
HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack
Geoffrey Foxa, Judy Qiua, Shantenu Jhab, Supun Kamburugamuvea and Andre Luckowb

a School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA
b RADICAL, Rutgers University, Piscataway, NJ 08854, USA

Abstract
We review the High Performance Computing Enhanced Apache Big Data Stack HPC-ABDS and

summarize the capabilities in 21 identified architecture layers. These cover Message and Data Protocols,
Distributed Coordination, Security & Privacy, Monitoring, Infrastructure Management, DevOps,
Interoperability, File Systems, Cluster & Resource management, Data Transport, File management,
NoSQL, SQL (NewSQL), Extraction Tools, Object-relational mapping, In-memory caching and databases,
Inter-process Communication, Batch Programming model and Runtime, Stream Processing, High-level
Programming, Application Hosting and PaaS, Libraries and Applications, Workflow and Orchestration.
We summarize status of these layers focusing on issues of importance for data analytics. We highlight areas
where HPC and ABDS have good opportunities for integration.

1. Introduction to HPC-ABDS

 In previous work [1-3], we introduced the software stack HPC-ABDS (High Performance Computing
enhanced Apache Big Data Stack) shown online [4] and in Figure 2. These were combined with an
application analysis [5-7] and used to motivate an approach to high performance data analytics including
identification of a benchmarking set [8, 9]. In this paper we focus on the stack of Figure 2 and describe its
capabilities; inevitably this implies the paper has a review focus with original research correspondingly to
the novel integration implied by the HPC-ABDS concept. Further details of the stack can be found in an
online course [10] that includes a section with approximately one slide (and associated lecture video) for
each entry in Figure 2. Links for all the technologies of Figure 2 can be found online [4, 10].

Figure 1: Comparison of typical Cloud and Supercomputer Software Layered Stacks

HPC-ABDS
Integrated
Software

Big Data ABDS HPC, Cluster

17. Orchestration Crunch, Tez, Cloud Dataflow Kepler, Pegasus, Taverna

16. Libraries Mllib/Mahout, R, Python ScaLAPACK, PETSc, Matlab

15A. High Level Programming Pig, Hive, Drill Domain-specific Languages

15B. Platform as a Service App Engine, BlueMix, Elastic Beanstalk XSEDE Software Stack

Languages Java, Erlang, Scala, Clojure, SQL, SPARQL, Python Fortran, C/C++, Python

14B. Streaming Storm, Kafka, Kinesis
13,14A. Parallel Runtime MapReduce MPI/OpenMP/OpenCL

2. Coordination Zookeeper
12. Caching Memcached

11. Data Management Hbase, Neo4J, MySQL iRODS
10. Data Transfer Sqoop GridFTP

9. Scheduling Yarn Slurm

8. File Systems HDFS, Object Stores Lustre

1, 11A Formats Thrift, Protobuf FITS, HDF

5. IaaS OpenStack, Docker Linux, Bare-metal, SR-IOV

Infrastructure CLOUDS SUPERCOMPUTERS

CUDA, Exascale Runtime

1

Figure 2 collects together much existing relevant data processing software coming from either HPC or

commodity sources. This is termed HPC-ABDS as many critical core components of the commodity stack

Figure 2: Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies
Cross-
Cutting

Functions
1) Message
and Data
Protocols:
Avro, Thrift,
Protobuf

2) Distributed
Coordination:
Google
Chubby,
Zookeeper,
Giraffe,
JGroups

3) Security &
Privacy:
InCommon,
Eduroam
OpenStack
Keystone,
LDAP, Sentry,
Sqrrl, OpenID,
SAML OAuth
4)
Monitoring:
Ambari,
Ganglia,
Nagios, Inca

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna,
Triana, Trident, BioKepler, Galaxy, IPython, Dryad, Naiad, Oozie, Tez, Google FlumeJava, Crunch,
Cascading, Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA)
16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ,
Scalapack, PetSc, Azure Machine Learning, Google Prediction API, Google Translation API, mlpy,
scikit-learn, PyBrain, CompLearn, Caffe, Torch, Theano, H2O, IBM Watson, Oracle PGX,
GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Google Fusion Tables, CINET,
NWB, Elasticsearch
15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift,
Heroku, Aerobatic, AWS Elastic Beanstalk, Azure, Cloud Foundry, Pivotal, IBM BlueMix, Ninefold,
Jelastic, Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi,
HUBzero, OODT, Agave, Atmosphere
15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP
HANA, HadoopDB, PolyBase, Presto, Google Dremel, Google BigQuery, Amazon Redshift, Drill,
Pig, Sawzall, Google Cloud DataFlow, Summingbird
14B) Streams: Storm, S4, Samza, Granules, Google MillWheel, Amazon Kinesis, LinkedIn Databus,
Facebook Puma/Ptail/Scribe/ODS, Azure Stream Analytics
14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister,
Stratosphere (Apache Flink), Reef, Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi
13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, Harp,
Netty, ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, Kafka, Kestrel, JMS, AMQP,
Stomp, MQTT, Public Cloud: Amazon SNS, Lambda, Google Pub Sub, Azure Queues, Event Hubs
12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis (key
value), Hazelcast, Ehcache, Infinispan
12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC
12) Extraction Tools: UIMA, Tika
11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, Galera Cluster,
SciDB, Rasdaman, Apache Derby, Google Cloud SQL, Azure SQL, Amazon RDS, Google F1, IBM
dashDB, N1QL, BlinkDB
11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, Berkeley DB, MongoDB, Espresso,
CouchDB, Couchbase, IBM Cloudant, HBase, Google Bigtable, Megastore and Spanner, Accumulo,
Cassandra, RYA, Sqrrl, Neo4J, Yarcdata, AllegroGraph, Facebook Tao, Titan:db, Jena, Sesame
Public Cloud: Azure Table, Amazon Dynamo, Google DataStore
11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet
10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop
9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona,
Celery, HTCondor, SGE, OpenPBS, Moab, Slurm, Torque, Globus Tools, Pilot Jobs
8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS
Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage
7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis
6) DevOps: Docker, Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, CloudMesh, Juju,
Foreman, OpenStack Heat, Rocks, Cisco Intelligent Automation for Cloud, Ubuntu MaaS, Facebook
Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes, Buildstep, Gitreceive
5) IaaS Management from HPC to hypervisors: Xen, KVM, Hyper-V, VirtualBox, OpenVZ, LXC,
Linux-Vserver, OpenStack, OpenNebula, Eucalyptus, Nimbus, CloudStack, CoreOS, VMware ESXi,
vSphere and vCloud, Amazon, Azure, Google and other public Clouds,
Networking: Google Cloud DNS, Amazon Route 53

