Hn 97

Square Matrix Decompositions-—Symmetric, Local,
tered

G Pox
19 August 1984

Introduction

In our original discussion of matrix multiplication and inversion, we pro-
posed a square decomposition. Namely. if we have N = D¥ processors, then we,
decompose an n x n matrix into N 7 X submatrices-each holding r* elements
(D =m). This is done in the natural way gotten by viewing the matrix as a two-
dimensional domain with n? rogular grid points in it. This is sketched below and

for reasons that will become apparent, we wil term this the local square decom-

position.
R
L Pgure 1
rows l The Local Square Decomposition
for =25
P bolding an 7 x 7 submatrix
o st
E Pocasser 28

As is apparent, this decomposition naturally uses a two-dimensional grid
connection--although the richer interconnect of the bypercube could be impor-

tant as several algorithms require the "piping” of information between

processor and all other processors in either the same row and/or the same

e
Comments

We can now discuss these examples. (a)-(c) are rather similar with (c)
being the most elegant. (<) was used in the Jacobl method memo Hn-82.

The scattered version of (d)-the spotted scattered decomposition is the
best “scattered” method as it distributes the load most homogeneously. (¢} is
unsatistactory in many algorithms as one often needs a given processor to hold

rows /columns of equal length. This allows them Lo be added/subtracted casily.

1 point is that related by

reflection in diagonal o that [1.J] related to [J./]) are not near each other in

the erid. in some parts
of the Jacobi algorithm as described in Hm-62. However-one common need-
“piping” of information can be handled by “reflecting” pipe when it hits diagonal

processor Ths sl bl shows i o th U ro ek of po-

il
P
. |
1t m)

o]

T

10-

(4) The Spotted Symmetric Decomposition

NN
A {Augl A [y
[P B B Py

[P Auud B | Ay

Iocal Decomposition ‘Scattered Decomposition

20 x 20 Matrix on a5 x § Processor Array

(€) The Triangular Symmetric Decomposition

1N] CNEIRNE
X NG
\ NGNS
R AT| AT| AT,
Local Decompostion ScattereDecomposition

ignment

o

(b) Anotber Symmetric Decomposition

] :Mm—a VL
N > (A au] o |
- =7 B Ay A7 BT
o AL Al |
o] ALA T A e
A D Lower
casSors

Local Decomposition
20 20 Matrix on 5 x 5§ Processor Array

() The Checkerboard Symmetric Decomposition

Scattered Decomposition

R

Local Decomposition
20 % 20 Matrix on a 5 x 5 Processor Array

Scattered Decomposition

Representations of a Symmetric Natrix

little more bl
123 4 8 1811 18 21
67 8 5 1 27 iz 1 2
fi2 18 4 19| AT=Ag= 38 13 18 23
1817 18 15 20 39 14 19 2
212 23 24 510 15 2
123 3 5 1811 18 21
27 8 5 10 87 12 7 2
A =Aly= |38 18 14 15|Au=ak= 1112 13 18 23
19 11 19 2 1817 18 19 21
510 15 20 25 2122 28 24 25

In the following we give ive examples of different local symmetric decompo-
stions and

In each case, the I applying
the permutation P of Section Il to the former.

() APossible Symmetric Decomposition

Vv
il b

=N ENEST

> [l A B S

Ll KN
o o ade

1T 1 bower
Procassoa
Incat Decomposition Scattered Decomposiion

20 x 20 Matrix on 5 x 5 Processor Array

describe below for a matrix with no symmetry and particular choices n = 20 and
rea

Representations of a General Matrix

The representation of local decomposition for a general matrix (no sym-

metry)

44 submatrix

‘Shaded areas represent elements of a 20 x 20 matrix

lgned to a particu-

lar processor in a 5 5 array.

I CNED
Al el
AB[HA
(NN

Here A represents a 5 5 Array of Processor numbers. Expanding the above

dingram gi 20 matrix.
Iabel of the processor holding the matrix element in this location.

used to decompose a four dimensional problem on a two dimensional grid. This

was used in the applications of the ICL DAP to GUD by the Edinburgh group.

I Symmetric Decompositions

We have already discussed the decomposiion of symmetric matrices in
Hr82 in the context of the Jacobi cigenvalue technique. There we proposed
what we now call the checkerboard lacal decomposition. This is cxemplified
below for a 10 10 processor array. I this diagram we show a matrx divided

into 8 10x 10 grid. The shaded areas represent the independent matrix ele-

to the p o Dueto each proces-
sor is assigned half (slightly more for diagonal processors) the load used for ger-

eral matrices.

e need to understand the analogue of the scattered format for symmetric

matrices. 1t seems useful to introduce a graphical representation which we first

Clearly the local and scattered decompositions are Just related by applying
the permutation 7.

