrating collaborative IDL GUI applications, it
follows the nature of the IDL and Narada systems, and it
builds on top of those systems and just makes use of their
technologies and functions in achieving collaboration
without changing anything in either of them. In other
words, all of the design and programming is just within
our collaborative applications. This is architectural
abstraction thinking and complies with object oriented
design in systems level.

There is a limitation in this structure, that is, the types
of the programs for the master and participant clients are
different. The program for the master client is in IDL (.pro)
language, while that for the participant client is in Java
(.java), calling native functions in a shared library through
JNI. The shared library in turn is generated from a C
program, which calls IDL routines directly through
Callable IDL technology. In other words, all the
functionality of the IDL routines is compiled into binary
and put in the shared library (.so). This is not good enough
for large application development, like ReviewPlus, which
is huge itself, and also refers to many (if not huge) other
IDL routines in other IDL applications such as MDSplus
[9].

This limitation implies:

1. It is complicated and inconsistent in the codes
between master and participant clients. They look
totally different things and there is no similarity.

2. The time and efforts in developing would be
doubled, if not more – one for master, and one for
participant, two different kinds.

3. It is error-prone in programming, debugging and
testing, bringing different technologies and
environments together.

5. Polling Structure

Now that we have succeeded in making a simple IDL

application collaborative, we begin to think further and ask
a question: Is it possible to develop the codes for both
mater and participant clients in pure IDL and make the
codes for master and the codes for participant as same as
possible? If we succeed in it, we can overcome the
limitation and shortcomings mentioned in the Notifying
structure, and at the same time, we can simplify the
collaboration system and make the codes consistent and
clear; we can save significant time, effort and cost in
software development and maintenance. Thereof, we can
really make Grid-based collaboration for large IDL
applications such as ReviewPlus practical and feasible.

We have tried and succeeded in our simple GUI IDL
collaborative applications for this using the Polling
Structure. There is a trade-off: in order to achieve this, we
have to change some parts of the underlying systems in
some cases, thus suffering some design abstraction; in our
case, we changed an interface to the underlying Narada
Message Broker.

The Polling Structure works like this:
Both the master and participant clients make use of the

IDL-Java Bridge to connect to NaradaBrokering and
communicate with it. The methods used in the Bridge
belong to IDL.

As before, the master captures events and sends event
messages to NaradaBroking, which then broadcasts them
to all participating clients, as in Figure 3. In a Java class,
which is an interface to NaradaBrokering, and which the
participating clients codes instantiate and make use of, we
add public global variables for event change flag and event
message, and make a notification related method
onMessage() update them whenever the Broker broadcasts
event messages to the clients. The update includes setting
event flag and storing event message in the variables.

The participating client code now has an instance of the
Java class; it is constantly testing, or Polling, the instance
variable – event flag. If it finds the flag is set, it resets the
flag and retrieves the event message from the event
message instance variable. It then follows the instructions
of the message to execute different parts of the IDL
programs to do the rendering.

This process is elaborated in Figure 6.

Participant client connects to NB by calling methods of NB interface via

The client accesses the public variables of NB interface by calling the

The Broker invokes method onMessage() of NB interface when it has event

Method onMessage() then accesses the public variables of NB interface by

Narada Message Broker

IDL-Java Bridge

set event flag

store event message
get event flag

event occurred?

reset event flag

retrieve event message

call IDL routines or
commands for

rendering under the
instructions of the

message

Method onMessage()

Public Variables

int event_flag = ...
String message = ...

:

Polling

Yes
No

NB InterfaceParticipant Client in IDL
A

A

B

B

C

D

A
IDL-Java Bridge

B
Bridge's methods getProperty() and setProperty()

C
message to broadcast

D
setting event flag and storing message

Figure 6. The Mechanism of Participant Client in

Polling Structure

This way, the Polling structure makes the collaboration

working. It has advantages in working with large IDL
applications. We are using it in the design and
implementing of the collaborative ReviewPlus
applications. The interface and display of ReviewPlus is
shown in Figure 7.