21 layers
Over 300
Software
Packages

9 March
2015

2

(such as Hadoop and Hbase) come from open source projects while HPC is needed to bring performance
and other parallel computing capabilities [11]. Note that Apache is the largest but not only source of open
source software; we believe Apache Foundation is a critical leader in the Big Data open source software
movement and use it to label for full big data software ecosystem. The figure also includes proprietary
systems as they illustrate key capabilities and often motivate open source equivalents.

The software is broken up into layers so that one can discuss software systems in smaller groups. The
layers where there is especial opportunity to integrate HPC are colored green in figure. We note that data
systems that we construct from this software can run interoperably on virtualized or non-virtualized
environments aimed at key scientific data analysis problems. Most of ABDS emphasizes scalability but not
performance and one of our goals is to produce high performance environments. Here there is clear need
for better node performance and support of accelerators like Xeon-Phi and GPU’s. Figure 1 contrasts
modern ABDS and HPC stacks illustrating most of the 21 layers and labelling on left with layer number
used in Figure 1. The omitted layers in Figure 1 are Interoperability, DevOps, Monitoring and Security
(layers 7, 6, 4, 3) which are all important and clearly applicable to both HPC and ABDS. We also add an
extra layer “language” not discussed in Figure 2.

Lower layers where HPC can make a major impact include scheduling where Apache technologies like
Yarn and Mesos need to be integrated with the sophisticated HPC approaches. Storage is another important
area where HPC distributed and parallel storage environments need to be reconciled with the “data parallel”
storage seen in HDFS in many ABDS systems. However the most important issues are probably at the
higher layers with data management, communication, (high layer or basic) programming, analytics and
orchestration. These are areas where there is rapid commodity/commercial innovation and we briefly
discuss them in order below. Much science data analysis is centered on files but we expect movement to
the common commodity approaches of Object stores, SQL and NoSQL where latter has a proliferation of
systems with different characteristics – especially in the data abstraction that varies over row/column, key-
value, graph and documents. Note recent developments at the programming layer like Apache Hive and
Drill, which offer high-layer access models like SQL implemented on scalable NoSQL data systems. The
communication layer includes Publish-subscribe technology used in many approaches to streaming data as
well the HPC communication technologies (MPI) which are much faster than most default Apache
approaches but can be added [12] to some systems like Hadoop whose modern version is modular and
allows plug-ins for HPC stalwarts like MPI and sophisticated load balancers. The programming layer
includes both the classic batch processing typified by Hadoop and streaming by Storm. The programming
offerings differ in approaches to data model (key-value, array, pixel, bags, graph), fault tolerance and
communication. The trade-offs here have major performance issues. You also see systems like Apache Pig
offering data parallel interfaces. At the high layer we see both programming models and Platform as a
Service toolkits where the Google App Engine is well known but there are many entries including the recent
BlueMix from IBM. The orchestration or workflow layer has seen an explosion of activity in the commodity
space although with systems like Pegasus, Taverna, Kepler, Swift and IPython, HPC has substantial
experience. There are commodity orchestration dataflow systems like Tez and projects like Apache Crunch
with a data parallel emphasis based on ideas from Google FlumeJava. A modern version of the latter
presumably underlies Google’s recently announced Cloud Dataflow that unifies support of multiple batch
and streaming components; a capability that we expect to become common. The implementation of the
analytics layer depends on details of orchestration and especially programming layers but probably most
important are quality parallel algorithms. As many machine learning algorithms involve linear algebra,
HPC expertise is directly applicable as is fundamental mathematics needed to develop O(NlogN) algorithms
for analytics that are naively O(N2). Streaming algorithms are an important new area of research

2. The 21 Layers in Detail
Layer 1) Message Protocols: Avro, Thrift, Protobuf

This layer is unlikely to directly visible in many applications as used in “underlying system”. Thrift and
Protobuf have similar functionality and are used to build messaging protocols with data syntax dependent
interfaces between components (services) of system. Avro always carries schema with messages so that
they can be processed generically without syntax specific interfaces.

3

Layer 2) Distributed Coordination: Google Chubby, Zookeeper, Giraffe, JGroups
Zookeeper is likely to be used in many applications as it is way that one achieves consistency in

distributed systems – especially in overall control logic and metadata. It is for example used in Apache
Storm to coordinate distributed streaming data input with multiple servers ingesting data from multiple
sensors. Zookeeper is based on the original Google Chubby and there are several projects extending
Zookeeper such as the Giraffe system. JGroups is less commonly used and is very different; it builds
secure multi-cast messaging with a variety of transport mechanisms.

Layer 3) Security & Privacy: InCommon, OpenStack Keystone, LDAP, Sentry, Sqrrl
Security & Privacy is of course a huge area present implicitly or explicitly in all applications. It covers

authentication and authorization of users and the security of running systems. In the Internet there are
many authentication systems with sites often allowing you to use Facebook, Microsoft , Google etc.
credentials. InCommon, operated by Internet2, federates research and higher education institutions, in the
United States with identity management and related services while Eduroam has international scope. Such
federated identity based authentication and authorization is made possible because of open standards like
OpenID, SAML and OAuth.

LDAP is a simple database (key-value) forming a set of distributed directories recording properties of
users and resources according to X.500 standard. It allows secure management of systems. OpenStack
Keystone is a role-based authorization and authentication environment to be used in OpenStack private
clouds. Sqrrl comes from a startup company spun off the US National Security Agency. It focusses on
analyzing big data using Accumulo (layer 11B) to identify security issues such as cybersecurity incidents
or suspicious data linkages.

Layer 4) Monitoring: Ambari, Ganglia, Nagios, Inca
Here Apache Ambari is aimed at installing and monitoring Hadoop systems and there are related tools

at layers 6 and 15B. Very popular are the similar Nagios and Ganglia, which are system monitors with
ability to gather metrics and produce alerts for a wide range of applications. Inca is a higher layer system
allowing user reporting of performance of any sub system. Essentially all deployed systems use
monitoring but most users do not add custom reporting.

Layer 5) IaaS Management from HPC to hypervisors: Xen, KVM, Hyper-V, VirtualBox, OpenVZ,

LXC, Linux-Vserver, OpenStack, OpenNebula, Eucalyptus, Nimbus, CloudStack, CoreOS, VMware ESXi,
vSphere and vCloud, Amazon, Azure, Google and other public (general access) Clouds, Google Cloud
DNS, Amazon Route 53

Technologies at layer 5 underlie all applications although they may not be apparent to users. Layer 5
includes 4 major hypervisors Xen, KVM, Hyper-V and VirtualBox and the alternative virtualization
approach through Linux containers OpenVZ, LXC and Linux-Vserver. OpenStack, OpenNebula,
Eucalyptus, Nimbus and Apache CloudStack are leading virtual machine managers with OpenStack most
popular in US and OpenNebula in Europe (for researchers). These systems manage many aspects of virtual
machines including computing, security, clustering, storage and networking; in particular OpenStack has
an impressive number of subprojects (16 in March 2015). As a special case there is “bare-metal” i.e. the
null hypervisor, which is discussed at layer 6. The DevOps (layer 6) technology Docker is playing an
increasing role as a Linux container. CoreOS is a recent lightweight version of Linux customized for
containers and Docker in particular. The public clouds Amazon, Azure and Google have their own solution
and it is possible to move machine images between these different environments.

Layer 6) DevOps: Docker, Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, CloudMesh,

Juju, Foreman, OpenStack Heat, Rocks, Cisco Intelligent Automation for Cloud, Ubuntu MaaS, Facebook
Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes, Buildstep, Gitreceive

This layer describes technologies and approaches that automate the deployment, installation and life-
cycle of software systems and underlies “software-defined systems”. At Indiana University, we integrate
tools together in Cloudmesh – Libcloud, Cobbler (becoming OpenStack Ironic), Chef, Docker, Slurm,
Ansible, Puppet and Celery. We saw the container support system Docker earlier in layer 5.

4

Puppet, Chef, Ansible and SaltStack are leading configuration managers allowing software and their
features to be specified. Juju and OpenStack Heat extend this to systems or virtual clusters of multiple
different software components. Cobbler, Xcat, Razor, Ubuntu MaaS, and OpenStack Ironic address bare-
metal provisioning and enable IaaS with hypervisors, containers or bare-metal. Foreman is a popular
general deployment environment while Boto provides from a Python interface, DevOps for all (around 40
March 2015) the different AWS public cloud Platform features. Rocks is a well-regarded cluster
deployment system aimed at HPC with software configurations specified in rolls, Cisco Intelligent
Automation for Cloud is a commercial offering from Cisco that directly includes networking issues.
Tupperware is used by Facebook to deploy containers for their production systems while AWS
OpsWorks is new Amazon capability for automating use of AWS. Google Kubernetes focusses on cluster
management for Docker while Buildstep and Gitreceive are part of the Dokku application hosting
framework (layer 15B) for Docker.

Layer 7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, SAGA, Genesis

II
This layer has both standards and interoperability libraries for services, compute, virtualization and

storage. Libvirt provides common interfaces at the hypervisor level while Libcloud and JClouds provide
this at the higher cloud provider level. TOSCA is an interesting DevOps standard specifying the type of
system managed by OpenStack Heat. OCCI and CDMI provide cloud computing and storage interfaces
respectively while Whirr provides cloud-neutral interfaces to services. SAGA and Genesis II come from
HPC community and provide standards and their implementations for distributed computing and storage.

Layer 8) File systems: HDFS, Swift, Amazon S3, Azure Blob, Google Cloud Storage, Haystack, f4,

Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS
One will use files in most applications but the details may not be visible to the user. Maybe you

interact with data at layer of a data management system like iRODS or an Object store (OpenStack Swift
or Amazon S3). Most science applications are organized around files; commercial systems at a higher
layer. For example originally Facebook directly used a basic distributed file systems (NFS) to store
images but in Haystack replaced this with a customized object store which was refined in f4 to
accommodate variations in image usage with “cold”, “warm” and “hot” data. HDFS realizes the goal of
bring computing to data and has a distributed data store on the same nodes that perform computing; it
underlies the Apache Hadoop ecosystem. Openstack Cinder implements the Block store used in Amazon
Elastic Block Storage EBS, Azure Files and Google Persistent Storage. This is analogous to disks
accessed directly on a traditional non-cloud environment whereas Swift, Amazon S3, Azure Blob and
Google Cloud Storage implement backend object stores. Lustre is a major HPC shared cluster file system
with Gluster as an alternative. FUSE is a user level file system used by Gluster. Ceph is a distributed file
system that projects object, block, and file storage paradigms to the user. GPFS or Global Parallel File
System is a IBM parallel file system optimized to support MPI-IO and other high intensity parallel I/O
scenarios. GFFS or Global Federated File System comes from Genesis II (layer 7) and provides a uniform
view of a set of distributed file systems.