Nowlet us study these decompositions geometrically. The local decomposi-
tion divides the domain into a D x D array each containing r* matrix elements
e scattered decomposition divides the domain into a X 7 array each contain-
ing N = D* matrix elements. In the local case, one array member is assigned to
a single processor. In the scattered case, one array member contains one and
only one matrix element for each processor.

Note that even in the scattered case, each processor holds T columns of
rows; the diflerence from the local decomposition is that the rows (and columns)
are not adjacent as they are in the local case.

The scattersd decomposition does not appear to be needed in all matrix
algorithms; however, it may be usable in all. The local decomposition is only

usable in algorithms without elimination (such as multiplication and Jacobi'

eigenvalue technique). 1 don't know an algorithm where the local method is
preferable to the scattered.

In the matrix case there is no “metric” favoring locality. One needs the two
dimensional processor grid to implement the row /column nature of algorithms
However, the ordering within rows /columns is generally irrelevant. For this rea-
son, the scattered decomposition with its natural load balancing in systematic
algorithms is preferable. There may be other circumstances where the ideas
underlying the scattered decomposition may be appropriate. We have in mind a
two dimensional inhomogeneous problem where we apply the above with each
“matrix element” being a subregion of the space. One trades communication
overhead (neighboring subregions are no longer adjacent) against load imbal-
ance. Layout of circuit boards could use a scattered decomposition. There is

also some similarity between the scattered decomposition and the techniques

Then any row, k. may be labeled by the pair (1) by
k=kaivl

where k ls 'th row in I'th row of processors for the local square decomposition.

Then the permutation P 15 defined by
Puo=i+1+1
or. equivalently, we have isomorphism
Fets1aeIvn

s indicates a nice duality about the transformation.
Now there is an alternative way of viewing this which leads to the scatered
decompositin. Above we kept. the same (local) decomposition but changed
the algorithm. We can get the same result by applying the old algorithm to a
new decomposition.
We define the scattered square decomposition by first dividing processors
Into o square grid. Bach processor is labeled by the pair of integers [7./] with

01,750~ 1. Then the [1./Tth processor is assigned

rows D441 Osisr-1
columns jD4J+1 Oy -l
This should be contrasted with local square decomposition where [1.7]

holds

rows Feisl Osisr-1

columns Jr+j 41 Osjsr-1

Major Step 1: as above

Major Step 2 Himinate variable 2., (column r+1) from equation 7 +1 (row.

).
Major Step 3 Eliminate variable g0, (column 2r+1) from equation 2r-+1
(row2r+n)

andsoon

For this new algorithm, the number of active rows and columns at most
differs by 1 between processors whereas in the old algorthm the active
rows/columns differed by 7 between processors. In the old algorithms the
ineficiency dua to load imbalance was a nonzero constant (independent of r)
whareas in the new algorithm the inefficiency is propertional to 1/7. Both com-
munication overhead and load imbalance disappear as 7 + = for fixed N.

We can view the algorithm as eliminating row and column 7, in the 'th

major step. Here P, (k=

n)is a permutation of the integers 1. defined by:

Py=2rel

D-Dr+1

o,

and soon.
Formally we define the permutation P as follows. Let capital letters
1.4=0.D-1 label rows and columns of processors; lot lower case letters

4 = 0.7~ label rows//columns within processors.

column.

Even in the original discussion of inversion it was noted that s tocal
square decomposition was not optimal because s one eliminated rows the pro-
cessors holding them become dle. The same problem also occurs In banded
matrix algorithms with pivoting end in the Householder trdiagonaliation algo-
Fithm. We proposed to “cure” this problem by permuting rows and columns. In

Section I, we formalize a particularly useful permutation which leads to the

Note ths usable on a
given problem; in systematic elimination algorithms, the scattered decomposi-
tionhasa

Seattered Square Decompasition
This can be motivated by discussing the use of the decomposition in Figure
1 for matrix inversion. The first processor holds columns 1.7 of rows 1.7 The
first five processors hold together all columas of rows 1.+ The straightorward
Gaussian limination (LU decomposition) technique has n major steps-after the
(k~1)th such step, rows 1. 1) are complote and bave no further action asso-
cinted with them. In step &, the activity per row is roughly equal for rows k tom
while s above there is no calculation associated with rows 1.k 1. Similar state-
ments hold for the columns. 1t folows that with the local squars decomposition
that after 7 major steps, both the first row and columns of processors (Le. pro-
cessors 1,20456.11,16.21) are dle. This leads to a load imbalance and &
reduction of the efficency of the concurrent algorithm,
e solution of this problem was already described in Hm-5 Namely in the

sl algorithm one proceeds s folows:

