
Performance Optimization on Model
Synchronization in Parallel Stochastic Gradient

Descent Based SVM
1st Vibhatha Abeykoon

Intelligent Systems Engineering
Indiana University

Bloomington, USA
vlabeyko@iu.edu

2nd Geoffrey Fox
Intelligent Systems Engineering

Indiana University
Bloomington, USA

gcf@iu.edu

3rd Minje Kim
Intelligent Systems Engineering

Indiana University
Bloomington, USA

minje@iu.edu

Abstract—Understanding the bottlenecks in implementing
stochastic gradient descent (SGD)-based distributed support
vector machines (SVM) algorithm is important in training larger
data sets. The communication time to do the model synchro-
nization across the parallel processes is the main bottleneck
that causes inefficiency in the training process. The model
synchronization is directly affected by the mini-batch size of
data processed before the global synchronization. In producing
an efficient distributed model, the communication time in train-
ing model synchronization has to be as minimum as possible
while retaining a high testing accuracy. The effect from model
synchronization frequency over the convergence of the algorithm
and accuracy of the generated model must be well understood
to design an efficient distributed model. In this research, we
identify the bottlenecks in model synchronization in parallel
stochastic gradient descent (PSGD)-based SVM algorithm with
respect to the training model synchronization frequency (MSF).
Our research shows that by optimizing the MSF in the data sets
that we used, a reduction of 98% in communication time can be
gained (16x - 24x speed up) with respect to high-frequency model
synchronization. The training model optimization discussed in
this paper guarantees a higher accuracy than the sequential
algorithm along with faster convergence.

Index Terms—model synchronization, sgd, svm, distributed
communication optimization, scaling svm

I. INTRODUCTION

Support vector machines (SVM) algorithm is an important
classification algorithm in the supervised machine learning do-
main. In training SVM for larger data sets, the most important
thing is to identify the bottlenecks in training. The main reason
is that the time to train an SVM is computationally higher
when it comes to dealing with high volume data with higher
dimensions. The distributed version of SVM is an effective
solution to this problem. In scaling distributed support vector
machines algorithm, the most important thing is to deter-
mine the bottlenecks in scaling the algorithm. The number
of processes and limitation of resources in the distributed
environment [1] is vital to determine optimum performance.
In scaling the algorithm across the cluster resources, there are
two types of overheads that have to be dealt with. The major
challenge is avoiding the communication overhead in synchro-
nizing distributed models which causes a lag in performance.

The next challenge is to identify the core algorithm used in
the SVM to minimize the computation overhead. In referring
to the computation overhead, there are many versions of SVM
algorithm which has provided various optimization to improve
the performance in the sequential algorithm [2], [3], [4], [5],
[16]. In parallel, fast SVM algorithms will reduce the compu-
tational load in the nodes of the cluster. This fact, however,
will make communication overhead more pronounced. Conse-
quently, the next natural step is to optimize communication.
[11], [12], [14]. In order to provide a faster parallel training
model, the distributed algorithm must be communication-
efficient and computation-efficient. The communication model
decides the final value of the globally-synchronized model.
So, the configurations in the communication model have to be
optimized to obtain higher accuracy. The training model syn-
chronization across the distributed nodes is a very important
fact to gain higher accuracy and efficiency in training. In this
research, we thoroughly look into the communication overhead
caused by the model synchronization against the frequency
of synchronization. In an optimum and efficient distributed
model, the communication cost should be relatively lesser than
the computation cost. With the faster execution, maintaining
a highly accurate model has to be well understood. Scaling
the distributed algorithm by maintaining the output quality
as same as the sequential algorithm is vital to guarantee the
consistency of the scaled algorithm. Throughout this research,
we analyze the effects of faster execution over the accuracy
of the trained model. And also we analyze how to minimize
the bottlenecks in scaling the SVM algorithm in distributed
environments. In this paper, we discuss how to guarantee
higher testing accuracy and faster convergence by optimizing
model synchronization along with minimizing communication
overhead caused by frequent model synchronization in the
distributed paradigm. In section II we discuss the related work
done on SVM, in section III, the mathematical aspects of the
SVM training model is discussed. In section IV, the nature
of the traditional sequential algorithm and the effect by the
frequent model synchronization in the parallel algorithm is
discussed along with simulating that effect on the sequential

version of the parallel algorithm. In section V, the conducted
experiments and the results are explained with respect to the
methodologies discussed in section IV. The conclusions and
future work of the current research are discussed in section
VI.

