Performance Optimization on Model

Synchronization in Parallel Stochastic Gradient
Descent Based SVM

1*' Vibhatha Abeykoon
Intelligent Systems Engineering
Indiana University
Bloomington, USA
vlabeyko @iu.edu

Abstract—Understanding the bottlenecks in implementing
stochastic gradient descent (SGD)-based distributed support
vector machines (SVM) algorithm is important when it comes
to training larger data sets. The communication time to do the
model synchronization across the parallel processes is the main
bottleneck that causes inefficiency in the training process. In or-
der to produce an efficient distributed model, the communication
time in training model synchronization has to be as minimum as
possible while retaining a high testing accuracy. The effect from
model synchronization frequency over the convergence of the
algorithm and accuracy of the generated model must be well un-
derstood to design an efficient distributed model. In this research,
we identify the bottlenecks in model synchronization in parallel
stochastic gradient descent (PSGD)-based SVM algorithm with
respect to the training model synchronization frequency (MSF).
Our research shows that by optimizing the MSF in the data sets
that we used, a reduction of 98% in communication time can be
gained (16x - 24x speed up) with respect to high-frequency model
synchronization. The training model optimization discussed in
this paper guarantees a higher accuracy than the sequential
algorithm along with faster convergence with MSF optimization.

Index Terms—model synchronization, sgd, svim, distributed
communication optimization, scaling svm

I. INTRODUCTION

Support vector machines (SVM) are an important classifi-
cation algorithm in the supervised machine learning domain.
In training SVM for larger data sets, the most important
thing is to identify the bottlenecks in training. The main
reason is that the time to train an SVM is computationally
higher when it comes to dealing with high volume data with
higher dimensions. Distributed version of SVM is an effective
solution to this problem. In scaling distributed support vector
machines algorithm, the most important thing is to determine
the bottlenecks in scaling the algorithm. Number of processes
and limitation of resources in the distributed environment [1]
is vital to determine optimized performance. In scaling the
algorithm across the cluster resources, there are two types of
overheads that has to be dealt with. The major challenge is
avoiding the communication overhead in synchronizing dis-
tributed models which causes a lag in performance. The next
challenge is to identify the core algorithm used in the SVM to

2" Geoffrey Fox
Intelligent Systems Engineering
Indiana University
Bloomington, USA
gcf@iu.edu

3™ Minje Kim
Intelligent Systems Engineering
Indiana University
Bloomington, USA
minje @iu.edu

minimize the computation overhead. In referring to the com-
putation overhead, there are many versions of SVM algorithm
which has provided various optimization to improve the per-
formance in the sequential algorithm [2], [3], [4], [5], [16]. The
realization of a faster computational model will enhance the
computation model and reduce the computation overhead in
nodes in the distributed cluster. In realizing the communication
overhead, depending on the limited memory requirements and
computing resources in the cluster, the distributed algorithm
has to be optimized [11], [12], [14]. In order to provide
a highly efficient training model, the developed distributed
algorithm must be communication-efficient and computation-
efficient. Apart from that, the configurations in communication
model has to be optimized to obtain higher accuracy along
with an efficient training model. In distributed SVM, the
training model synchronization across the distributed nodes
is a very important fact to gain higher accuracy and efficiency
in training. In this research, we thoroughly look into the
communication overhead caused by the model synchronization
against the frequency of synchronization. In an optimum and
efficient distributed model, the communication cost should be
relatively lesser than the computation cost. With the faster
execution, maintaining a high accurate predictive model along
with the convergence of the algorithm with respect to scaling
must be thoroughly understood. Through out this research,
we analyze the effects of faster execution over accuracy of
the predictive model along with minimizing the bottlenecks in
scaling the SVM algorithm in distributed environments. In this
paper, we discuss how to guarantee the higher testing accuracy
and faster convergence by frequent model synchronization
along with minimizing communication overhead caused by
frequent model synchronization in the distributed paradigm.
In section II we discuss the related work done on SVM,
in section III, the mathematical aspects of the SVM training
model is discussed. In section IV, the nature of the traditional
sequential algorithm and the effect by the frequent model
synchronization in parallel algorithm will be discussed along
with simulating that effect on the sequential version of the
parallel algorithm. In section V the conducted experiments

and results will be explained with respect to the methodologies
discussed in section IV. The conclusions and future work of
the current research is discussed in section VI.

