
HHFR: A new architecture for Mobile Web Services

Principles and Implementations

Sangyoon Oh and Geoffrey C. Fox

Community Grids Laboratory

501 N Morton St. 222, Bloomington, IN, 47408, USA

{ohsangy, gcf}@indiana.edu

Abstract

By combining mobile computing and Web

Services technologies, pervasive computing

expects more portability and location

transparency for accessing information in

anytime from anywhere. Though, a direct

integration of two technologies imposes

performance limitations because of XML’s

verbose nature and physical limitations of mobile

computing. We present our new architecture

design and implementations, Handheld Flexible

Representation (HHFR) in this paper. The

architecture provides alternative representations

other than XML-based SOAP and fast

communication transport options. The

negotiation between two end-points using SOAP

message sets up characteristics of following

stream of messages. The benchmark results show

the performance advantage of using the

architecture when a session composes a sequence

of messages.

KEYWORDS

Mobile Computing, Web Service, Stream of

Message, Binary Representation

1. Introduction

Mobile computing gives a pervasive computing

the way to access information any-time and any-

where by its portability and remote connectivity.

And Web Service technology gives a pervasive

computing the way to interoperate remote

resources and diverse services. Because of their

importance in the pervasive computing, it is a no-

big surprise that there are so many recent

researches of adopting mobile computing as one

of flexible platform of Web Service technology.

Even a half a decade ago, there is just handful

of people who access remote information from

their mobile device. The information access from

mobile devices, however, has became easier than

ever recently with the help from advanced mobile

devices and widespread availability of packet-

switched, always-on cellular phone networks.

There are many projects that try to adopt smart-

phones and cellular phone with data connections

as major elements in Web Services, since huge

synergy effect of interoperability and removing

physical-location constraints are expected.

However, the verbose nature of current XML-

based SOAP [1] approach imposes performance

limitations in integrating mobile computing

applications and conventional Web Services

directly. SOAP achieves ubiquity by using highly

universal XML as a form of data exchanging

between disparate and distributed computing

resources. Though, XML-based SOAP possesses

three major characteristics that may affect SOAP

performance. First, the in-memory data model

must be converted to textual format to build a

SOAP message object and to extract information

from it. Secondly, because of inevitable mobile

computing characteristics – high latency, narrow

bandwidth, limited computation, and small

memory space, SOAP message processing

consumes valuable resources [2]. Finally, mobile

communications suffer from a larger data size by

XML’s descriptive tags and structure. It is usually

not a problem on the powerful wired networks,

although the bandwidth is pricey in mobile

networks.

High performance SOAP encoding is an open

research area [3], [4], and [5]. Web Services in

mobile environment is a benefited of the

researches, since it also need to overcome the

performance limitations because of its

characteristics above. Even the small size, regular

frequency message exchanges could cause

performance overheads in such an environment.

In this paper, we present our new architecture

design to achieve an optimized communication

using binary message stream and a SOAP

negotiation as well as the prototype

implementation of the architecture and the

performance benchmarks.

We organize this paper as follows: we describe

an overview of Handheld Flexible Representation

architecture design in section 3. And we illustrate

detail implementations of the prototype in section

4. Section 5 presents a performance benchmark

results. Conclusion is described in section 6.

2. Background

We see several notable projects from industry

and academia that try to overcome performance

limitations of current Web Services approach.

Extreme! Lab researched the limits of SOAP

performance for scientific computing where large

data sets including arrays are common and the

design of a SOAP implementation suitable for

systems with small memory and bandwidth [3],

[4]. Throughout the experiments, the result of

research shows the major improvements from

using schema-specific parser mechanism for

arrays, persistent connection, and streaming of

messages to prevent full serializing objects to

determine the length. It also shows that the most

serious overhead is conversion to textual form

from in-memory float numbers. To resolve the

limitations, they recommend using multiple

communication protocol incorporating with a

binary representation and fast protocols other

than SOAP. The condition they are facing with

the conventional Web Services is similar to the

constraint of mobile computing because of its

limited computing environment characteristics.

Both need to overcome performance limitations

of SOAP.