Layer 9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook

Corona, Celery, HTCondor, SGE, OpenPBS, Moab, Slurm, Torque, Globus Tools, Pilot Jobs
You will certainly need cluster management in your application although often this is provided by the

system and not explicit to the user. Yarn from Hadoop is very popular while Mesos from UC Berkeley is
similar to Yarn and is also well used. Apache Helix originating in LinkedIn is similar to Mesos and Yarn.
Llama from Cloudera runs above Yarn and achieves lower latency by switching use of long lived
processes. Google and Facebook certainly face job management at a staggering scale and Omega and
Corona respectively are proprietary systems along the lines of Yarn and Mesos. Celery is built on
RabbitMQ and supports the “master-worker” model in a similar fashion to Azure worker role with Azure
queues.

Slurm is a basic HPC system as are Moab, Torque, SGE, OpenPBS while Condor also well known for
scheduling of Grid applications. Many systems are in fact collections of clusters as in data centers or
grids. These require management and scheduling across many clusters; the latter is termed meta-

5

scheduling. These are addressed by the Globus Toolkit and Pilot jobs which originated in the Grid
computing community.

Layer 10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop
BitTorrent was famous 10 years ago (2004) for accounting one third of all Internet traffic; this is

dropped a factor of 10 in 2014 but still an important Peer to Peer (file sharing) protocol. Simple HTTP
protocols are typically used for small data transfers while the largest one might even use the “Fedex/UPS”
solution of transporting disks between sites. SSH and FTP are old well established Internet protocols
underlying simple data transfer. Apache Flume is aimed at transporting log data and Apache Sqoop at
interfacing distributed data to Hadoop.

Globus Online or GridFTP is dominant and successful system for the HPC community.
Data transport is often not highlighted as it runs under the covers but is often quoted as a major

bottleneck.

Layer 11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC,

Parquet
The data management layer 11 is a critical area for nearly all applications as it captures areas of file,

object, NoSQL and SQL data management. The many entries in area testify to variety of problems
(graphs, tables, documents, objects) and importance of efficient solution. Just a little while ago, this area
was dominated by SQL databases and file managers. We divide this layer into 3 subparts; management
and data structures for file in 11A; the cloud NoSQL systems in 11B and the traditional SQL systems in
layer 11C, which also includes the recent crop of NewSQL systems that overlap with layer 15A.

It is remarkable that the Apache stack does not address file management (as object stores are used
instead of file systems) and the HPC system iRODS is major system to manage files and their metadata.
This layer also includes important file (data) formats. NetCDF and CDF are old but still well used formats
supporting array data, as is HDF or Hierarchical Data Format. The earth science domain uses OPeNDAP
and the astronomers FITS.

RCFile (Row Column File) and ORC are new formats introduced with Hive (layer 15A) while Parquet
based on Google Dremel is used for column storage in many major systems in layers 14A and 15A.

Layer 11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, Berkeley DB, Azure Table, Amazon

Dynamo, Google DataStore, MongoDB, Espresso, CouchDB, Couchbase, IBM Cloudant, HBase, Google
Bigtable, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J, Yarcdata, AllegroGraph,
Facebook Tao, Titan:db, Jena, Sesame

NoSQL systems can be divided into six important styles: Tools, Key-value stores, Document-based
stores, Column-based store, Graph-based stores and Triple stores.

Tools include Apache Lucene providing information-retrieval; Apache Solr uses Lucene to build a fast
search engine while Apache Solandra adds Cassandra as a backend to Solr.

Key-value stores have a hash table of keys and values and include Voldemort from LinkeIn; Riak uses
Solr for search and is based on Amazon Dynamo; Berkeley DB comes from Oracle; Azure Table, Amazon
Dynamo, and Google DataStore are the dominant public cloud NoSQL key-value stores.

Document-based stores manage documents made up of tagged elements and include MongoDB which
is best known system in this class. Espresso comes from LinkedIn and uses Helix (layer 9); Apache
CouchDB has a variant Couchbase that adds caching (memcached) features; IBM Cloudant is a key part of
IBM’s cloud offering.

Column-based stores have data elements that just contain data from one column as pioneered by
Google Bigtable which inspires Apache Hbase; Google Megastore and Spanner build on Bigtable to provide
capabilities that interpolate between NoSQL and SQL and can get scalability of NoSQL and ease of use of
SQL; Apache Cassandra comes from Facebook; Apache Accumulo is also popular and RYA builds a triple
store on top of it; Sqrrl is built on top of Accumulo to provide graph capabilities and security applications.

Graph-based Stores: Neo4j is most popular graph database; Yarcdata Urika is supported by Cray
shared memory machines and allows SPARQL queries as does AllegroGraph, which is written in Lisp and
is integrated with Solr and MongoDB; Facebook TAO (The Associations and Objects) supports their
specific problems with massive scaling; Titan:db is an interesting graph database and integrates with

6

Cassandra, HBase, BerkeleyDB, TinkerPop graph stack (layer 16), Hadoop (layer 14A), ElasticSearch
(layer 16), Solr and Lucene (layer 11B)

Triple stores: The last category is a special case of the graph database specialized to the triples (typically
resource, attribute and attribute value) that one gets in the RDF approach. Apache Jena and Sesame support
storage and queries including those in SPARQL.