II. RELATED WORK

Support Vector Machines (SVM) by Cortes and Vapnik [2]
can be considered as one of the earliest methodologies used in
the supervised learning-based classification. There are couple
of sequential implementations like DC-SVM [3], LibSVM [4]
and Sequential Minimal Optimization (SMO) [5], [6], [7],
[8] which can be considered as most prominent sequential
implementations to solve the SVM problem. Building a SVM
model becomes computationally expensive depending on the
number of data points and dimension of a data point in the
data set. For a data set having few hundreds of Mega Bytes
can cause memory bound issues when the algorithm has to
compute a kernel matrix of size n x n where n is the number
of data points in the data set. To overcome this problem there
have been many studies done considering random samples via
bootstrap techniques [9], described in SVM ensemble. But
the performance improvement on nature of execution for very
large data sets has not been elaborated for bigger data sets in
these studies. In LibSVM, DC-SVM and most of the SVM-
based implementations, the core algorithm used is the SMO
algorithm which is computationally expensive. The parallel
implementations done on SMO-based SVM by Keerthi et al
in [10] can be recognized as one of the earliest work on this
problem. But the SMO itself is a computationally intensive
model due to the high overhead in optimizing Lagrangian
multipliers in an iterative way. Apart from parallel SMO, there
have been matrix approximation methods that has been used to
work on the memory-based overhead in the traditional SMO
algorithm [11], [12]. The matrix factorization methods and
SMO-based algorithms are still computationally intensive and
it doesn’t provide a pleasingly parallel model.

In the recent research, to avoid this problem involved with
model parallelism overhead, gradient descent-based optimiza-
tion [13] has been widely used. The main reason for the
overhead in model parallelism in traditional SVM algorithm is
due to solving the quadratic objective function using a linear
equation system using Lagrangian multipliers. In this regard,
SGD-based approaches are an alternative solution because the
computation of stochastic gradient step is much faster than
solving a set of linear equations. Instead of solving a linear
equation system, the problem can be solved by minimizing
the objective function using a traditional SGD-based approach
and estimating the weights that satisfy the minimal objective
function. The SGD-based approaches have been widely used in
pPackSVM [14] and fast feature extracting SVM approaches
[15]. Pegasos [16] is another prominent SGD-based SVM
optimization done with an adaptive decreasing learning rate,
which provides a guaranteed convergence in lesser number of
epochs.

III. BACKGROUND

In our research we focus on linear kernel-based binary clas-
sification on three different data sets. The Epsilon [17] dataset
contains 400,000 samples with 2,000 features; Ijcnnl [18]
dataset contains 35,000 samples with 22 features; Webspam
[19] contains 350,000 samples with 254 features. In referring
to the mathematical background associated with SGD-based
SVM, in the sample space of S with n samples, x; refers to
a d-dimensional feature vector and v; is the label of the i*"
data point as shown in (1).

S = {xmyi}
where i = [1,2,3,...,n], z € RY, y; e [+1,-1] (1)

In the SGD approach the objective is to minimize the
objective function in (2) with the constraint on the optimization
defined in (3):

o1
Jt :u%§|\w||2+c > glwi(z,y) @

z,y€S
g(w; (z,y)) = max(0, 1 — y(w|z)) (3)

Depending on the value of the constraint function, the
weight update will be done as in (4) with the learning rate
« by considering (5) as the derivative depending on the value
obtained for the expression in (6). C' in (2) refers to a tuning
hyper parameter. w in (2) refers to weight vector.

1
w:w—aVJt,azm 4
. w if max(0,1 — y{w|z)) =0
VI = { w — Cx;y; Otherwise)
ylw|z) = yw?! (6)

In the experiments conducted in this paper, we use a
learning rate o which is decaying with the epoch number t. The
communication overhead in frequent model synchronization
has not been discussed with respect to the convergence of
the algorithm on lower objective function value and higher
cross validation accuracy. In this paper we analyze how the
MSF affects the faster convergence and faster execution of the
distributed SGD-based SVM algorithm.

