
particular project that’s ongoing at
our Pervasive Technology Lab at In-
diana University.

The HPJava (high-performance
Java) project aims to support scientific
and parallel computing in a modern,
object-oriented, Internet-friendly en-
vironment—the Java platform. HPJava
leverages popular high-performance
Fortran (HPF) language and library
features such as “scientific” multidi-
mensional array syntax and distributed
arrays, while at a more language-inde-
pendent level, it introduces a slightly
unusual parallel programming model,
somewhere in between the classical
HPF and message-passing interface
(MPI) extremes. We’ll say more about
this later. See the “HPJava History”
sidebar for some of the language’s de-
velopmental roots.

HPJava Philosophy
HPJava lifts some ideas directly from
HPF, and its domain of applicability is
likely to overlap HPF to a large extent.
It has an almost equivalent model of
distributed arrays (the only very signif-
icant difference in this respect is that
we eventually abandoned the “block
cyclic” distribution format); you can
write HPJava programs that look very
much like corresponding HPF pro-

grams. But the philosophies of the lan-
guages differ in some significant ways.
HPJava was designed in a “bottom up”
manner. 

We started with some parallel li-
braries, and built the language around
making these libraries convenient to
use. Arguably, this library-centric ap-
proach is more modern, more “object
oriented” in spirit. The parallel pro-
gramming model is also different. An
HPF program logically has a single
thread of control—similar to a sequen-
tial or SIMD (single instruction, mul-
tiple data) program. You can view an
HPJava program like an SPMD (single
program, multiple data) program with
multiple threads of control—more
similar to an MPI program. This
means HPJava maps more straightfor-
wardly onto the most popular parallel
architectures. The HPJava compiler it-
self does not insert any of the commu-
nications necessary to access remote
data; all this is the programmer’s re-
sponsibility and resembles an MPI en-
vironment. But HPJava supports con-
venient calls to high-level libraries
acting on distributed arrays, so this task
typically is easier than it would be in an
MPI program.

It was important to be 100 percent
compatible with the standard Java plat-

form. This did not necessarily mean
that the implementation of all HPJava
libraries had to be pure Java in a nar-
row sense. An acceptable compromise
was to provide access to native libraries
(MPI, for example) through the Java
Native Interface (JNI). What was more
important to us was that all existing
Java libraries (for networking, GUIs,
database access, and so on) could be in-
voked from an HPJava program di-
rectly—without recompiling those li-
braries. This strongly suggested we
should target standard Java Virtual
Machines as our execution platform.
As it turned out, an HPJava program
or library compiles to completely stan-
dard Java byte-code files.

Although we have a few extensions
at the relatively superficial level of syn-
tax, we can claim that HPJava is un-
equivocally a Java technology. This
contrasts with some other comparable
projects, such as UC Berkeley’s Tita-
nium and the University of Delft’s
Timber. These projects extend the
Java language for scientific computing,
but “compile down” to C or C++.
Those approaches offer the hope of
tuning for higher ultimate perfor-
mance, but sacrifice various benefits of
the full Java platform.

Now, let’s get started using HPJava.

Multiarrays
Entry-level HPJava users might want to
take advantage of the syntax the ex-
tended language provides for Fortran-
like, multidimensional arrays, perhaps
initially ignoring the language’s parallel
aspects. In this area, the syntax is com-

60 Copublished by the IEEE CS and the AIP        1521-9615/03/$17.00 © 2003 IEEE COMPUTING IN SCIENCE & ENGINEERING

HPJAVA: A DATA PARALLEL
PROGRAMMING ALTERNATIVE
By Bryan Carpenter and Geoffrey Fox

T ODAY, THERE IS A HEALTHY DIVERSITY OF PROJECTS AIMING

TO HARNESS JAVA FOR SCIENTIFIC (OR “GRANDE”) COMPUT-

ING. IN FACT, THIS DEPARTMENT LOOKED AT SEVERAL OF THESE

APPROACHES IN A RECENT ARTICLE.1 HERE, WE WILL FOCUS ON A

Editor: Geoffrey Fox, gcf@indiana.edu

WEB COMPUTINGW E B  C O M P U T I N G



MAY/JUNE 2003 61

patible with recent proposals from the
Java Grande Numerics Working Group
(http://math.nist.gov/javanumerics/).
Following that group’s lead, we call the
new arrays multiarrays. HPJava has mul-
tiarrays and ordinary Java arrays, and
you can choose which is most conve-
nient according to context. A multiarray
can have elements of any standard Java
type as well as any rank (dimensionality). 