The report of the W3C Workshop [6] on

Binary Interchange of XML Information Item

Sets (Infoset) [7] is the result of the increasing

demand of binary form of XML-based

communication. The report includes conclusion

of workshop meeting on September 2003 as well

as several dozens of position papers from various

institutes [5], [8], and [9]. The purpose of the

workshop is to study methods to compress XML

documents and transmit pre-parsed and schema

specific object. It identified the requirement of

binary XML Infoset, for example 1) maintaining

universal interoperability, 2) a generalized

solution that is not limited to a specific

application domain, 3) reducing process time

including a data binding time, and 4) negotiation -

fall back to XML/SOAP text format if receiver

can’t understand binary. The discussion leads

W3C form XML Binary Characterization

Working Group for further researches. Sun's Fast

Web Services [5] and Fast Infoset project [10]

specifies a representation of an instance of SOAP

Infoset using binary encoding. They use Abstract

Syntax Notation (ASN). 1. [11] to abstract

encoded messages that may be encoded using it.

The higher level protocols (WSDL [12] for

contract definition of service etc.) remain

unchanged, thus you could use standard SOAP-

XML for development, and have a switch that

turns on the binary protocol for production

deployment.

W3C XML Protocol Working Group released

the draft of Message Transmission Optimization

Mechanism (MTOM) [13] and XML-binary

Optimized Packaging (XOP) [14]. Combined

together, the specifications are targeted to two

data type - multimedia data that already have

standardized formats, such as JPEG, GIF, and

MP3 and data that includes digital signature. The

XML encoding would damage the data integrity.

XOP is an alternate serialization that looks like a

MIME package. It avoids data binding overhead,

though still preserves XML structure – tags.

Thus, XOP and MTOM, which describes how

XOP is layered into SOAP HTTP transport, still

possess a parsing issue inherited from

SOAP/XML.

Cross Format Schema Protocol (XFSP) [9] is

another project that serializes XML document

based on schema. Initially it is motivated by the

flexible definition of network protocols. It is

written in Java and uses DOM4J model to parse

the schema. With XML Schema-based

Compression (XSBC) [15], XFSP provides binary

serialization and parsing framework. Naval

Postgraduate School provides lots of research on

Streaming X3D documents in the XFSP

framework.

Data Format Description Language (DFDL)

[16] is a descriptive language that is proposed to

describe a file or a stream in a binary format for

Grid computing. Like Extensible Scientific

Interchange Language (XSIL) [17], it is XML-

based and comes with an extensible Java Data

model. DFDL define the structure of data. For

example, it defines a number format of data

whether it is a big-endian or little-endian and a

complex data format such as an array. Also

DFDL is designed to be processable through

DFDL parser and data model. We designed the

message format description of our Flexible

Representation based on DFDL. In our Handheld

Flexible Representation architecture, we define

simple XML-schema based descriptive language

and develop a language parser using XML Pull

Parser (XPP) [18]. Our prototype implementation

will not be in-depth like DFDL, though it will be

enough to show advantages of our approach.

3. Architecture Overview

In this section we present new software

architecture, the Handheld Flexible

Representation (HHFR) that is designed for an

optimized and expandable communication in

mobile web services. HHFR separates message

contents from a SOAP message in Angle-Bracket

syntax format, and service end-points in HHFR

exchange separated-message contents in an

optimized fashion. An overview of HHFR

architecture design is depicted in Figure 1.

3.1. Design Overview

Major aspects of the architecture design are:

Optimized binary representation against

verbose XML syntax: HHFR provides a

communication options to exchange SOAP

messages in a binary representation format by

separating XML syntax of SOAP messages and

SOAP message contents. Structured and typed

conventional SOAP causes performance

bottlenecks that are magnified in mobile

environments. Separated data structure and types

of SOAP body (payload) is negotiated in the

beginning of a stream. XML Schema is used to

characterize the syntax of SOAP Body.

Targeting a stream of messages: HHFR works

best for the Web Services where two end-points

exchange a stream of messages. Messages in a

stream share the structure and type information of

SOAP Body and the most of headers of messages

are not changing in a stream session. Therefore,

the structure and type as a form of XML Schema

and headers can be transmitted only once and rest

of the messages in the stream have only payloads.

The ‘streaming’ of message is possible by

introducing non-blocking message

communications.

Context-store as a repository: In the HHFR

architecture, a context-store module keeps static

data from a message stream including

unchanging-SOAP headers, XML Schema as a

data representation, and stream characteristics

that is captured in a negotiation stage. By saving

SOAP headers and data representation to the

WS-MFR

End-Point

WS-MFR

End-Point

1.Negotiation

Over SOAP

2.Stream of Message

in Preferred Representation

� WS-MFR Scheme

� Representation

� Headers

� Stream Info.

Context-Store

Figure. 1. Illustrated overview of HHFR architecture

context-store and having optimized binary format

messages, the architecture slims down a size of

messages.

Interoperable Web Service architecture:

Distinct from other ad-hoc solutions to the SOAP

performance problem, the architecture doesn’t

change overall interoperability of existing Web

Service standard. Our approach provides seamless

integration of current Web Service applications

by using conventional SOAP messages to setup

an optimized representation and transport. When

the other end-point claims it is not compatible,

HHFR architecture fall back to the conventional

SOAP communication.

3.2. Separation of Representation

The essential idea of HHFR architecture is an

optimized representation and communication for

two Web Service end-points while not sacrificing

SOAP compatibility. We design HHFR

architecture to provide an optimized data

representation according to present

communication environment. Options include

binary and conventional SOAP representations.

3.2.1. XML and SOAP Infoset. The first thing

to describe SOAP Infoset in our architecture is

looking into what is XML Infoset, since SOAP is

XML Based language and latest specification 1.2

is defined using the XML Infoset.

XML Infoset specification is released to help

to define other languages that are based on the

XML data model, yet an instant help from the

specification goes to the application designing

and developments, which manipulate data model

with XML APIs. The model defined by XML

Infoset is not tied up with any specific XML API,

such as Document Object Model (DOM), Simple

API for XML (SAX), and XML Pull Parser

(XPP). Thus, the application development sets to

free as far as it follows XML Infoset

Specification. One of the possibilities that XML

Infoset Specification opened is to have a parser

that supports the binary form of XML.

In our architecture, we defined the data model

based on SOAP Infoset. Consequently, the HHFR

architecture is able to separate a representation –

XML/SOAP syntax and SOAP message content

without losing any message contents.

3.2.2. Binary Representations of SOAP

Message. From the separation of representation,

the architecture provides options to choose

appropriate message representations such as

binary and conventional SOAP representation for

optimized Web Service communication

environment.

The binary representation is a critical option

to improve overall performance of HHFR

architecture in several reasons. First, it reduces

the size of exchanging message by removing

verbose SOAP syntax – Angle-Brackets. The

saving is maximized as a factor of 10s when a

document structure is inevitably redundant –

Array. A very simple message with a single text

element can be reduced in its size in half. Hence

it is always good to have reduced size document

to exchange, even in a conventional computing

environment, however mobile computing really

need it because of its narrow bandwidth

connection.

Also, by using binary format message, HHFR

is able to avoid textual conversions. The

architecture removes conventional

encoding/decoding stage where the in-memory

format is converted into a text format and vice

versa. It is an expensive process especially for

relatively low-powered mobile devices to convert

non-textual data into and from textual data, which

is required in SOAP syntax. Among non-textual

data, floating point number conversion is the most

costly one [3].

Finally, another benefit to have a binary

representation of SOAP message in the

architecture is leaving out parsing for each

message. Since SOAP syntax requires a

structured data model that satisfies Extended

Backus-Naur Form (EBNF), a parsing process is

needed to get information from the given

documents. The binary representation – byte

array format of SOAP message contents is chunks

of continuous information that is defined by

SOAP Infoset, which doesn’t need to be parsed in

conventional way. Rather, architecture provides

another kind of information retrieval scheme,

stream reader and writer. It is done by

established internal Data Structure model and

packet reader and writer that reads and writes

data to byte stream according to the Data

Structure.

For the replacement of XML Syntax that we

separate, the architecture utilizes XML Schema

Definition (XSD). It is a recommendation of the

World Wide Web Consortium (W3C) about how

to describe the elements in an XML Documents

formally. Originally it is for checking the validity

of XML Documents; however it is also an

abstract representation of an XML Document’s

relationship – the structure and characteristics

including elements and data type. Nevertheless,

there is an issue to be considered to use the XML

Schema approach to define the syntax of SOAP

for message stream. XML Schema doesn’t

guarantee to capture a static view of XML

Document, such as an order of elements or

attributes. For that reason, HHFR expects the

initial sender end-point sends the fixed order data

model that is expected on an ultimate receiver

side. However, this is less concerned when the

service is defined in RPC style because the

operation, which is the service, has a function

signature of the ordered parameters. Except the

ordering issue, XML Schema nicely replaces the

XML syntax in data interchanges.

3.3. Negotiation of Characteristics

A few design issues motivates an introduction

of a negotiation stage: 1) to have alternative

representation of SOAP messages, the

representation of message and leaving out-SOAP

Headers should be transmitted at the beginning of

the stream 2) to setup the fast and reliable way of

communication, the architecture should negotiate

characteristics of stream.