Layer 11C) SQL/NewSQL: Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, Galera Cluster,

SciDB, Rasdaman, Apache Derby, Google Cloud SQL, Azure SQL, Amazon RDS, Google F1, IBM
dashDB, N1QL, BlinkDB

Layer 11C only lists a few of the traditional relational databases but includes the NewSQL area, which
is also seen in systems at layer 15A. NewSQL combines a rigorous SQL interface with the scalability of
MapReduce style infrastructure. Oracle, IBM DB2 and Microsoft SQL Server are of course major
commercial databases but the amazing early discovery of cloud computing was that their architecture,
optimized for transaction processing, was not the best for many cloud applications. Traditional databases
are still used with Apache Derby, SQLite, MySQL, and PostgreSQL being important low-end open
source systems. Galera Cluster is one of several examples of a replicated parallel database built on
MySQL. SciDB and Rasdaman stress another idea; good support for the array data structures we
introduced in layer 11A. Google Cloud SQL, Azure SQL, Amazon RDS, are the public cloud traditional
SQL engines with Azure SQL building on Microsoft SQL server. N1QL illustrates an important trend and
is designed to add SQL queries to the NoSQL system Couchbase. Google F1 illustrates the NewSQL
concept building a quality SQL system on the Spanner system described in layer 11B. IBM dashDB
similarily offers warehouse capabilities built on top of the NoSQL Cloudant which is a derivative of
CouchDB (again layer 11B). BlinkDB is a research database exploring sampling to speed up queries on
large datasets.

Layer 12) In-memory databases&caches: Gora, Memcached, Redis, Hazelcast, Ehcache, Infinispan

/ Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC /
Extraction Tools: UIMA, Tika
This layer represents another important area addressing several important capabilities. Firstly Memcached
(best known and used by GAE), Redis (an in-memory key value store), Hazelcast, Ehcache, Infinispan
enable caching to put as much processing as possible in memory. This is an important optimization with
Gartner highlighting in several recent hype charts with In-Memory database management systems and
Analytics. UIMA and Tika are conversion tools with former well known from its use by Jeopardy
winning IBM Watson system. Gora supports generation of general object data structures from NoSQL.
Hibernate, OpenJPA, EclipseLink and DataNucleus are tools for persisting Java in-memory data to
relational databases.

Layer 13) Inter process communication Collectives, point-to-point, publish-subscribe, MPI: MPI,

Harp, Netty, ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, Kafka, Kestrel, JMS, AMQP,
Stomp, MQTT, Amazon SNS and Lambda, Google Pub Sub, Azure Queues and Event Hubs,

This layer describes the different communication models used by the systems in layers 14 and 15) below.
One has communication between the processes in parallel computing and communication between data
sources and filters. There are important trade-offs between performance, fault tolerance, and flexibility.
There are also differences that depend on application structure and hardware. MPI from the HPC domain,
has very high performance and has been optimized for different network structures while its use is well
understood across a broad range of parallel algorithms. Data is streamed between nodes (ports) with
latencies that can be as low as a microsecond. This contrasts with disk access with latencies of 10
milliseconds and event brokers of around a millisecond corresponding to the significant software supporting
messaging systems. Hadoop uses disks to store data in between map and reduce stages, which removes
synchronization overheads and gives excellent fault tolerance at cost of highest latency. Harp brings MPI
performance to Hadoop with a plugin.

There are several excellent publish-subscribe messaging systems that support publishers posting
messages to named topics and subscribers requesting notification of arrival of messages at topics. The
systems differ in message protocols, API, richness of topic naming and fault tolerance including message

7

delivery guarantees. Apache has Kafka from LinkedIn with strong fault tolerance, ActiveMQ and QPid.
RabbitMQ and NaradaBrokering have similar good performance to ActiveMQ. Kestrel from Twitter is
simple and fast while Netty is built around Java NIO and can support protocols like UDP which are useful
for messaging with media streams as well as HTTP. ZeroMQ provides fast inter-process communication
with software multicast. Message queuing is well supported in commercial clouds but with different
software environments; Amazon Simple Notification Service, Google Pub-Sub, Azure queues or service-
bus queues. Amazon offers a new event based computing model Lambda while Azure has Event Hubs built
on the service bus to support Azure streaming analytics in layer 14B.

There are important messaging standards supported by many of these systems. JMS or Java Message
Service is a software API that does not specify message nature. AMQP (Advanced Message Queuing
Protocol) is best known message protocol while STOMP (Simple Text Oriented Messaging Protocol) is a
particularly simple and HTTP in style without supporting topics. MQTT (Message Queue Telemetry
Transport) comes from the Internet of Things domain and could grow in importance for machine to machine
communication.

Layer 14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister,
Stratosphere (Apache Flink), Reef, Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi

Most applications use capabilities at layers 14 which we divide into the classic or batch programming in
14A and the streaming area 14B that has grown in attention recently. This layer implements the
programming models shown in Fig. 3. Layer 14B supports the Map-Streaming model which is category 5
of Fig. 3. Layer 14A focusses on the first 4 categories of this figure while category 6 is included because
shared memory is important in some graph algorithms. Hadoop in some sense created this layer although
its programming model had been known for a long time but not articulated as brilliantly as was done by
Google for MapReduce. Hadoop covers categories 1 and 2 of Fig. 3 and with the Harp plug-in categories 3
and 4. Other entries here have substantial overlap with Spark and Twister (no longer developed) being
pioneers for Category 3 and Pregel with an open source version Giraph supporting category 4. Pegasus also
supports graph computations in category 4. Hama is an early Apache project with capabilities similar to
MPI with Apache Flink and Reef newcomers supporting all of categories 1-4. Flink supports multiple data
API’s including graphs with its Spargel subsystem. Reef is optimized to support machine learning. Ligra
and GraphChi are shared memory graph processing frameworks (category 6 of Fig. 3) with GraphChi
supporting disk-based storage of graph.