IV. METHODOLOGY

Our objective is to analyze the effect from model syn-
chronization on faster convergence and to see how model
synchronization communication overhead can be optimized
to run the training model in an efficient way. In this re-
gard, we modified the original sequential algorithm to get
the same effect caused by the parallel model synchronizing
algorithm to verify the accuracy of the distributed model we
built. The model synchronization resembles synchronizing the
training weight vector in all parallel machines by averaging
over the sum of a local weight vector in each machine.
Model synchronization in the distributed mode considers each

machine in the system as a single block of a sequential
algorithm, where each machine updates the model per each
data point and do a model synchronization after each machine
has calculated the corresponding model. This is the atomic-
level model synchronization that can take place in the frequent
model synchronization. It is clear that there can be a model
synchronization overhead caused by frequent synchronization
due to inter-process communication and this effect will be
addressed in section V. In this paper, we refer to a term
called model synchronization frequency (MSF) which refers to
the number of data points used to calculate the model before
synchronizing it with other processes in the distributed training
mode. Note that if data points used for model synchronization
is unity (= 1), it is considered as a higher MSF as we will be
synchronizing the models after each data point in each process
is done with calculating the model. If the data points used per
synchronization is a large number L, it means there will be
a model synchronization happening after calculating weight
for L data points in each process which implies that the MSF
is low. First, we focus on determining the accuracy of the
distributed model synchronizing algorithm that we introduce
with respect to the sequential version of the distributed com-
putation model without the communication implementation.
Then we focus on implementing the distributed version with
configurable MSF value to observe the convergence of the
algorithm with respect to higher cross-validation accuracy
(without over fitting) and lower value of the objective function.

A. Standard Sequential Algorithm

In the standard sequential version of SGD-based SVM
algorithm in Algorithm 1, the weights are initialized with a
Gaussian distribution and the training process is done for T’
iterations. The value for T is decided by prior experiments,
where both cross-validation accuracy and the value of the
objective function are considered in a such a way that both
values come to a stage where their oscillations are in a
minimum level. The reason for picking a constant 7' is for
the convenience in timing comparisons and to see how each
tuning parameter affects the convergence in the experiments
conducted with methods in IV-B and I'V-C.

Algorithm 1 Sequential Stochastic Gradient Descent SVM

1. INPUT : [z,y] € S,w € R?
2. OUTPUT : w € R?

3: procedure SGD(S, w)

4: for t=0to T do

5: for i =0 to n do

6: if (g(w; (z,y)) == 0) then
7: VJt =w

8: else

9: VJt=w — Cxy;

10: w=w—aVJ

return w

B. Model Synchronizing Sequential Algorithm

The model synchronizing sequential algorithm (MSSGD)
in Algorithm 2 is important because we are altering the order
of updating the weights in the parallel mode with respect to
the standard SGD algorithm. Hence, it is important to see the
effect from the sequential version of the same algorithm is as
same as the parallel version of the algorithm. This way we
can identify the accuracy of the implemented algorithm.

In the sequential version of the model synchronizing algo-
rithm, we shuffle the data before creating the small blocks of
data resembled S}, in algorithm 2. Each block resembles a one
chunk of data which will be processed in the parallel mode
in a single process before doing the model synchronization.
The block size of unity resembles to the standard SGD-based
algorithm. For each data point in each block the weight vector
is same unlike in the standard SGD algorithm. In parallel
mode if the parallelism is k, and the model synchronization
frequency is one, the initial weights of each element processed
in each processor is same, implying the sequential version
of the algorithm must have the same quality, that is the
intuitive idea behind the different block sizes chosen in the
sequential algorithm. But, in the sequential algorithm, the
model synchronization does not mean that it is doing any
communication over the network. Instead, it merely represents
the idea that each block will have the same initial weight for
each element in a given block. If the block size related to
model synchronization frequency in distributed mode is by
the corresponding sequential algorithm have a block size of
by = kby.

Algorithm 2 Sequential Model Synchronizing Algorithm
. INPUT : S €[Sy, S5..., Sp),w € R?

: OUTPUT :w € R?

: procedure MSSGD(S, w)

for k=1to b do

procedure SGD(S), w)
return w

S

C. Distributed Model Synchronizing Algorithm

In the model synchronizing distributed algorithm in Algo-
rithm 3, the training data set is loaded in a way that equal
amount of data is loaded to each machine in order to balance
the load among processes. Load balancing is compulsory in
order to reduce the process waiting time, which is caused
when a subset of processes or a process takes a longer time
to complete the computation than the rest. Each machine
loads the data and shuffles before the training process. The
shuffled data is then processed as blocks in the training
process. When the block size defined in the training process
is Sp, each machine will run the sequential MSSGD SVM
algorithm on s, number of data points in each process (a
block is processed) and the model synchronization is done
after processing each block with s; data points in each of the
processes. For each block there will be its own local model,
which then communicates with each of the machines using

TABLE I

DATASETS
DataSet Training Data (60%,80%) | Cross-Validation Data (60%,80%) | Testing Data (60%,80%) | Sparsity | Features
Ijennl 21000 ,28000 7000,3500 7000,3500 40.91 22
Webspam | 210000,280000 70000,35000 70000,35000 99.9 254
Epsilon 240000,320000 80000,40000 80000,40000 44.9 2000

MPI_AllReduce. The average of this is used as the global
model after each model synchronization. The global model
then becomes the initial weights for the next block. The T
training iterations are conducted to reach a convergence.