3.3.1. Supporting Alternative Representation

of SOAP Message. A stream of messages shares

the same representation, which means that

messages share the structure and types of SOAP

Body parts. Schemas which represents the

separated structure and types of both request and

response message should be conveyed initially to

tell the representation of following binary format

messages in the stream. As well as the

representation, the headers of SOAP messages are

not changing mostly. Needless to say, there are

headers that apply to the individual message, such

as reliability related headers. Such headers are

processed at the corresponding handlers. Except

those, rests of headers that are the majority in

many cases can be transmitted only once and used

by during the stream. Both the representation and

headers are archived in the context-tore.

Since we preserve the message contents in

SOAP Infoset data model, HHFR is able to apply

various representations other than binary that

defined in XML Schema; it is able to

send/receive messages in binary format as well as

traditional SOAP message in formal SOAP

syntax.

3.3.2. Negotiating Characteristics of Stream.

A connection of mobile device has narrow

bandwidth and high latency. Because of it, chunk

overlaying and pipelined-send over HTTP 1.1 is

studied to improve its performance [3].

‘Persistent connection’ or ‘Keep-Alive’ features

that are required for it, however, is not available

for network protocol implementation on some

mobile devices and some cellular network.

Because of above reasons, the HHFR

architecture provides fast communication options

as well as default HTTP transport, such as TCP

and UDP where message contents in a binary

representation is transmitted over in a stream

fashion. Options provide asynchronous (also

called non-blocking instead of HTTP callback

mechanism) messaging scheme, so that the

architecture can stream messages. The fast

communication option looks similar to previous

ad-hoc solutions to the Web Service Performance

issue. Though, our architecture puts the fast

transport implementation behind the SOAP

communication transparently so that services in

HHFR use conventional Web Service

specifications seamlessly and loosely-coupled

way without additional ad-hoc scheme.

The reliability is negotiated in the negotiation

stage as well. For example, UDP transport is a

simple high-performance datagram Internet

Protocol, although UDP doesn’t provide

reliability and ordering guarantee that TCP does.

Datagram may be missing or arrived in out-of-

order. Thus, the architecture design implements

Web Service Reliable Messaging [20] (WS-RM)

specification on UDP transport. Figure 2 depicts a

possible message exchanges between WS-RM

end-points over UDP or TCP transport.

The detail implementation of fast

communication transport and reliability are

presented in section 4.

3.3.3. Negotiation Stage. The issues discussed

above are negotiated in an initial Negotiation

Stage where a typical HHFR session starts with.

The negotiation uses a conventional SOAP

message, which makes the negotiation stage

compatible with existing Web Service

framework. The architecture design defines each

item from the issues as an incremental element in

a Negotiation Schema. Thus, negotiation handler

receives a negotiation SOAP message and it

prepares a response SOAP message for negotiated

items. A successful end of negotiation stage is

lead to the message streaming stage, where

streams reader and writer are set up for incoming

and outgoing messages.

The negotiation stage is the only notable

overhead we have in our architecture and it

prevents us to use the architecture scheme in

short-lived sessions, which have few messages

exchanged.

3.4. Message Handling

The SOAP message has an outer-most

element, SOAP envelope in its XML document,

which is composed optional headers and a body –

payload which contains a program instruction or

data. The headers contain additional information

for SOAP message, such as parsing instructions,

security information, and routing/reliability

information. The architecture handles static

information of messages in the stream (un-

changed headers) and dynamic information

(payload and headers for individual messages)

differently.

3.4.1. Handler for SOAP Header Processing.

As discussed, the static/unchanged headers of

SOAP message in the session (the stream) are

archived in negotiation stages. Those headers

applied to individual message are processed by

appropriate handlers, which are transmitted as a

part of optimized representation of SOAP

message. The intension of using this possible

additional information in the stream is negotiated

as a part of the schema that represents a data

structure of exchanging message format in the

stream. When message in given representation

enters or leaves HHFR architecture, the handlers

process headers. The popular example can be a

WS-RM header of SOAP message that marks

sequence numbers or ACKs.

3.4.2. Conversion process. Comparing to the

individual message conversion approach where

the each converted into another self-contained

binary format message, the message stream

approach requires an internal Data Structure

Endpoint A Endpoint B

StartSession

ID = some URI, Seq = 0

ID = some URI, Seq = 2

ID = some URI, Seq = 1

ACK, ID =
some URI,

Seq = 0,2

ACK, ID =
some URI,

Seq = 0..2

ID = some URI, Seq = 1

EndSession

Figure. 2. Possible message exchange

between two WS-RM end-points

Context Mapping

Optimized Communication

Context-Store

� WS-MFR Scheme (URI-S)

� Schema Representation (URI-R)

� Stream Info. (URI-T)

� SOAP Headers

Preferred View of Data

on Mobile Application

SOAP

for

Interoperability

Optional

Figure. 3. Relationship of different forms

of SOAP messages and their defining context

Object that holds the representation of messages

in the session. The architecture builds a data

structure object by processing a captured XML

Schema from the negotiation message. Figure 3

shows abstract process of message conversion

process.