Layer 14B) Streaming: Storm, S4, Samza, Granules, Google MillWheel, Amazon Kinesis, LinkedIn

Databus, Facebook Puma/Ptail/Scribe/ODS, Azure Stream Analytics
Figure 3, category 5, sketches the programming model at this layer while figure 4 gives it more detail

for Storm, which being open source and popular, is the best archetype for this layer. There is some
mechanism to gather and buffer data, which for Apache Storm is a publish-subscribe environment such as
Kafka, RabbitMQ or ActiveMQ. Then there is a processing phase delivered in Storm as “bolts”
implemented as dataflow but which can invoke parallel processing such as Hadoop. The bolts then deliver
their results to a similar buffered environment for further processing or storage. Apache has three similar
environments Storm, Samza and S4 which were donated by Twitter, LinkedIn and Yahoo respectively. S4
features a built-in key-value store. Granules from Colorado State University has a similar model to Storm.

(1) Map Only
(4) Point to Point or

Map-Communication
(3) Iterative Map Reduce or

Map-Collective
(2) Classic

MapReduce

Input

map

reduce

Input

map

reduce

IterationsInput

Output

map

Local

Graph

(5) Map-Streaming

maps brokers

Events

(6) Shared memory
Map Communicates

Map & Communicate

Shared Memory

Figure 3: 6 distinctive programming models labelled with map-X syntax and supported at layer 14

8

The other entries are
commercial systems with
LinkedIn Databus and Facebook
Puma/ Ptail/ Scribe/ ODS
supporting internal operations of
these companies for examining
in near real-time the logging and
response of their web sites.
Kinesis, MillWheel and Azure
Stream Analytics are services
offered to customers of the
Amazon, Google and Microsoft
clouds respectively. Interestingly
none of these uses the Apache
functions (Storm, Samza, S4)
although these run well on
commercial clouds.

Layer 15A) High layer

Programming: Kite, Hive,
HCatalog, Tajo, Shark, Phoenix,
Impala, MRQL, SAP HANA,
HadoopDB, PolyBase, Presto,
Google Dremel, Google
BigQuery, Amazon Redshift,
Drill, Pig, Sawzall, Google
Cloud DataFlow, Summingbird

Components at this layer are
not required but are very
interesting and we can expect
great progress to come both in
improving them and using them.
There are several “SQL on
MapReduce” software systems
with Apache Hive (originally

from Facebook) as best known. Hive illustrates key idea that MapReduce supports parallel database
actions and so SQL systems built on Hadoop can outperform traditional databases due to scalable
parallelism. Presto is another Facebook system supporting interactive queries rather than Hive’s batch
model. Apache HCatalog is a table and storage management layer for Hive. Other SQL on MapReduce
systems include Shark (using Spark not Hadoop), MRQL (using Hama, Spark or Hadoop for complex
analytics as queries), Tajo (warehouse) Impala (Cloudera), HANA (real-time SQL from SAP),
HadoopDB (true SQL on Hadoop), and PolyBase (Microsoft SQL server on Hadoop). A different
approach is Kite which is a toolkit to build applications on Hadoop. Note layer 11C) lists “production
SQL data bases” including some NewSQL systems with architectures similar to software described here.

Google Dremel supported SQL like queries on top of a general data store including unstructured and
NoSQL systems. This capability is now offered by Apache Drill, Google BigQuery and Amazon
Redshift. Apache Phoenix exposes HBase functionality through a SQL interface that is highly optimized.
Pig and Sawzall offer data parallel programming models on top of Hadoop (Pig) or Google MapReduce
(Sawzall). Pig shows particular promise as fully open source with DataFu providing analytics libraries on
top of Pig. Summingbird builds on Hadoop and supports both batch (Cascading) and streaming (Storm)
applications. Google Cloud Dataflow provides similar integrated batch and streaming interfaces.

Layer 15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift,

Heroku, Aerobatic, AWS Elastic Beanstalk, Azure, Cloud Foundry, Pivotal, IBM BlueMix, Ninefold,

Storage
(SQL/NewSQL/NoSQL)

Multiple Message Brokers in the cluster

Multiple Message Brokers in the cluster

Batch and streaming components integrated in full job

Batch, Streaming, Analytics, Storage

Batch, Streaming, Analytics, Storage…
.

Sending to
pub-sub

Sending to
Persistent
storage

Streaming
workflow

A stream
application with
some tasks running
in parallel

Multiple
streaming
workflows

Data from IoT

Figure 4: Apache Storm processing data from Internet of Things (IoT)