As in IDL widget programming, the structure of
ReviewPlus consists of two parts; one is the widgets
definition part, the other is the event handling routine part.
All the required widgets in the application are defined and
realized in the former, and the event handlers are
contained in the latter. The event handling part is put first
in a program unit, and the definition part follows.

People specify the even function or procedure to be
called when a widget is invoked by using the keywords
EVENT_FUNC or EVENT_PRO in the definition of the
widget. This way, when the widget is invoked, the
corresponding event handler is called to process the event.

For example, in ReviewPlus, there is a piece of code:

 mEdit = Widget_Button(menubase, Value='Edit')

 x = widget_button(mEdit, value='Set Signals', $
event_pro='ReviewPlus_SignalDialog_event')

This is for the item “Set Signals” on menu “Edit”.

When this widget fires an event, the event handler
“ReviewPlus_SignalDialog_event” is invoked.

Both the Master and Participant are developed on the
basis of ReviewPlus and make use of its codes as much as
possible.

Figure 7. The Interface and Display from
ReviewPlus IDL Application

On the Master, when we choose the “Set Signals” item

from menu “Edit”, the event handler
“ReviewPlus_SignalDialog_event” is invoked, and the
tasks in the handler are processed. In it, we can put
statements to get information of the event structure and put
pieces of substrings for its fields in a message string, as we
have described in Section 3, Shared Event Model. We
should also put a substring for locating the desired event
handler, i.e., “Edit>SetSignals” followed by a delimiter in
the event message string for NaradaBrokering to broadcast.

On the participant, it receives this string from the
public variables in the polling structure. After it parses and
gets the substrings, it locates the event handler and
rebuilds the event structure in IDL types. It then calls the
event handler with the event structure like this:

ReviewPlus_SignalDialog_event,

{WIDGET_BUTTON, ID:15, TOP:1, HANDLER:15,
SELECT:1}

6. Future Work

We are working on the ReviewPlus package to make it
collaborative between computers using the polling
structure. It is a big package. We plan to finish the
implementation of the collaboration to make the Master

and Participant clients available in real life and daily use.
We are also interested in finding new and better structures,
methodologies and technologies for IDL applications to be
collaborative over networks, platforms and environments.

7. Conclusion

In this paper we have described the Grid-base
collaboration paradigm, the shared event model, and the
common message broker that together enable effective
collaboration between computers over the Internet to be
possible. We have focused on the design of making IDL
applications collaborative. To do that, we have proposed
the Notifying structure and Polling structure, and analyzed
the advantages and limitations of each of them. We are
finally working on a real life and useful IDL application
(ReveiwPlus) to make it collaborative, taking the
advantage of the Polling structure. We are also working to
find new and better ways to achieve high performance
collaboration in general IDL applications.

References

[1] Liam E. Gumley, Practical IDL Programming, Morgan
Kaufmann Publishers, San Francisco, CA 94104-3205, USA,
2002.
[2] Research Systems Inc. http://www.rsinc.com/
[3]Fanning Consulting
http://www.dfanning.com/documents/idllinks.html
[4] Geoffrey Fox, Shrideep Pallickara, and Xi Rao, “A Scalable
Event Infrastructure for Peer to Peer Grids”, proceedings of 2002
Java Grande/ISCOPE Conference, Seattle, November 2002,
ACM Press, ISBN 1-58113-599-8, pages 66-75.
http://grids.ucs.indiana.edu/ptliupages/publications/ScaleableEve
ntArchForP2P.doc
[5] Fran Berman, Geoffrey Fox, and Tony Hey, Grid Computing:
Making the Global Infrastructure a Reality, John Wiley & Sons
Ltd, Chichester, West Sussex PO19 8SQ, England, 2003.
See http://www.grid2002.org
[6] ReviewPlus Data Visualization Software User Manual
http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/
[7] General Atomics and Affiliated Companies
http://www.ga.com/
[8] Sheng Liang, The Java Native Interface, Addison-Wesley,
Sun Microsystems, Inc., Palo Alto, CA 94303, USA, 1999.
[9] MDSplus: Introduction
http://www.mdsplus.org/intro/index.shtml