In a session that uses a binary representation

as an optimized communication data format,

stream reader and writer in the architecture

read/write in-memory format data. A reader does

a sequence of typed reading of each SOAP

Infoset instances from the network stream

according to the internal data structure, while a

writer does a sequence of typed writing.

Originally, Data Format Description

Language (DFDL) was included in the

architecture design to define a binary format and

its library is planned to be utilized to read/write

binary format data. However, the schedule of its

library implementation is not matched ours.

Instead of it, we define a simple schema

specification for a prototype implementation,

which is modified a little from W3C’s

recommendation. One of examples of

modification we’ve made is adding an array

element data type, such as <element name=
"MyArray" type="array"

primitives="float" value="90">.

3.5. Context Store

One of essential components of the

architecture that enables a stream of message

approach is a context-store. In previous sections,

we define static/unchanged information in

conventional SOAP messages – such as

information in headers. The context-store makes

it possible to look-up the context information

from a negotiation SOAP message – unchanged

SOAP headers, separated representation, and

characteristics of the stream. The HHFR scheme

itself is also kept in the context-store as well.

In the HHFR architecture design, we define

information in context-store with Universal

Resource Identifier (URI). We notate the HHFR

scheme itself as ‘URI-S’. The current

representation of the stream is ‘URI-R’ and the

choice of transport protocol is ‘URI-T’.

4. Implementation

To demonstrate the effectiveness of the

HHFR architecture, we have implemented a

prototype Mobile Web Service framework based

on the HHFR architecture. By implementing the

prototype, the HHFR design becomes concrete. It

provides separation of message contents and

representation, fast communication transport

options, and negotiation scheme. In this section,

we detail the implementation of prototype.

4.1. Overview

The HHFR architecture design prototype,

Handheld Flexible Representation (HHFR) is

written in pure Java-based system. It implements

major design points of the architecture to provide

optimized communication for mobile web

services without compensating interoperability.

The prototype architecture overview is depicted

in Figure 4. Since the architecture design doesn’t

include WS container functions, it needs to use an

existing WS Container, such as AXIS of Apache

Software Foundation (ASF).

4.2. Requirements of mobile Programming

Environment

We present programming requirements,

especially on mobile side, here.

4.2.1. Limited Programming Library. Because

of limitations that mobile devices impose, its

programming environment is not as much

prosperous as typical wired computing

DSParser
HHFR

Service

Streamer

HHFR

Thread
DSParser

Streamer
Negotiation

Handler

Negotiation

Handler

AXIS WS-Container Mobile Device (J2ME)

SOAP

TCP/UDP Stream

Request Schema

Response Schema

Context-Store

(Ad-hoc implementation)

Figure. 4. Simple Overview of Prototype
Implementation

environments. J2ME has limited package

supports than J2SE because of code size issues

and limited instructions supported by a processor.

Also, we have limited choice of XML and SOAP

library. kSOAP and kXML [21] support rich

APIs with tiny memory footprints; however they

provide far less functionalities than conventional

Web Service container, such as AXIS 1.x and 2,

and .NET.

4.2.2. Wireless Network Connection. The

connections of mobile devices have a narrow

bandwidth and high latency, comparing to the

conventional wired connection. European and

Asian countries had launched the third generation

cellular service (3G), such as UMTS [22] and W-

CDMA [23], which is expected to have a

connection speed of 300~500kbps for

downloading and 56~90kbps uploading speed.

The improvement of the connection speed is big,

if we compare it to 2.5G – GPRS [24] or 2.75G –

EDGE [25] services of up to 56kbps connection.

Yet, the 3G installation in USA is the initial

stage. It is serviced only in major Metropolitan

areas and we need to wait few more years to use

the same service that Europe and Asia use.

4.3. Implementation Details

The prototype implementation of mobile

devices depends on kSOAP/kXML for

SOAP/XML parsing and SOAP request/response

call. And a mobile-side implementation is a

service user only, while a service provider is

implemented on conventional desktop machine

using AXIS container.