II. RELATED WORK

Support Vector Machines (SVM) by Cortes and Vapnik [2]
can be considered as one of the earliest methodologies used in
the supervised learning-based classification. There are couple
of sequential implementations like DC-SVM [3], LibSVM [4]
and Sequential Minimal Optimization (SMO) [5], [6], [7],
[8] which can be considered as most prominent sequential
implementations to solve the SVM problem. Building an SVM
model becomes computationally expensive depending on the
number of data points and the dimension of a data point in the
data set. For a data set having few hundreds of Mega Bytes
can cause memory bound issues when the algorithm has to
compute a kernel matrix of size n×n where n is the number
of data points in the data set. To overcome this problem there
have been many studies done considering random samples via
bootstrap techniques [9], described in SVM ensemble. In these
studies, the performance improvement on nature of execution
for very large data sets has not been elaborated. In LibSVM,
DC-SVM and most of the SVM-based implementations, the
core algorithm used is the computationally expensive SMO
algorithm. The parallel implementations, done on SMO-based
SVM by Keerthi et al in [10] can be recognized as one of
the earliest work on this problem. But the SMO itself is a
computationally intensive model due to the high overhead in
optimizing Lagrangian multipliers in an iterative way. Apart
from parallel SMO, there have been matrix approximation
methods that have been used to work on the memory-based
overhead in the traditional SMO algorithm [11], [12]. The ma-
trix factorization methods and SMO-based algorithms are still
computationally intensive and it doesn’t provide a pleasingly
parallel model.

In recent research, to avoid this problem involved with
model parallelism overhead, gradient descent-based optimiza-
tion [13] has been widely used. The main reason for the
overhead in model parallelism in SMO and matrix-based
approaches is due to the high computation and communication
overhead in solving the quadratic objective function using a
linear equation system. In this regard, SGD-based approaches
are an alternative solution because the computation of stochas-
tic gradient step is much faster than solving a set of linear
equations. Instead of solving a linear equation system, the
problem can be solved by minimizing the objective function
using a traditional SGD-based approach and estimating the
weights that satisfy the minimal objective function. The SGD-
based approaches have been widely used in pPackSVM [14]
and fast feature extracting SVM approaches [15]. Pegasos
[16] is another prominent SGD-based SVM optimization done
with an adaptive decreasing learning rate, which provides a
guaranteed convergence in a lesser number of epochs.

III. BACKGROUND

In our research we focus on linear kernel-based binary clas-
sification on three different data sets. The Epsilon [17] dataset
contains 400,000 samples with 2,000 features; Ijcnn1 [18]
dataset contains 35,000 samples with 22 features; Webspam
[19] contains 350,000 samples with 254 features. In referring
to the mathematical background associated with SGD-based
SVM, in the sample space of S with n samples, xi refers to
a d-dimensional feature vector and yi is the label of the ith

data point as shown in (1).

S = {xi, yi}
where i = [1, 2, 3, ..., n], xi ∈ Rd, yi ∈ [+1,−1] (1)

In the SGD approach the objective is to minimize the
objective function in (2) with the constraint on the optimization
defined in (3):

J t = min
w∈Rd

1

2
‖w‖2 + C

∑
x,y∈S

g(w; (x, y)) (2)

g(w; (x, y)) = max(0, 1− y〈w|x〉) (3)

Depending on the value of the constraint function, the
weight update will be done as in (4) with the learning rate
α by considering (5) as the derivative depending on the value
obtained for the expression in (6). C in (2) refers to a tuning
hyper parameter. w in (2) refers to the weight vector.

w = w − α∇J t, α =
1

1 + t
(4)

∇J t =

{
w if max(0, 1− y〈w|x〉) = 0

w − Cxiyi Otherwise (5)

y〈w|x〉 = yiw
>xi (6)

In the experiments conducted in this paper, we use a
learning rate of α which is decaying with the epoch num-
ber t. In the current research, the communication overhead
in frequent-model-synchronization has not been thoroughly
discussed with respect to the convergence of the algorithm
on lower objective function value and higher cross-validation
accuracy. In this paper, we analyze how the MSF affects the
faster convergence and faster execution of the distributed SGD-
based SVM algorithm.

IV. METHODOLOGY

Our objective is to analyze the effect of model synchro-
nization on faster convergence and to see how model synchro-
nization communication overhead can be optimized to run the
training model in an efficient way. In this regard, we mod-
ified the original sequential algorithm to get the same effect
caused by the parallel model synchronizing algorithm to verify
the accuracy of the distributed model we built. The model
synchronization resembles synchronizing the training weight
vector in all parallel machines by averaging over the sum of the
local weight vector in each machine. Model synchronization in

the distributed mode considers each machine in the system as
a single block of a sequential algorithm, where each machine
updates the model per each data point and do a model synchro-
nization after each machine has calculated the corresponding
model. This is the atomic-level model synchronization that can
take place in the frequent model synchronization. It is clear
that there can be a model synchronization overhead caused by
frequent synchronization due to inter-process communication
and this effect will be addressed in section V. In this paper, we
refer to a term called model synchronization frequency (MSF)
which refers to the number of data points used to calculate
the model before synchronizing it with other processes in the
distributed training mode. Note that if data points used for
model synchronization is unity (= 1), it is considered as a
higher MSF as we will be synchronizing the models after
each data point in each process is done with calculating the
model. If the data points used per synchronization is a large
number L, it means there will be a model synchronization
happening after calculating the weight for L data points in
each process which implies that the MSF is low. First, we
focus on determining the accuracy of the distributed model
synchronizing algorithm that we introduce with respect to
the sequential version of the distributed computation model
without communication implementation. Then we focus on
implementing the distributed version with configurable MSF
value to observe the convergence of the algorithm with respect
to higher cross-validation accuracy (without overfitting) and
lower value of the objective function.

