
Benchmarking HPJava: Prospects for Performance

Han-Ku Lee, Bryan Carpenter, Geoffrey Fox, Sang Boem Lim
{hkl, dbc, fox, slim}@csit.fsu.edu

Pervasive Technology Labs
Indiana University

Bloomington, Indiana 47401-3730

School of Computational Science and Information Technology,
Florida State University,

Tallahassee, Florida 32306-4120

February 8, 2002

Abstract

The HPspmd programming language model is a flexible hybrid of HPF-like data-
parallel language features and the popular, library-oriented, SPMD style, omitting
some basic assumptions of the HPF model. Here, we will discuss a Java-based
HPspmd language, called HPJava. HPJava extends the Java language with some
additional syntax and pre-defined classes for handling distributed arrays, and a few
new control constructs. We discuss the compilation system, including distributed
array types, HPspmd classes, translation schemes, optimization strategies, bench-
marks and the current status of the HPJava system.

1 Introduction

Historically, data parallel programming and data parallel languages have played a major
role in high-performance computing. By now we know many of the implementation
issues, but we remain uncertain what the high-level programming environment should
be. Based on the observations that compilation of HPF [8] is such difficult problem
while library based approaches more easily attain acceptable levels of efficiency, a hybrid
approach called HPspmd has been proposed [4].

The major goal of the system we are building is to provide a programming model
which is a flexible hybrid of HPF-like data-parallel language and the popular, library-
oriented, SPMD style without the basic assumptions of the HPF model. We refer to this
model as the HPspmd programming language model. It incorporates syntax for repre-
senting distributed arrays, for expressing that some computations are localized to some
processors, and for writing a distributed form of the parallel loop. Crucially, it also
supports binding from the extended languages to various communication and arithmetic
libraries. These might involve simply new interfaces to some subset of PARTI [1], Global
Arrays [10], Adlib [7], MPI [9], and so on. Providing the libraries for irregular commu-
nication may well be important. Evaluating HPspmd programming language model on
large scale applications is also an important issue.

1



2 HPSpmd Programming Language Model

2.1 HPspmd Language Extensions

In order to support a flexible hybrid of the data parallel and low-level SPMD approaches,
we need HPF-like distributed arrays as language primitives in our model. All accesses
to non-local array elements, however will be done via library functions such as calls to a
collective communication libraries, or simply get or put functions for access to remote
blocks of a distributed array. This explicit communication encourages the programmer
to write algorithms that exploit locality, and greatly simplifies the compiler developer’s
task.

The HPspmd model we discuss here has some similar characteristics to the HPF
model. But, the HPF-like semantic equivalence between the data parallel program and a
sequential program is given up in favor of a literal equivalence between the data parallel
program and an SPMD program. Understanding a SPMD program is obviously more
difficult than understanding a sequential program. This means that our language model
may be a little bit harder to learn and use than HPF. In contrast, understanding the
performance of a program should be easier.

An important feature of the HPspmd programming language model is that if a portion
of HPspmd program text looks like program text from the unenhanced base language, it
doesn’t need to be translated and behaves like a local sequential code. Only statements
including the extended syntax are translated. This makes preprocessor-based implemen-
tation of the HPspmd model relatively straightforward, allows sequential library codes
called directly, and allows the programmer control over generated codes.

2.2 Integration of High-Level Libraries

Libraries play a most important role in our HPspmd programming language model. In a
sense, the HPspmd language extensions are simply a framework to make calls to libraries
that operate on distributed arrays. Thus, an essential component of our HPspmd model is
to define a series of bindings of SPMD libraries and environments in HPspmd languages.

Various issues must be mentioned in interfacing to multiple libraries. For instance,
low-level communication or scheduling mechanisms used by the different libraries might
be incompatible. As a practical matter, these incompatibilities must be mentioned, but
the main thrust of the proposed research is at the level of designing compatible interfaces,
rather than solving interference problems in specific implementations.

The survey of run-time communication libraries for our HPspmd model is well-
documented in [4]. Our HPJava system is using Adlib and MPJ libraries which are
Java Native Interface (JNI) wrapper. Currently, we are developing pure-Java versions
of the run-time libraries, Adlib and MPJ to achieve the aim of Java—write–once–run–
anywhere—for parallel computing.

2.3 The HPJava Language

HPJava [5, 6] is an implementation of our HPspmd programming language model. It
extends the Java language with some additional syntax and with some pre-defined classes
for handling distributed arrays. The distributed array model is adopted from the HPF
array model. But, the programming model is quite different from HPF. It is one of
explicitly cooperating processes. All processes carry out the same program, but the
components of data structures are divided across processes. Each process operates on
locally held segment of an entire distributed array.

2



Procs2 p = new Procs2(2, 3) ;

on(p) {

Range x = new ExtBlockRange(N, p.dim(0)) ;

Range y = new ExtBlockRange(N, p.dim(1)) ;

double [[-,-]] a = new double [[x, y]] ;

... initialization for ‘a’

for(int iter=0; iter<count; iter++){

Adlib.writeHalo(a, wlo, whi);

overall(i = x for 1 : N - 2)

overall(j = y for 1 + (i‘ + iter) % 2 : N - 2 : 2) {

a[i, j] = 0.25F * (a [i - 1, j] + a [i + 1, j] +

a [i, j - 1] + a [i, j + 1]);

}

}

Figure 1: A red-black iteration in HPJava.