Standard Java provides multidimen-
sional arrays, but they are implemented
as arrays of arrays. This means that
they can be “ragged” (for example, not
all rows of a two-dimensional array
must be the same length). This can be
useful in some applications but it
makes it harder for a compiler to ana-
lyze and optimize array use and diffi-
cult to define general array sections. In
contrast, the new HPJava multiarrays

have a fixed rectangular aspect, similar
to Fortran arrays.

Our syntax for multiarrays uses dou-
ble brackets to distinguish type signa-
tures from standard Java arrays (which
use single brackets). Here is a simple,
sequential matrix multiplication writ-
ten in HPJava:

public static void matmul

(double [[*,*]] c, 

double [[*,*]] a,

double [[*,*]] b) {

int M = c.rng(0).size() ;

int N =  c.rng(1).size() ;

int L = a.rng(1).size() ;

for(int i = 0 ; i < M ;

i++)

for(int j = 0 ; j < N ; 

j++) {

c [i, j] = 0 ;

for(int k = 0 ; k < L ;

k++)

c [i, j] += a [i, k] * 

b [k, j] ;

} 

}

The number of asterisks in the type
signature defines the array’s rank. Note
that double brackets are used here only
in type signatures. Once you declare a,
b, and c to have multiarray type, you
can use single brackets to subscript
them. Double brackets also make an
appearance in multiarray creation ex-
pressions, which look like:

double [[*,*]] a = 

new double [[N, M]] ;

A useful feature of multiarrays is that

HPJava History

A ctive in the early 1990s, the High Performance For-
tran Forum (www.crpc.rice.edu/HPFF or

www.vcpc.univie.ac.at/information/mirror/HPFF/) brought
together leading high-performance computing practition-
ers to define a common language for data parallel comput-
ing. Inspired by the success of parallel dialects of Fortran
such as Connection Machine Fortran, the resulting high-
performance Fortran (HPF) language definition extended
the then-standard Fortran 90 with several parallel features,
most notably a comprehensive set of directives for describ-
ing distributed arrays.

An HPF distributed array behaves programmatically like a
normal Fortran array, but its elements are distributed across
a collection of processors (instead of being stored in a sin-
gle address space). The general approach had been very
successful in compilers for SIMD (single instruction, multi-
ple data) parallel architectures, but HPF claimed to compile
efficiently to the SPMD (single program, multiple data)
style of execution required by a newer generation of more
loosely coupled MIMD (multiple instruction, multiple data)
parallel computers. In particular, HPF was expected to re-
move the need for the explicit message-passing style of
programming for those computers, as embodied in the
message-passing interface (MPI) standard. (By a quirk of
history, the MPI standard emerged one year after the HPF
standard, but the general ideas were older.)

Our HPJava project started around 1997, growing out of
our group’s earlier HPF work. In a collaborative project with
researchers from Peking University and other institutes, we

developed runtime libraries to support HPF compilations.
The support libraries (some inherited from an earlier, re-
lated project at Southampton University) worked quite
well, but the HPF language didn’t seem to be making the
headway people had hoped for. Writing the compilers was
difficult, and the underlying program model was more re-
strictive than some people liked.

In the absence of HPF, we had the option of making our
libraries available for explicit call from multiprocessor par-
allel programs written in C++ (an original implementation
language of the libraries). But, without some “syntactic
sugar” to represent HPF-like distributed data structures,
that approach was going to be either ugly or inefficient.
Adding language extensions, even at the syntactic-sugar
level, seemed like a daunting prospect if C++—with its no-
toriously complex structure—was the base language.

We thought Java might be a better solution. People were
starting to talk about Java Grande and the possibility that
eventually Java could be a high-performance language. The
two languages were similar enough that we could call our
libraries from Java. On the other hand, the syntax was con-
siderably simpler, and perhaps there was scope to extend it
with the features we wanted for data-parallel computing.
We threw around a lot of proposals for language extensions
and estimated we could produce a prototype translator for
the extended language in “a few months.”

That first prototype was working some time in 2000. We
immediately started to rewrite it with a more effective
translation scheme and better compile-time checking. The
first release of the software is available for free download
from our Web site, www.hpjava.org.



62 COMPUTING IN SCIENCE & ENGINEERING

like Fortran you can form regular sec-
tions. For example, 

matmul(c [[i : i + B – 1, 

j : j + B – 1]],

a, b) ;

assigns the matrix product of a and b
to a B by B block of elements of c,
starting at position i, j. A multiarray
section is a first-class expression in the
language—it can appear anywhere any
other multiarray-valued expression can
appear (but not on the left-hand side
of an assignment). (Microsoft’s C#
supports multidimensional arrays, but
not sections.)