4.3.1 Negotiation Scheme. As designed, the

role of negotiation stage is essential to conclude

the characteristics of following stream. The

negotiation stage is an implemented method,

negotiation() in HHFR service class

HHFRHandler. Since the negotiation stage is

implemented over SOAP protocol, the negotiation

is acting different as a caller and a callee on each

side. That is, the negotiation() method on a

initiating side – a caller is a simple SOAP request

message creation with desired characteristics of a

following stream and it waits a return of kSOAP’s

HttpTransport.call(). And a receiver side-

negotiation is implemented as a receptor of the

SOAP request message and loads a SOAP

response back to the initiator with negotiated

stream characteristics information. The initiator –

SOAP Request sender gets Boolean value as a

return of negotiation(). The true value leads the

streaming fashion communication. Initiator keeps

using the conventional SOAP communication

method, if the return value is false.

4.3.2. Fast Communication Transport

Option. As discussed earlier, a fast

communication transport option in the

architecture design provides an alternative

communication method in an asynchronous

optimized fashion, other than the default HTTP.

The TCP and UDP transports are provided as a

transport client and a transport server on sender

and receiver side, respectively. TCP transport

classes provide a message streaming through a

connection-oriented socket connection. For the

service provider, StreamConnectionFactory class

waits for the incoming socket connection on a

server socket and creates a StreamConnector that

holds all streaming related classes, such as data

stream reader and writer, and streamer. UDP

transport implementation has a similar class

structure, except it doesn’t have a

ConnectionFactory design pattern because

of its connectionless character. It just opens up

the UDP port and receives datagram packets.

4.3.3. Queue on Sending/Receiving Thread.

Other details on communication implementations

are to place send method and receive method in

different threads and introduction of queue on

sender. The idea is used by communication

implementations in many projects nowadays,

because of its benefits with little complexity. To

put send() and write() methods to a socket steam

in a single thread makes one operation block the

other and causes performance degradation. Even

though Java 2 Standard Edition provides Non-

Blocking I/O interfaces as a standard from

version 1.4, mobile computing doesn’t get

benefits: the functionality is not provided for

J2ME yet. Again, the high-latency of current

cellular connections makes it essential to separate

sender thread with writer thread to be able to

operate them concurrently.

Queue in the write thread adds more

asynchronicity to the communication

implementation. It decouples the message packet

process performance from the performance of

write communication thread. Write thread

receives message packets and puts them to the

queue. It de-queues a next message packet and

tries to write to the socket whenever it is

available. The idea works well specially for

narrow bandwidth mobile connection where one

big message packet can clog the whole

transmission.

4.3.4. Streamer and Data Structure. The unit

of message in the prototype implementation is a

various length byte array, which we call a

‘message packet’ as well. The separation of

representation and message contents make the

architecture have a scheme to extract/build

information in a non-self contained way.

The streamer is an information extractor and

builder with a sequence of switch statement for

reading and writing byte format information

which contains SOAP message contents –

message packet in the order of internal

DataStructure object, which is produced by a

negotiationHandler. It parses through the

received data representation (a schema of the

other end point) with DSParser and returns the

DataStructure.

5. Evaluation of Prototype Implementation

This section summaries performance

benchmark results of the prototype

implementation of HHFR architecture design. We

develop two applications for the benchmark: a

string concatenation service for benchmarking the

pure text data and a float number addition service

for text conversion required data domain. For

comparisons, we develop conventional SOAP

applications using AXIS and kSOAP toolkit for

each test.

A simple test session is summarized as

follows:

1. A service user (client) prepares a message

with a given array size.

2. Send it to a service provider (in AXIS)

3. Web Service (the service provider) processes

the message and returns a result message to

the service user.

4. Repeat step 1 – 3 for the number of messages

5.1. Benchmark Configuration

We configure a benchmark environment as

follows: for service providers, AXIS Web Service

container runs on Sony VAIO notebook with

mobile Intel Pentium 4M CPU 2GHz and 768MB

DDR RAM, where Windows XP professional

with Service Pack 2 operates. And mobile

applications (service users) run on Treo 600 with

ARM processor and 32MB RAM, where Palm OS

5.3 operates on as well as MIDP 2.0 and CDLC

1.1.

The time stamps are measured on mobile side

(a session initiator) using

System.currentTimeMillis() of MIDP

2.0 - CLDC 1.1 that returns 10 milliseconds

precision time stamps.

Both applications use TCP transport as a

choice of fast transport for the benchmark.