Algorithm 3 Distributed Model Synchronizing Algorithm

1. INPUT : S €[S1,55...,Sp),w € R|(j—4)|« K=b
2 OUTPUT :w € R¢

3: procedure DMSSGD(S, w)

4 In Parallel in K Machines [S1, ..., 5] C S

5: Wiocal = W

6: for m =i to 5 do

7: procedure MSGD(S,,,, Wiocar)

8: Wylobal = MPI_AllReduce(Wjocai)

9: w = wglobal/K

return w

V. EXPERIMENTS

In the experiments, we focused on three main sections to
analyze how to optimize the training process such that we
gain faster execution with higher accuracy. In the first set of
experiments, we see how the model synchronization variation
affects the convergence of the sequential algorithm and analyze
how that information can be used to optimize the distributed
version of the algorithm. In the second set of experiments,
we change the model synchronization frequency (MSF) and
parallelism and observe how convergence can be obtained. In
the third set of experiments, we analyze the execution time
variation with respect to the variation of MSF for different
parallelisms. From these experiments we analyze how an
optimized training model can be obtained to guarantee faster
execution and higher testing accuracy [20].

Ijcnnl, Webspam and Epsilon are the datasets which are
used in the experiments. In Table I, the nature of the data
sets is shown. The experiments were conducted in Intel(R)
Xeon(R) distributed cluster hosted in Future Systems. For the
experiments we use single node core level parallelism for
smaller data sets and for the largest data set we use node level
parallelism with Infiniband support in OpenMPI. Throughout
the experiments we kept the hyper-parameter C' = 1 in (2)
and the learning rate as an adaptive diminishing function as
in (4).

A. Model Synchronization Effect on Sequential Algorithm
Convergence

The objective of these sequential experiments is to analyze
how the variation of model synchronization effect could affect

Cross-Validation Accuracy Variation against Epochs: lienn1 Dataset

Cross-Validati
o
9
8
=
o
N
©

70 4 8 d

65 L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Epochs

Fig. 1. Cross Validation Accuracy Variation in Sequential Algorithm for
Ijcnnl Dataset : Block Size = [1,2,4,8,512,1024]

Training Time Variation against Model Synchronization Frequency: ljcnnl Dataset

T
Training Time

Training Time (s)

L ' ' ' '
1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Block Size

Fig. 2. Training Time Variation with Variable Block Sizes on Ijcnnl Dataset

the the cross-validation accuracy. !

In Ijennl, we considered the block sizes 1,2,4,8,1024 and
block sizes 1,2,4,8,4096 for Webspam dataset to analyze the
effect on cross-validation accuracy. Figures 1 and 3 show
experiments on Ijcnnl and Webspam data sets. The effect
from MSF over cross-validation accuracy is approximately
negligible in these two data sets. In the experiments, we initial-
ized multiple experiments with unique Gaussian initialization
for each experiment. Then we averaged the cross-validation
accuracy over multiple experiments with better convergence.
From experiments we learned that the convergence of Ijcnnl
data set is highly sensitive on the initialization unlike Web-
spam data set. With this experiment setting, we were able to
get an accurate conclusion on the cross-validation accuracy
variation with respect to variable MSF. Figures 2 and 4 shows
the training time variation with MSF variation. When the

IBlock size of b has b data points in the block. The highest MSF occurs
when b = 1 and b=co the lowest MSF occurs. We state MSF = 1/b , when
the block size used is b.

Cross-Validation Accuracy Variation against Epochs

Block Size
1

Cross-Validation Accuracy

PR—
4
8
4096
I

35 L L L I L
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Epochs

Fig. 3. Cross Validation Accuracy Variation in Sequential Algorithm for
Webspam Dataset : Block Size = [1,2,4,8,4096]

Training Time Variation against Model Synchronizati]! H pam Dataset

7500 T T T T T T

Training Time

7000 -
6500
6000

5500 - -

Training Time (s)

5000 - N -

4000 L L L L L L L
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Block Size

Fig. 4. Training Time Variation with Variable Block Sizes on Webspam
Dataset

MSF is high (lower block size), the training time is much
higher and the training time dilutes down and becomes steady
after a threshold MSF value. This observation implies that
with a higher block size (lower MSF) algorithm to run much
faster with the same convergence. The reason for time dilution
with higher block size comes with the less overhead caused
by average model calculation and cross-validation accuracy
calculation as they are done when the model synchronization
is done. When MSF is lower, the frequency of model averag-
ing and cross-validation accuracy calculation is lower and it
provides a performance boost.