9

Jelastic, Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero,
OODT, Agave, Atmosphere
This layer is exemplified by Google App Engine GAE and Azure where frameworks are called “Platform
as a Service” PaaS but now there are many “cloud integration/development environments”. The GAE
style framework offers excellent cloud hosting for a few key languages (often PHP, JavaScript Node.js,
Python, Java and related languages) and technologies (covering SQL, NoSQL, Web serving, memcached,
queues) with hosting involving elasticity, monitoring and management. Related capabilities are seen in
AWS Elastic Beanstalk, AppScale, appfog, OpenShift (Red Hat), Heroku (part of Salesforce) while
Aerobatic is specialized to single web page applications. Pivotal offers a base open source framework
Cloud Foundry that is used by IBM in their BlueMix PaaS but is also offered separately as Pivotal Cloud
Foundry and Web Services. The major vendors AWS, Microsoft, Google and IBM mix support of general
open source software like Hadoop with proprietary technologies like BigTable (Google), Azure Machine
Learning, Dynamo (AWS) and Cloudant (IBM). Jelastic is a Java PaaS that can be hosted on the major
IaaS offerings including Docker. Similarly Stackato from ActiveState can be run on Docker and Cloud
Foundry. CloudBees recently switched from general PaaS to focus on Jenkins continuous integration
services. Engine Yard and Cloud Control focus on managing (scaling, monitoring) the entire application.
The latter recently purchased the dotCloud PaaS from Docker, which company was originally called
dotCloud but changed name and focus due to huge success of their “support” product Docker. Dokku is a
bash script providing Docker Heroku compatibility based on tools Gitreceive and Buildstep. This layer
also includes toolsets that are used to build web environments OSGi, HUBzero and OODT. Agave comes
from the iPlant Collaborative and offers “Science as a Service” building on iPlant Atmosphere cloud
services with access to 600 plant biology packages. Software at this layer has overlaps with layer 16,
application libraries, and layer 17, workflow and science gateways.

Layer 16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor,

ImageJ, Scalapack, PetSc, Azure Machine Learning, Google Prediction API, Google Translation API,
mlpy, scikit-learn, PyBrain, CompLearn, Caffe, Torch, Theano, H2O, IBM Watson, Oracle PGX,
GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Google Fusion Tables, CINET,
NWB, Elasticsearch

This is the “business logic” of application and where you find machine learning algorithms like
clustering, recommender engines and deep learning. Mahout, MLlib, MLbase are in Apache for Hadoop
and Spark processing while the less well-known DataFu provides machine learning libraries on top of
Apache Pig. R with a custom scripting language, is a key library from statistics community with many
domain specific libraries such as Bioconductor, which has 936 entries in version 3.0. Image processing
(ImageJ) in Java and High Performance Computing HPC (Scalapack and PetSc) in C++/Fortran also have
rich libraries. pbdR uses Scalapack to add high performance parallelism to R which is well known for not
achieving high performance often necessary for Big Data. Note R without modification will address the
important pleasingly parallel sector with scaling number of independent R computations. Azure Machine
Learning, Google Prediction API, and Google Translation API represent machine learning offered as a
service in the cloud.

The array syntaxes supported in Python and Matlab make them like R attractive for analytics libraries.
mlpy, scikit-learn, PyBrain, and CompLearn are Python machine-learning libraries while Caffe (C++,
Python, Matlab), Torch (custom scripting), DL4J (Java) and Theano (Python) support the deep learning
area with has growing importance and comes with GPU’s as key compute engine. H2O is a framework
using R and Java that supports a few important machine learning algorithms including deep learning, K-
means, and Random Forest and runs on Hadoop and HDFS. IBM Watson applies advanced natural
language processing, information retrieval, knowledge representation, automated reasoning, and machine
learning technologies to answer questions. It is being customized in hundreds of areas following its
success in the game Jeopardy

There are several important graph libraries including Oracle PGX, GraphLab (CMU), GraphBuilder
(Intel), GraphX (Spark based), and TinkerPop (open source group). IBM System G has both graph and
Network Science libraries and there are also libraries associated with graph frameworks (Giraph and
Pegasus) at Layer 14A. CINET and Network Workbench focus on Network science including both graph
construction and analytics.

10

Google Fusion Tables focus on analytics for Tables including map displays. ElasticSearch combines
search (second only to Solr in popularity) with an analytics engine Kibana.

You will nearly always need software at this layer

Layer 17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna,

Triana, Trident, BioKepler, Galaxy, IPython, Dryad, Naiad, Oozie, Tez, Google FlumeJava, Crunch,
Cascading, Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA)

This layer implements orchestration and integration of the different parts of a job. This integration is
typically specified by a directed data-flow graph and a simple but important is a pipeline of the different
stages of a job. Essentially all problems involve the linkage of multiple parts and the terms orchestration
or workflow are used to describe the linkage of these different parts. The “parts” (components) involved
are “large” and very different from the much smaller parts involved in parallel computing involving MPI
or Hadoop. On general principles, communication costs decrease in comparison to computing costs as
problem sizes increase. So orchestration systems are not subject to the intense performance issues we saw
in layer 14. Often orchestration involves linking of distributed components. We can contrast PaaS stacks
which describe the different services or functions in a single part with orchestration that describes the
different parts making up a single application (job). The trend to “Software as a Service” clouds the
distinction as it implies that a single part may be made up of multiple services. The messaging linking
services in PaaS is contrasted with dataflow linking parts in orchestration. Note that often the
orchestration parts often communicate via disk although faster streaming links are also common.

Orchestration in its current form originated in the Grid and service oriented communities with the

early importance of OASIS standard BPEL (Business Process Execution Language) illustrated by
ActiveBPEL which was last updated in 2008. BPEL did not emphasize dataflow and was not popular in
Grid community. Pegasus, Kepler, and Taverna are perhaps the best known Grid workflow systems with
recently Galaxy and BioKepler popular in bioinformatics. The workflow system interface is either visual
(link programs as bubbles with data flow) or as an XML or program script. The latter is exemplified by
the Swift customized scripting system and the growing use of Python. Apache orchestration of this style
is seen in ODE and Airavata with latter coming from Grid research at Indiana University. Recently there
has been a new generation of orchestration approaches coming from Cloud computing and covering a
variety of approaches. Dryad, Naiad and the recent NiFi support a rich dataflow model which underlies
orchestration. These systems tend not to address the strict synchronization needed for parallel computing
and that limits their breadth of use. Apache Oozie and Tez link well with Hadoop and are alternatives to
high layer programming models like Apache Pig. e-Science Central from Newcastle, the Azure Data
Factory and Google Cloud Dataflow focus on the end to end user solution and combine orchestration with
well-chosen PaaS features. Google FlumeJava and its open source relative Apache Crunch are
sophisticated efficient Java orchestration engines. Cascading, PyCascading and Scalding offer Java,
Python and Scala toolkits to support orchestration. One can hope to see comparisons and integrations
between these many different systems.