This is as far as we go with array
syntax. We don’t provide Fortran 90-
like elemental operations on whole ar-
rays. If you want to copy one array or
section to another, you must use a util-
ity method HPutil.copy(). For
more complicated things like elemen-
tal arithmetic or transformational op-
erations on whole arrays, you’ll need
explicit loops or other library calls. Ar-
guably the more esoteric forms of ar-
ray syntax introduced in Fortran 90
only really helped compilers improve
performance on specialized architec-
tures. In HPJava we tried to provide
just enough syntax to make library
calls convenient.

Parallel Programming
The sequential multiarray syntax was a
spin-off from our original goal to get
distributed arrays into the language. In
HPJava, a distributed array is a special
kind of a multiarray whose elements
are distributed over a group of cooper-
ating processes. The type signatures
are similar to ordinary multiarrays, but
if the index range of a particular di-
mension is to be shared across proces-
sors, the corresponding position in the
signature gets a hyphen instead of an

asterisk. In a distributed array creation
expression, a distributed range object re-
places the integer extent in the creation
expression. Distributed range objects
play a role similar to templates in HPF.
Before we can create one, we must de-
fine the process grid (for HPF aficiona-
dos, this is equivalent to the processor
arrangement). So, you could create a
three-dimensional distributed array
with two distributed dimensions and
one sequential dimension like this:

Procs p = new Procs2(P, Q) ;

Range x = new BlockRange(M, 

p.dim(0)) ;

Range y = new CyclicRange(N,

p.dim(1)); 

double [[-,-,*]] a = new

double [[x, y, L]] on p ;

This is a lot of code, but it packs a lot of
information. Normally, a program re-
uses a given process grid or range object
to create many arrays, so you don’t have
to write all this code every time you cre-
ate an array. (The first three lines might
go in a “setup” section.) In our example,
the processor arrangement, p, is a P-by-
Q grid; the first dimension of a has ex-
tent M and is distributed block-wise over
the first dimension of the grid; the sec-
ond dimension has extent N and is dis-
tributed cyclically; and the third dimen-
sion is sequential, with extent L.

A mixture of compile-time and run-
time checks imposes some stringent
limits on how distributed arrays are
subscripted. It is a discipline of our
HPspmd programming model that if
an operation is part of the built-in 
language syntax, its implementation
should never require communication
with other processes. You would violate
this constraint if you could freely sub-
script distributed array elements. An
example of a legal access pattern looks
like this:

Adlib.writeHalo(b) ;

overall(i = x for :)

overall(j = y for :)

c [i, j] = 0.25 * 

(b [i-1, j] + 

b [i+1, j]) ;

This code assumes that distributed
arrays c and b are aligned—they share
the distributed ranges x and y. The
overall construct is a distributed paral-
lel loop—the iteration also runs over a
specific distributed range. For the
shifted indexes, i–1 and i+1 (in this ex-
ample) to be legal, you must create the
range y with ghost extensions (by using
another specialized constructor for the
object); the communication library
method writeHalo() updates the
ghost regions of array b. If you need a
more irregular pattern of access, you
must explicitly use a different commu-
nication method.

The parallel processing features of
HPJava are relatively specialized—a
programmer must understand how ar-
ray elements and computations are dis-
tributed—in some respects more like
MPI than HPF. But our experience has
been that once the language is mas-
tered, programmers can write many
parallel algorithms compactly and effi-
ciently. Arguably, the HPJava syntax is
only making explicit programming
strategies that a skilled HPF program-
mer—writing an efficient parallel pro-
gram—would be using implicitly any-
way.

Practical Examples
The HPJava translator itself and the
code it generates are pure Java. The
communication libraries—a distributed
array collective communication library
called Adlib and a Java binding of MPI
called mpiJava (both available at www.
hpjava.org)—were implemented using
a JNI interface to native MPI, so they

W E B  C O M P U T I N G



MAY/JUNE 2003 63

can be ported to most platforms where
an MPI implementation is available.
For MPI-based operation, the best-
tested platforms currently are Linux
using MPICH, Solaris using SunHPC,
and the IBM SP series. You also can
run Adlib-based programs on shared-
memory computers without going
through MPI: in this mode, the whole
operation is “pure Java” and, thus, is
platform independent.

The HPJava system is still new, and
we don’t have very many running ap-
plications. Figures 1 and 2 present some
early benchmark results for simple par-
allel algorithms running on the SP3 in-
stallation at Florida State University, a
42-node supercomputing system; each
node has four 375-MHz Power3
processors and 2 Gbytes of shared
memory. The comparison is with the
native HPF compiler for that platform.
Considering that the HPJava translator
is using a simplistic, nonoptimized
translation scheme (the HPF codes
were compiled at a high level of opti-
mization), HPJava competes surpris-
ingly well, at least on large, regular
problems. It would be naïve to expect
this level of performance in every case,
but the results are encouraging.