Figure 1 is a basic HPJava program for a red-black iteration. Procs2 is a subclass
of the special base class Group. It describes 2-dimensional grids of processes. The
distributed range class ExtBlockRange is a library class derived from Range. It represents
a range of subscripts to create arrays with ghost regions over a specific process dimension.
The on construct limits control to processes in its parameter group. The code in the on
construct is only executed by processes that belong to p. The on construct fixes p as the
active process group within its body.

The most important feature HPJava adds to Java is the distributed array. A dis-
tributed array is a collective object shared by a number of processes. Like an ordinary
array, a distributed array has some index space and stores a collection of elements of fixed
type. Unlike an ordinary array, the index space and associated elements are scattered
across the processes that share the array. There are some similarities and differences
between HPJava distributed arrays and the ordinary Java arrays. Aside from the way
that elements of a distributed array are distributed, the distributed array of HPJava is a
true multi-dimensional array like that of Fortran. Like in Fortran, one can form a regular
section of an array. These features of Fortran arrays are adapted and evolved to support
scientific and parallel algorithms.

The overall construct is another control construct of HPJava. It represents a dis-
tributed parallel loop, sharing some characteristics of the forall construct of HPF. The
symbol i scoped by the overall construct is called a distributed index Its value is a
location, rather an abstract element of a distributed range than an integer value. It
is very important that with a few exceptions we will mention later, the subscript of a
distributed array must be a distributed index, and the location should be an element of
the range associated with the array dimension. This restriction is a important feature,
ensuring that referenced array elements are locally held. The i‘ is read “i-primed”, and
yields the integer global index value for the distributed loop. A library function called
Adlib.writeHalo updates the cached values in the ghost regions with proper element
values from neighboring processes.

There are some other language extensions (not shown from Figure 1) in HPJava.

3



HPJava supports subarrays modeled on the array sections of Fortran 90. The ranges
of an array section are called subranges. A restricted group is the subset of processes in
some parent group to which a specific location is mapped. Using these subranges and
subgroups, HPJava can be relatively simpler since it can avoid all the alignment options
of HPF.

3 Compilation Strategies for HPJava

3.1 Distributed Array Types and HPspmd Classes

A distributed array type is not treated as a class type. If we said, “distributed arrays
have a class”, it would probably commit us to either extending the definition of class in
the Java base language, or creating genuine Java classes for each type of HPJava array
that might be needed. The fact that a distributed array is not a member of any Java
class means that a distributed array cannot be an element of an ordinary Java array,
nor can a distributed array reference be stored in a standard library class like Vector,
which expects an Object. In practise, this is not such a big restriction as it sounds. We
do allow distributed arrays to be a members of classes. So, the programmer can make
wrapper classes for specific types of distributed array.

The HPJava translator tries to tell HPJava code from Java code. It introduces a spe-
cial interface, hpjava.lang.HPspmd, which must be implemented by any class that uses
the special syntax. An HPspmd class is a class that implements the hpjava.lang.HPspmd
interface. The extended syntax of HPJava can only be used in methods, constructors and
fields declared in HPspmd classes and interfaces. The details of HPspmd class restrictions
can be found in [6].

Many of the special operations in HPJava rely on the knowledge of the currently
active process group—the APG. This is a context value that will change during the
course of the program as distributed control constructs limit control to different subsets
of processors. In the current HPJava translator the value of the APG is passed as a
hidden argument to methods and constructors of HPspmd classes.

3.2 Translation Scheme

All of current translation schemes is documented in the HPJava manual [6] and transla-
tion scheme [3]. The schemes are now in progess. Thus, the document will be updated
as the translator becomes evolved.

3.3 Optimization Strategies

Based on the observations for parallel algorithms such as Laplace equation using red-black
iterations, Laplace equation using jacobi relaxations, etc, a distributed array element
access is generally located in inner overall loops. The main issue of our optimization
strategies is the complexity of the associated terms in the subscript expression of a
distributed array element access. The following optimization strategies should remove
overheads of some naive translation schemes (especially for overall construct), and
speed up HPJava, i.e. produce a Java-based environment competitive with (and perhaps
ultimately, superior to) existing Fortran programming environments..