3. Conclusions
We have found it very fruitful to use HPC-ABDS, which merges High Performance Computing with

the Commodity Big Data Stack ABDS. We have applied it to design high performance run time [1, 3, 12],
understand the mapping of applications into the software stack [2] and to delineate a systematic big data
benchmark approach [8, 9]. In this paper, we have aimed at an overall discussion of all layers which can be
used in many applications of HPC-ABDS and in fact in studies of just the Commodity big data stack. Our
summary highlights areas such as those colored green in fig. 2 where there is particular synergy between
HPC and ABDS software. For example, there have been several recent ABDS orchestration systems that
do not seem to build on the related workflow systems in layer 17 from HPC. One sees relatively sparse
coverage in data transport and file management layers 10 and 11C). Areas where HPC could usefully learn
from ABDS include storage layers 8 and 11 (use objects not files?), streams (where ABDS is pioneering
interesting programming models) and PaaS or hosting environments which are popular in clouds and use
an approach that can be broadly used including in HPC.

11

References

1. Judy Qiu, Shantenu Jha, Andre Luckow, and Geoffrey C.Fox, Towards HPC-ABDS: An Initial
High-Performance Big Data Stack, in Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study
Group on Big Data. March 18-21, 2014. San Diego Supercomputer Center, San Diego.
http://grids.ucs.indiana.edu/ptliupages/publications/nist-hpc-abds.pdf.

2. Geoffrey Fox, Judy Qiu, and Shantenu Jha, High Performance High Functionality Big Data
Software Stack, in Big Data and Extreme-scale Computing (BDEC). 2014. Fukuoka, Japan.
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/fox.pdf.

3. Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, and Geoffrey C. Fox, A Tale of Two
Data-Intensive Approaches: Applications, Architectures and Infrastructure, in 3rd International
IEEE Congress on Big Data Application and Experience Track. June 27- July 2, 2014. Anchorage,
Alaska. http://arxiv.org/abs/1403.1528.

4. HPC-ABDS Kaleidoscope of over 300 Apache Big Data Stack and HPC Tecnologies. [accessed
2014 April 8]; Available from: http://hpc-abds.org/kaleidoscope/.

5. Geoffrey C.Fox, Shantenu Jha, Judy Qiu, and Andre Luckow, Towards an Understanding of Facets
and Exemplars of Big Data Applications, in 20 Years of Beowulf: Workshop to Honor Thomas
Sterling's 65th Birthday October 14, 2014. Annapolis
http://grids.ucs.indiana.edu/ptliupages/publications/OgrePaperv9.pdf.

6. Geoffrey Fox and Wo Chang, Big Data Use Cases and Requirements, in 1st Big Data
Interoperability Framework Workshop: Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study
Group on Big Data March 18 - 21, 2014. San Diego Supercomputer Center, San Diego.
http://grids.ucs.indiana.edu/ptliupages/publications/NISTUseCase.pdf.

7. NIST Big Data Use Case & Requirements. 2013 [accessed 2015 March 1]; Available from:
http://bigdatawg.nist.gov/V1_output_docs.php.

8. Geoffrey C.Fox, Shantenu Jha, Judy Qiu, and Andre Luckow, Ogres: A Systematic Approach to
Big Data Benchmarks, in Big Data and Extreme-scale Computing (BDEC) January 29-30, 2015.
Barcelona.
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/OgreFacets.pdf.

9. Geoffrey C. FOX , Shantenu JHA, Judy QIU, Saliya EKANAYAKE, and Andre LUCKOW,
Towards a Comprehensive Set of Big Data Benchmarks. February 15, 2015.
http://grids.ucs.indiana.edu/ptliupages/publications/OgreFacetsv9.pdf.

10. Geoffrey Fox. Data Science Curriculum: Indiana University Online Class: Big Data Open Source
Software and Projects. 2014 [accessed 2014 December 11]; Available from:
http://bigdataopensourceprojects.soic.indiana.edu/.

11. Dan Reed and Jack Dongarra. Exascale Computing and Big Data: The Next Frontier. 2014
[accessed 2015 March 8]; Available from:
http://www.netlib.org/utk/people/JackDongarra/PAPERS/Exascale-Reed-Dongarra.pdf.

12. Bingjing Zhang, Yang Ruan, and Judy Qiu, in IEEE International Conference on Cloud
Engineering (IC2E). March 9-12, 2015. Tempe AZ.
http://grids.ucs.indiana.edu/ptliupages/publications/HarpQiuZhang.pdf.

12

http://grids.ucs.indiana.edu/ptliupages/publications/nist-hpc-abds.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/fox.pdf
http://arxiv.org/abs/1403.1528
http://hpc-abds.org/kaleidoscope/
http://grids.ucs.indiana.edu/ptliupages/publications/OgrePaperv9.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/NISTUseCase.pdf
http://bigdatawg.nist.gov/V1_output_docs.php
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/OgreFacets.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/OgreFacetsv9.pdf
http://bigdataopensourceprojects.soic.indiana.edu/
http://www.netlib.org/utk/people/JackDongarra/PAPERS/Exascale-Reed-Dongarra.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/HarpQiuZhang.pdf

	1. Introduction to HPC-ABDS
	2. The 21 Layers in Detail
	3. Conclusions