Figure 3 is a screen capture from a
demo you can play with on our Web
page (www.hpjava.org/demo.html).
This computational fluid dynamics
program is more complicated than the
Laplace or diffusion examples. The
program actually isn’t running in par-
allel: it runs in four independent ap-
plets in your browser, exploiting the
shared-memory model for Adlib com-
munication. This configuration is
strictly for fun, but we could run the
numerical kernel without modification
on a true parallel computer (for exam-
ple, a Java Swing version of the whole
interactive program could be run on
an SP3 if interactive nodes were avail-

able). The program’s source code also
is available on our Web page, and is an
interesting example of what a larger
program written in HPJava looks like.

W e implemented the current
HPJava compiler as a pre-

processor from the extended lan-
guage to intermediate Java source

1,500

1,250

1,000

750

500

250

0

M
flo

ps
/s

ec
on

d

Number of processors
1 4 9 9 25 36

High-performance

Fortran (HPF)

HPJava

Fortran

Java

Figure 1. Performance on Florida State University’s SP3 of a parallel HPJava program
implementing red–black relaxation on a 512 × 512 Laplace equation. Execution is on
up to 36 processors. Comparison is with IBM HPF, and also with standard
(sequential) Fortran and Java.

2,000

1,500

1,000

500

0

M
flo

ps
/s

ec
on

d

Number of processors
1 4 8 16 32

High-performance

Fortran (HPF)

HPJava

Fortran

Java

Figure 2. Performance on an SP3 of a parallel HPJava program solving the three-
dimensional diffusion equation on a 128 × 128 × 128 grid. There can be up to 32
processors.



64 COMPUTING IN SCIENCE & ENGINEERING

code, which is compiled by a standard
Java compiler. This implementation
is largely transparent to users, who
run an hpjavac command and get
class files as output. We put a lot of
effort into preserving this trans-
parency: the preprocessor includes a
complete front end for Java, and
we’ve checked most of the Java Lan-
guage Specification requirements.
So, it should be unusual to get mes-
sages from the back-end Java com-
piler.

The current translator (which is
not doing global optimizations) also
preserves line numbers throughout
the preprocessor, so line numbers in
runtime exception messages point
back to the original source. This
means that debugging is no harder
than it should be for a pure compiler.
The generated code incorporates var-
ious runtime checks associated with
the constraints of the HPspmd pro-
gramming model. Future work is
likely to concentrate on optimization
of the generated code and the devel-
opment of additional libraries and ap-
plications.

We expect HPJava will be most
helpful for problems that have some
degree of regularity. To a first ap-
proximation, the HPJava’s domain is

similar to HPF’s. Many of the most
challenging problems in modern
computational science have a very ir-
regular structure, so the value of our
language features in those domains is
more controversial. Nevertheless, we
believe HPJava has potential as a
practical tool in many important ar-
eas. At the very least, it should be a
good classroom tool for teaching par-
allel programming.

Reference
1. G. Fox, “Java and Grande Applications,”

Computing in Science & Engineering, vol. 5,
no. 1, 2003, pp. 60–62.

Bryan Carpenter is a research scientist in the

Pervasive Technology Labs at Indiana Univer-

sity. He has a PhD in physics from London Uni-

versity. He’s worked in the field of parallel com-

puting since 1985, initially on physics

applications, but in recent years on more gen-

eral library and language support for parallel

computing, especially Java-based. Contact him

at dbcarpen@indiana.edu.

Geoffrey Fox is director of the Community

Grids Lab at Indiana University. He has a PhD in

theoretical physics from Cambridge University.

Contact him at gcf@indiana.edu; www.

communitygrids.iu.edu/IC2.html.

W E B  C O M P U T I N G

Figure 3. Simulation of a parallel program describing inviscid flow through an
axisymmetric nozzle. This applet cluster lets you display contour and line plots of all
flow variables. You can view the demo at www.hpjava.org/demo.html.

Feedback?

Geoffrey Fox wants to
hear from you.

Comments? Applause?
Criticism? Suggestions? What
topic shall we tackle next? We
want to hear about interesting
topics and potential authors
that could benefit Web
Computing readers.

computer.org/join/grades.htm

GIVE YOUR CAREER A BOOST

UPGRADE YOUR MEMBERSHIP

Advancing in the IEEE Com-
puter Society can elevate your
standing in the profession.

Application to Senior-grade
membership recognizes

✔ ten years or more of 
professional expertise

Nomination to Fellow-grade
membership recognizes

✔ exemplary 
accomplishments in 
computer engineering

REACH HIGHER