B. Model Synchronization Effect on Parallel and Sequential
Algorithm Convergence

In understanding how the frequent model synchronization
can affect the cross-validation accuracy in sequential version
and parallel version, we conducted experiments to see how the
cross-validation accuracy behaves in the training period. The
main objective of these experiments is to see whether parallel
algorithm and sequential algorithm behaves in a similar way
towards convergence. Using these experiments, we can verify
the approach we used in the experiments are accurate. The
comparison of distributed model synchronization along with
the replica of it in sequential mode allows us to show that the
developed model is functionally accurate. We used Ijcnnl and
Webspam data sets to see how the distributed and sequential

Variation of Cross-Validation Accuracy: licnn1 Dataset: Block Size=1, Parallelism [1,32]

2 T
? —
8 e S
3
0
Q 1
<
gl |
2 Configuration [parallelismy block-size;]
g
S nr- .
) 2 1c —
g ®r Txte ——]
0 & ! | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

Epochs

Varlation of Cross-Validation Accuracy : ljcnn1 Dataset: Block Size=16, Parallelism [1,32]

@l - At e . 1
90 b - — B - T

>
0
g
3
9 ol
g [N
g sl 1
= il 4
H 86»
-% 8- Configuration [parallelismy block-sizec]
> 4
A X t6e
g wr futee —]
0 I | I I | I I I I

0 50 100 150 200 20 300 350 400 450 500

Epochs

Fig. 5. Cross Validation Accuracy Variation against Block Size with Paral-
lelism : Ijcnnl Dataset

Variation of Cross-Validation Accuracy: Webspam Dataset: Block Size=1, Parallelism [1,32]

p—— —

————F—

Configuration [parallelismy block-size] |

sl e ——]
I xie

Cross-Validation Accuracy
=
=
L

60 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Epochs

Variation of Cross-Validation Accuracy: Webspam Dataset: Block Size=16, Parallelism [1,32]

o : — —

s ——————

8 7 4
80y 4

Configuration [parallelismy block-sizec] |

&L x16c —]
| 1x16c

| I I

0 50 100 150 200 250 300 350 400 450 500

Cross-Validation Accuracy
=
=

Epochs

Fig. 6. Cross Validation Accuracy Variation against Block Size with Paral-
lelism : Webspam Dataset

model can provide similar results and the experiments results
can be referred from [20] 2. These results show that distributed
model and sequential model provide similar results ensuring
that the distributed model functions accurately.

2All the experiments carried out to cover 2,4,8,16,32 parallelisms against
1-4096 block sizes for Ijcnnl and Webspam data sets.

C. Distributed Model Synchronizing Experiments

1) Distributed Model Synchronization on Convergence: In
the distributed model synchronizing experiments, we evaluate
how the algorithm convergence is affected by the model
synchronization frequency along with the variation of the
parallelism. We consider three groups of experiments for this,
in the first one we consider the high frequency range where
it involves 1-8 block sizes. In the second group, 16-512 block
sizes for mid range frequencies and for third group, lower
frequencies with 512-4096 block sizes were used. The reason
behind variable frequency groups comes when we have a data
set with a limited data size, we can only pick up to a certain
set of frequencies. For instance, in Ijcnnl data set, the total
training data points are 28,000 (80% of data for training) and if
we have 32 processes to do the computation, a single process
will have only 875 data points, so the maximum block size we
can use is 875 and the minimum is 1 and they corresponds to
lowest MSF and highest MSF respectively. In figures 7, 8 and
9, the parallel experiments on parallelism 32 for variable MSF
is shown. It is clear from these experiments that the variation
of cross-validation accuracy and value of the objective function
remains approximately same with the denoted MSFs on all
three datasets. From these observations, we can understand that
frequent model synchronization is not highly vital to obtain a
higher cross-validation accuracy or a lower objective function
value, irrespective of the nature of the data set. As same as in
the sequential experiments, the random Gaussian initialization
is vital to identify the best initialization which provides an
accurate output. This is the same realization we obtained from
the sequential version of the algorithm and by these results,
we can verify the parallel model we developed is consistent
with the sequential form of the modified SGD-based SVM
algorithm. We conducted these experiments for parallelism
2,4,8,16 and 32 and all these results can be seen in [20].