To eliminate complicated distributed index subscript expressions involving multipli-
cation in the inner loops, the new translation scheme adopt strength-reduction optimiza-
tions. This is achieved by introducing the induction variables which can be computed

4



HPJava Naive Strength Reduction Loop unrolling
Mflops 113.3 163.7 219.5

Table 1: Benchmarks of Laplace equation using red-blck iteration for HPJava version

Mflops 1-dimensional array 2-dimensional array Strength Reduction
IBM JIT 54.5 55.7 215.7
C++ 188.6 225.5 239.6
F77 231.8 231.8 240.8

Table 2: Benchmarks of Laplace equation for Java, C++, and F77 versions

efficiently by incrementing at suitable points with the induction increments. Another
strategy is to apply loop-unrolling optimization for hoisting the special run-time support
classes such as Block and Group. From the original overall translation scheme, we
use the localBlock() method to compute parameters of the local loop, this translation
is identical for every distribution format—block-distribution, simple-cyclic distribution,
aligned subranges, and so on—supported by the language. Of course there is an over-
head related to abstracting this local-block parameter computation into a method call;
the method call is made at most once at the start of each loop. Moreover, we can apply
common-subexpression elimination since there are many local variables newly declared
for each overall loop. Naive translation strategy for inner loops tends to repeatly delare
some variables for holding str() methods, global bases and steps, and so on.

Currently the optimization strategies have been “manually” applied to some HPJava
programs such as Lapalce equation using red-black with 500 iterations. They have been
tested using IBM Developer Kit 1.3 (JIT) with -O flag on Pentium4 1.5GHz Red Hat 7.2
Linux machines. The major performance improvement has been achieved by strength-
reduction optimization. This strategy makes the program 50% faster than the naive
translation. Also, adopting loop-unrolling optimization makes newly translated version
with strength-reduction optimization 27% faster. The benchmarks on one-processor are
in Table 1.

We also compared the sequential Java, C++, and Fortran version of the HPJava
program, all with -O (i.e. maximun optimization) flag when compiling. Like recent
benchmarking results from [2], Java JIT performance is identical with C++, and even
Fortran GNU compilers. The most important thing is the performance of the Laplace
equation in HPJava is approaching parity with that of Java, C++, and Fortran. This
means that the overheads introduced by run-time support classes have been almost (not
perfectly yet) removed by the above optimization strategies. The results are in Table 2.

4 Conclusion and Current Status of HPJava

The first fully functional version of the HPJava translator is now operational. The system
has been tested and debugged against a small test suite of available HPJava programs.
Currently most of the examples are short, although the suite does include an 800-line
Multigrid code, transcribed from an existing Fortran 90 program. One pressing concern
over the next few months is to develop a much more substantial body of test code and
applications.

In our source-to-source translation strategy, this means that standard Java state-
ments and expressions are copied through essentially unchanged. On the other hand the

5



inclusion of Java means that we do need a front-end that covers the whole of Java. The
translation scheme for HPJava depends in an important way on type information. It
follows that we need type analysis for the whole language, including the Java part. Writ-
ing a full type-checker for Java is not trivial (especially since the introduction of nested
types). So far, development of the front-end, especially the type-checker, has been the
most time-consuming step in developing the whole system.

5 Acknowledgements

This work was supported in part by the National Science Foundation Division of Ad-
vanced Computational Infrastructure and Research, contract number 9872125.

References

[1] A. Agrawal, A. Sussman, and J. Saltz. An integrated runtime and compile-time ap-
proach for parallelizing structured and block structured applications. IEEE Trans-
actions on Parallel and Distributed Systems, 6, 1995.

[2] M. Bull, L. Smith, L. Pottage, and R. Freeman. Benchmarking Java against C and
Fortran for Scientific Applications. In ACM 2001 Java Grande/ISCOPE Conference.
ACM Press, 2001.

[3] Bryan Carpenter, Geoffrey Fox, Han-Ku Lee, and Sang Boem Lim. Translation
Schemes for the HPJava Parallel Programming Language. In 11th International
Workshop on Languages and Compilers for Parallel Computing 2001, 2001.

[4] Bryan Carpenter, Geoffrey Fox, and Guansong Zhang. An HPspmd Programming
Model Extended Abstract. 1999. http://aspen.csit.fsu.edu/pss/HPJava.

[5] Bryan Carpenter, Guansong Zhang, Geoffrey Fox, Xiaoming Li, Xinying Li,
and Yuhong Wen. Towards a Java environment for SPMD programming.
In David Pritchard and Jeff Reeve, editors, 4th International Europar Con-
ference, volume 1470 of Lecture Notes in Computer Science. Springer, 1998.
http://aspen.csit.fsu.edu/pss/HPJava.

[6] Bryan Carpenter, Guansong Zhang, Han-Ku Lee, and Sang Lim. Parallel Program-
ming in HPJava. Draft, 2001. http://aspen.csit.fsu.edu/pss/HPJava.

[7] Bryan Carpenter, Guansong Zhang, and Yuhong Wen. NPAC PCRC run-
time kernel definition. Technical Report CRPC-TR97726, Center for Re-
search on Parallel Computation, 1997. Up-to-date version maintained at
http://www.npac.syr.edu/projects/pcrc/doc.

[8] High Performance Fortran Forum. High Performance Fortran language specification.
Scientific Programming, special issue, 2, 1993.

[9] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
University of Tenessee, Knoxville, TN, June 1995.
http://www.mcs.anl.gov/mpi.

[10] J. Nieplocha, R.J. Harrison, and R.J. Littlefield. The Global Array: Non-uniform-
memory-access programming model for high-performance computers. The Journal
of Supercomputing, (10):197–220, 1996.

6