5.2. String Array Concatenation

The first benchmark application is a string

array concatenation service that produces a

single concatenated string of all string in a

message. We measure a Round Trip Time (RTT)

of a session: if there is a five message in the

session, we measure entire five concatenation

processing time as a RTT. It includes a

communication set-up latency, transmission

overheads, and concatenation operation time.

Additionally, the benchmark of the HHFR

prototype implementation contains negotiation

overheads.

The benchmark focuses on the performance

effect on runtime system by changing a number of

messages in a session and a size of array in a

message, and comparing them with SOAP’s.

0 10 20 30 40 50 60 70
3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Size of string array per message (message size)

R
o
u

n
d
 t
ri

p
 t
im

e
 (

m
s
e
c
)

HHFR: Single message

SOAP: Single message

0 10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

R
o

u
n

d
 t
ri
p

 t
im

e
 (

m
s
e

c
)

Size of string array per message (message size)

HHFR: 2 messages

SOAP: 2 messages

HHFR: 4 messages

SOAP: 4 messages

HHFR: 8 messages

SOAP: 8 messages

Figure. 5. String concatenation round trip time

measurements of a single message in a session with
various array sizes (message size). With a single

message, a conventional SOAP out-performs HHFR –

prototype implementation.

Figure. 6. String concatenation round trip time

measurements with various array sizes (message
size). This shows different number of message in a

session graphs in one. With multiple messages in a

session, HHFR needs less time to perform in every
case.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of messages per session

R
o

u
n

d
 t
ri

p
 t
im

e
 (

m
s
e

c
)

HHFR: 2 array size

SOAP: 2 array size

HHFR: 4 array size

SOAP: 4 array size

HHFR: 8 array size

SOAP: 8 array size

0 10 20 30 40 50 60 70 80 90 100
3000

4000

5000

6000

7000

8000

9000

Size of float array per message (message size)

R
o

u
n

d
 t
ri

p
 t
im

e
 (

m
s
e

c
.)

HHFR: Single message

SOAP: Single message

Figure. 7. String concatenation round trip time

measurements with various numbers of messages.

This shows different message size graphs in one.
HHFR out-performs, except a session that consists of

a single message.

Figure. 8. Float number addition round trip time

measurements of a single message with various array

sizes (message size). A break-even-point is located
between 50~60.

5.3. Floating Number Array Addition

The second application we benchmark is a

float number addition service that returns a

summation of all float numbers of an array in a

message. The benchmark scenario is similar to

the string concatenation service. Though, RTT of

the SOAP application contains an OS level float-

to-text conversion overhead, while HHFR

doesn’t. Like string concatenation service

benchmark, we change a size of array and a

number of messages in a session to observe a

performance state change in the system, while

comparing it with SOAP’s.

Figure 8 shows a linear increase of RTT on

both, HHFR and SOAP. Assume the formulas for

HHFR and SOAP curve as y = p1*x¹ + p2

and y = p3*x¹ + p4 respectively. We see

p1 < p3 and p2 > p4 as well as a break-

even point is located between 50 and 60 of array

size (x) with given input parameters.

5.4. Observations

From the figures, we observe a bigger

performance advantages from a sequence of

messages in a single session. Figure 7 of the

string concatenation benchmark and figure 9 of

the float addition benchmark show that HHFR

streaming communication always out-performs a

conventional SOAP and the gap is fast-increasing

as the number of messages in a session grows.

These performance gaps are mainly caused by a

high network latency of cellular networks.

Different from a default HTTP, TCP enable the

system avoid network setup overheads during the

session. As discussed in section 3, HTTP 1.1

persistence connection or HTTP 1.0 keep-alive

option is out-of-considering of our benchmark,

since its uncertain availability in a cellular

network: proxy support for such a function is

optional to the cellular service provider.

The second observation we did is an efficient

memory space usage of the prototype

implementation by avoiding a text conversion for

building text-based SOAP messages in the float

number adding service. During the benchmark,

the runtime system of the prototype processes

larger size array in a message. As equipped with a

smaller memory space, OS on a mobile device

needs the additional memory space for

conversion.

6. Conclusion

In this paper, we present new mobile web

service architecture, HHFR as well as detailing

the prototype implementation. Also, we evaluate

the performance of the prototype while

comparing conventional SOAP applications by

measuring round trip times of given service

sessions: the string concatenation service and the

float number addition service. The evaluation

result shows that our run time system out-

performs a conventional SOAP system when the

number of message in a session is multiple or the

given message size is large. Our architecture

helps session oriented web service applications

that communicate in a stream of messages, such

as multimedia or collaboration application.