2) Distributed Model Synchronization on Efficient Training:
Now we have know that MSF effect on the convergence of the
algorithm is relatively independent on faster convergence. The
next important factor is to determine how to select a MSF to
obtain an efficient training model. In analyzing this fact, first
we considered the overall training time needed on variable
MSF with variable parallelisms. In figure 11 the training time
variation for variable MSFs on 32 MPI processes is shown.
It is evident from these results that higher MSF (lower block
sizes) has a higher overhead in the training process. This effect
dilutes down when the MSF is reduced and dilutes down to
a less variable region at the lowest MSFs for each data set.
In understanding the reason for the lagging in efficiency for
higher MSF region, we conducted the same experiment by
doing benchmark on the communication and computation time
for variable MSFs on variable parallelisms.

The training time breakdown for Ijcnnl, Webspam and
Epsilon data sets for parallelism of 32 is in figure 10. In
the higher MSF region (block sizes 1-8) the communication
overhead is very high with respect to the lower MSF region
(block size beyond 8). It is evident from this experiment that

Variation of Objective Function Value with Communication Frequency: licnn1 Dataset

T 3

Paralll Configuraion =
ate ——

10 e <

e 3

i e j

14 stz 4

0_1"’ O - T 1]
0 50 100 150 200 250 300 350 400 450 500

Objective Function Value

Epochs

Variation of Cross-Validation Accuracy with Communication Frequency: ljnn1 Dataset

L — -

“ Parallel Configuration)
80 - ™ie—
5 wmx E
e

0 L 2t)
65 sz T
60 \ \ \

0 50 100 150 200 250 300 350 400 450 500

Cross-Validation Accuracy

Epochs

Fig. 7. Distributed Model Synchronizing Algorithm on Ijcnnl Dataset for
Parallelism [32] and Block Size = [1,2,4,8,512]

Variation of Objective Function Value with Communication Frequency: Webspam Dataset

[

3

100 ‘ .

> E Paralll Configuraion =

5 100 = a2t

T) F 2

c [xde

5 10 s

I; ; 3512

2 18 H

i ET -

2 L | I |

L

0 0 50 100 150 200 250 300 350 400 450 500
Epochs

N Variation of Cross-Validation Accuracy with Communication Frequency: Webspam Dataset

Q

S _

§ 85~/ .

c 05 Paale Configraion

25 1 e T

T 70+ w2 -

3 . i e i

g I ase

b 60 - st T

i s | | |

6 0 50 100 150 200 250 300 350 400 450 500

Epochs

Fig. 8. Distributed Model Synchronizing Algorithm on Webspam Dataset for
Parallelism [32] and Block Size = [1,2,4,8,512]

when MSF is higher the total communication overhead is high
and it makes the training model to run much slower than that of
lower MSF. In considering the total communication overhead,
there are two main factors governing the communication delay.
The main reason is the MSF value and the second reason is
the magnitude of the vector which is communicated over the
network or over the processes. Ijcnnl communicates a vector
with 22 dimensions, Webspam a vector of 254 dimensions and
Epsilon a vector of 2000 dimensions. It is clear from the time

Variation of Objective Function Value with Communication Frequency: Epsilon Dataset

100 T E
3 Paralll Confguration

b ie— 1
10) -
e E

ate]
aPxadhe 4

01 ! ! ! !
0 50 100 150 200 20 300 350 400 450 500

Objective Function Value

Epochs

Variation of Cross-Validation Accuracy with Communication Frequency: Epsilon Dataset

BSL —— ~ —_— —

Parallel Configuration)
‘ At ——
65 ™ -
| ke
60 f* ke
55 ‘* Rad06c 7
| | | |

Cross-Validation Accuracy

0 50 100 150 200 250 300 350 400 450 500

Epochs

Fig. 9. Distributed Model Synchronizing Algorithm on Epsilon Dataset for
Parallelism [32] and Block Size = [1,2,4,8,512]