7. References

[1] World Wide Web Consortium, “Simple Object

Access Protocol (SOAP) 1.1”, 2003,

http://www.w3.org/TR/soap/

[2] J. Kobielus, “Wrestling XML Down To Size:

Reducing The Burden On Networks And Servers”,

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Number of messages per session

R
o

u
n

d
 t
ri

p
 t
im

e
 (
m

s
e

c
)

HHFR: 5 array size

HHFR: 10 array size

HHFR: 15 array size

Conv. SOAP: 5 array size

Conv. SOAP: 10 array size

Conv. SOAP: 15 array size

Figure. 9. Float number addition round trip time

measurements with number of messages. This shows

different message size graphs in one.

Business Communications Review, Dec. 2003,

pp. 35-38.

[3] K. Chiu, M. Govindaraju, and R. Bramley,

“Investigating the Limits of SOAP Performance

for Scientific Computing”, Proc. of 11
th

 IEEE Int.

Symposium on High Performance Distributed

Computing HPDC-11 2002, July 2002, pp. 256.

[4] M. Govindaraju, A. Slominski, V. Choppella, R.

Bramley, D. Gannon, “Requirements for and

Evaluation of RMI Protocols for Scientific

Computing”, Proc. of SC2000, Nov. 2000.

[5] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M.

Hadley, and E Pelegri-Llopart, “Fast Web

Services”, Aug. 2003,

http://java.sun.com/developer/technicalArticles/W

ebServices/fastWS/

[6] World Wide Web Consortium, “Report from the

W3C Workshop on Binary Interchange of XML

Information Item Sets”, Sep. 2003,

http://www.w3.org/2003/08/binary-interchange-

workshop/

[7] World Wide Web Consortium, “XML Information

Set”, http://www.w3.org/TR/xml-infoset/

[8] J. H. Gailey, “Sending Files, Attachments, and

SOAP Messages Via Direct Internet Message

Encapsulation”, Dec. 2002,

http://msdn.microsoft.com/msdnmag/issues/02/12/

DIME/default.aspx

[9] D. Brutzman, and A. D. Hudson, “Cross-Format

Schema Protocol (XFSP)”, Sep. 2003

[10] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M.

Hadley, and E Pelegri-Llopart, “Fast Infoset”, Jun.

2004.

[11] International Telecommunication Union, “Abstract

Syntax Notation One (ASN 1)”,

http://asn1.elibel.tm

[12] World Wide Web Consortium, Web Services

Description Language (WSDL) 1.1, Mar. 2001,

http://www.w3.org/TR/wsdl

[13] World Wide Web Consortium, “SOAP Message

Transmission Optimization Mechanism

(MTOM)”, Nov. 2004,

http://www.w3.org/TR/2005/REC-soap12-mtom-

20050125/

[14] World Wide Web Consortium, “XML-binary

Optimized Packaging (XOP)”, Aug. 2004,

http://www.w3.org/TR/2005/REC-xop10-

20050125/

[15] E. Serin and D. Brutzman, “XML Schema-Based

Compression (XSBC)”,

http://www.movesinstitute.org/xmsf/projects/XSB

C/03Mar_Serin.pdf

[16] M. Beckerle, and M. Westhead, “GGF DFDL

Primer”,

http://www.gridforum.org/Meetings/GGF11/Docu

ments/DFDL_Primer_v2.pdf

[17] R. Williams, “XSIL: Java/XML for Scientific

Data”, Jun. 2000,

http://www.cacr.caltech.edu/projects/xsil/xsil_spec

.pdf

[18] A. Slominski, “XML Pull Parser (XPP)”,

Extreame! Computing Lab,

http://www.extreme.indiana.edu/xgws/xsoap/xpp/

[19] World Wide Web Consortium, “XML Schema

Definition (XSD)”, Oct. 2004,

 http://www.w3.org/XML/Schema

[20] IBM, BEA, Microsoft, and TIBCO Software,

“Web Services Reliable Messaging Protocol”,

Mar. 2004, http://www-

128.ibm.com/developerworks/webservices/library/

ws-rmdev/

[21] kSOAP and kXML, http://www.ksoap.org/

[22] Universal Mobile Telecommunications System

(UMTS), http://www.iec.org/online/tutorials/umts/

[23] Wideband Code Division Multiple Access (W–

CDMA)

[24] General Packet Radio Service (GPRS)

[25] Enhanced Data Rates for GSM Evolution (EDGE),

http://www.ericsson.com/products/white_papers_p

df/edge_wp_technical.pdf