breakdown experiments that, when the vector shared over the
network or processes has a higher dimension, the communica-
tion overhead is very high. When training data sets with higher
data sizes and higher dimensions the communication overhead
is very high. To mitigate this issue in training, we can increase
the block size (decreasing MSF) so that minimum amount
of communication is done. Along with higher MSF there is
an additional computation overhead added in calculating the
cross-validation accuracy and objective function value per each
communication. The algorithm convergence is decided by the
optimum value recorded by each of these variables. So each
time we do a communication to synchronize the model, we
check the convergence of the algorithm. This computation
overhead is proportional to the size of the cross-validation
data set. This effect dilutes down to a negligible value when
a lower MSF is used. The effect can be clearly seen when
the computation time for block size 1 and 2 is analyzed. The
computation time for block size 1 is obviously high for all the
data sets, but this effect dilutes down as the MSF lowers. But
the effect from this computation overhead on efficiency of the
algorithm is lesser than that of communication overhead.

3) Distributed Model Synchronization on Prediction Model:
The most important fact after training is to obtain a higher
testing accuracy from the optimum trained model. It is im-
portant to see whether there is an effect from MSF on the
testing accuracy for each data set. In figure 12, the testing
accuracy variation on variable MSFs for all three datasets is
shown with respect to parallelism of 32. It is evident from
these results that the testing accuracy is not affected not more
than +0.5% in all three data sets. This observation provides
us the final proof we needed to understand the effect from the
MSF variation over a highly optimized training model. The

TABLE 11
EXPERIMENT SUMMARY : 60% TRAINING DATA

Sequential | Parallel . Speed
Dataset | Timing | Timing S:gcue;;t;al AP; ira:;il Up
(s) (s) uracy | ACCUracy | 1 vs x32)
Tjennl 22.19 1.37 90.63 91.51 16.20
Webspam [2946.49 120.02 [87.69 89.12 24.55
Epsilon {22208.07 |968.782(80.06 84.36 22.92

MSF effect on prediction model, convergence and efficiency
of training model shows that a lower MSF is the best fit to
train the SGD-based SVM algorithm to obtain an efficient high
accurate model.

Table II shows the summary of the experiments done in
this research covering the aspects of improved efficiency, high
testing accuracy and better speed up. From these results, it is
clear that the MSF optimized distributed model training is a
better solution in training larger data sets with SVM.

VI. CONCLUSION AND FUTURE WORK

In understanding the distributed scaling of the SGD-based
SVM algorithm, it is vital to keep track on the effect of
the model synchronization frequency on the convergence of
the algorithm. The convergence is governed by the cross-
validation accuracy and value of the objective function. Both
parameters need to be simultaneously optimized such that the
fluctuation of each variable must be the least or satisfy an
expected threshold where we call, the algorithm has reached
the convergence. The final outcome from the trained model is
to guarantee the expected high accuracy in the testing phase.
In our research, it is evident that the model synchronization
frequency is a key factor as far as fast execution and fast
convergence is considered. Our research also shows that high
MSF value is loosely coupled with the convergence of the
training model, test accuracy and efficient execution. This
allows us to use the MSF as lower as possible to obtain an
efficient training model with high accuracy. The efficiency
of the training model is highly valuable when training large
data sets with higher dimensions and this is evident with the
observations we made on Ijcnnl, Webspam and Epsilion data
sets. With reference to standard SGD-based sequential SVM
algorithm, our distributed model provides higher accuracy for
all three data sets with less over-fitting on training data. This
shows that our model synchronization optimization is better
in gaining a higher testing accuracy with efficient execution.

We plan to expand this model on training high volume data
in edge devices in sensory networks to obtain high efficient
training with limited resources. In addition to that we plan
to work on implementing a streaming model to support high
volume data streams in cloud environments.

ACKNOWLEDGMENT

This work was partially supported by NSF CIF21 DIBBS
1443054 and we extend our gratitude to the FutureSystems
team and Digital Science Center for their support with the
infrastructure.

10000

1000

Training Time (s) Log

Time (s)

Fig. 10. Training Time Breakdown in Data sets for Parallelisms 32, 80% Training Set

ljcnn1 x32

Webspam x32

Epsilon x32

25 T T T 700
Time Category

Computation Time 1

Communication Time B2

Time (s)

300 [

200 -

100

T - e a—

Time Category
Computation Time 1
Communication Time B2 _|

Time Category
Computation Time 1
Communication Time B2

7000

Time (s)

16
Block Size

22 e1 128 25 512 1o 12 a4 s 16

Training Time Variation against Block Size : Parallelism = 32

Data Source
[
Webspam Z2)
Epsilon)

16 128 256 512 1024 2048 4096

32 64
Block Size

Fig. 11. Distributed Training Time Variation: Parallelism = 32, 80% Training

Set

Testing Accuracy

Testing Accuracy Variation against Block Size: Parallelism = 32

T T T
Data Source
Webspam
ljenn1
Epsilon

256 512 1024 2048

Block Size

Fig. 12. Distributed Testing Accuracy Variation with Block Size: Parallelism

32

REFERENCES

Zhang, Kai, et al. "Scaling up kernel svm on limited resources: A low-
rank linearization approach.” Artificial intelligence and statistics. 2012.
Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks.
Mach. Learn. 20, 3 (September 1995), 273-297iu-psgdsvmc.

Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon, A Divide-and-Conquer
Solver for Kernel Support Vector Machines, Article:CoRR, eprint.
1311.0914,(2013).

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for
support vector machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article
27 (May 2011), 27 pages.

2 e

Block Size

[5]

[6]

[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

128 256 512 1021 2008 1 2 4 8 16 32 61 128 256 512 1021 2018 4096

Block Size

John C. Platt. 1999. Fast training of support vector machines using se-
quential minimal optimization. In Advances in kernel methods, Bernhard
Scholkopf, Christopher J. C. Burges, and Alexander J. Smola (Eds.).
MIT Press, Cambridge, MA, USA 185-208.

R.-E. Fan, P-H. Chen, and C.-J. Lin. Working set selection using second
order information for training SVM. Journal of Machine Learning
Research, 6:1889-1918, 2005.

Yang, Jifei and Ye, C.-Z and Quan, Y and Chen, Ni-Yun. (2004).
Simplified SMO algorithm for support vector regression. 33. 533-537.
Machine Learning Course, The Simplified SMO Algorithm, North
Eastern University, College of Computer and Information Science
Kim HC, Pang S, Je HM, Kim D, Bang SY. Constructing support vector
machine ensemble. Pattern recognition. 2003 Dec 1;36(12):2757-67.
Cao, Li Juan, et al. “Parallel sequential minimal optimization for the
training of support vector machines.” IEEE Trans. Neural Networks 17.4
(2006): 1039-1049.

Edward Y. Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li,
Zhihuan Qiu, and Hang Cui. 2007. PSVM: parallelizing support vector
machines on distributed computers. In Proceedings of the 20th Interna-
tional Conference on Neural Information Processing Systems (NIPS’07),
J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (Eds.). Curran
Associates Inc., USA, 257-264.

Chang, Edward Y. ”"Psvm: Parallelizing support vector machines on
distributed computers.” Foundations of Large-Scale Multimedia Infor-
mation Management and Retrieval. Springer, Berlin, Heidelberg, 2011.
213-230.

Zinkevich, Martin, et al. “Parallelized stochastic gradient descent.”
Advances in neural information processing systems. 2010.

A. Z. Zeyuan, C. Weizhu, W. Gang, Z. Chenguang and C. Zheng, "P-
packSVM: Parallel Primal grAdient desCent Kernel SVM,” 2009 Ninth
IEEE International Conference on Data Mining, Miami, FL, 2009, pp.
677-686. doi: 10.1109/ICDM.2009.29

Y. Lin et al., "Large-scale image classification: Fast feature extraction
and SVM training,” CVPR 2011, Colorado Springs, CO, USA, 2011,
pp. 1689-1696. doi: 10.1109/CVPR.2011.5995477

Shalev-Shwartz, Shai, et al. "Pegasos: Primal estimated sub-gradient
solver for svm.” Mathematical programming 127.1 (2011): 3-30.
Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved GLM-
NET for 11-regularized logistic regression. Journal of Machine Learning
Research, 13:1999-2030, 2012.

Danil Prokhorov. IJCNN 2001 neural network competition. Slide pre-
sentation in IJCNN’01, Ford Research Laboratory, 2001.

De Wang, Danesh Irani, and Calton Pu. “Evolutionary Study of Web
Spam: Webb Spam Corpus 2011 versus Webb Spam Corpus 2006”. In
Proc. of 8th IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom 2012).
Pittsburgh, Pennsylvania, United States, October 2012.

Vibhatha Abeykoon, Geoffrecy Fox. “Parallel Stochastic Gradient De-
scent based Experiment Web Results”, Digital Science Center, Indiana
University Bloomington, United States, February 2019. [Online]. Avail-
able: https://iu.app.box.com/s/eqauk3bknywifdmkao6wpp4gp3602es9.
[Accessed: 22-Feb-2019]