A. Standard Sequential Algorithm

In the standard sequential version of SGD-based SVM
in algorithm 1, the weights are initialized with a Gaussian
distribution and the training process is done for T iterations.
The value for T is decided by prior experiments, where
both cross-validation accuracy and the value of the objective
function are considered in a such a way that both values come
to a stage where their oscillations are in a minimum level. The
reason for picking a constant T is for the convenience in timing
comparisons and to see how each tuning parameter affects the
convergence in the experiments conducted with methods in
IV-B and IV-C. T = Ti is the iterations towards convergence
point in ith data set. And this value is different from dataset
to dataset, but in the experiments we observe the variation
of accuracy and value of the objective function even after
convergence to show case the consistency of the training after
the convergence.

B. Sequential Replica of Distributed Model Synchronizing
Algorithm

The sequential replica of distributed SGD-based SVM
model synchronizing algorithm (SRDMS-SGD-SVM) in al-
gorithm 2 is important because we are altering the order of
updating the weights in the parallel mode with respect to
the standard SGD-based SVM algorithm. The objective is to
show case how the distributed algorithm can be modelled in
a sequential manner. By this we only intend to implement

Algorithm 1 Sequential Stochastic Gradient Descent SVM
1: INPUT : [x, y] ∈ S,w ∈ Rd

2: OUTPUT : w ∈ Rd

3: procedure SGD(S,w)
4: for t = 0 to T do
5: for i = 0 to n do
6: if (g(w; (x, y)) == 0) then
7: ∇J t = w
8: else
9: ∇J t = w − Cxiyi

10: w = w − α∇J t

return w

the computation model of the distributed algorithm in a
sequential manner. Hence, it is important to see the effect
of the sequential version of the same algorithm is as same
as the parallel version of the algorithm. This way we can
analyze the accuracy of the implemented algorithm. In the
sequential version of the model synchronizing algorithm, we
shuffle the data before creating the small blocks of data
resembled as Sk in algorithm 2. Each block resembles the
union of a chunk of data which will be processed in the parallel
mode in each process before doing the model synchronization.
The block size of unity resembles the standard SGD-based
algorithm. For each data point in each block, the weight vector
is the same unlike in the standard SGD algorithm. In parallel
mode, if the parallelism is k, and the model synchronization
frequency is one, the initial weights of each element processed
in each processor is same, implying the sequential version
of the algorithm must have the same quality, that is the
intuitive idea behind the different block sizes chosen in the
sequential algorithm. But, in the sequential algorithm, the
model synchronization does not mean that it is doing any
communication over the network. Instead, it merely represents
the idea that each block will have the same initial weight for
each element in a given block. When updating the weight
vector at the end of each model synchronization, we calculate
the average of the weights calculated per each data point in the
block to determine the final weight. Another way of doing this
is by considering a weighted model synchronization based on
pre-determined parameters. There pre-determined parameters
are mostly depending on the data partitioning mechanism
used. In this research we used a random data partitioning
technique. So we only consider about a non-weighted model
synchronization.

Algorithm 2 Sequential Replica of Distributed Model Syn-
chronizing Algorithm

1: INPUT : S ∈ [S1, S2..., Sb], w ∈ Rd

2: OUTPUT : w ∈ Rd

3: procedure SRDMS(S,w)
4: for k = 1 to b do
5: procedure SGD(Sk, w)

return w

C. Distributed Model Synchronizing Algorithm

In the model synchronizing distributed SGD-based SVM in
algorithm 3, the training data set is loaded in a way that equal
amount of data is loaded to each machine in order to balance
the load among processes. Load balancing is compulsory in
order to reduce the process waiting time caused when a subset
of processes or a process takes a longer time to complete the
computation than the rest. Each machine loads the data and
shuffles before the training process. The shuffled data is then
processed as blocks in the training process. When the block
size defined in the training process is sb, each machine will run
the sequential SRDMS SVM algorithm on sb number of data
points in each process (a block is processed) and the model
synchronization is done after processing each block with sb
data points in each of the processes. For each block, there
will be its own local model which communicates with each
of the machines using MPI_AllReduce. The average of this
is used as the global model after each model synchronization.
The global model then becomes the initial weights for the
next block. The T training iterations are conducted to reach
convergence.

Algorithm 3 Distributed Model Synchronizing Algorithm
(DMS)

1: INPUT : S ∈ [S1, S2..., Sb], w ∈ Rd, |(j − i)| ∗K = b
2: OUTPUT : w ∈ Rd

3: procedure DMSSGD(S,w)
4: In Parallel in K Machines [S1, ..., Sb] ⊂ S
5: wlocal = w
6: for m = i to j do
7: procedure SRDMS(Sm, wlocal)
8: wglobal = MPI_AllReduce(wlocal)
9: w = wglobal/K

return w

V. EXPERIMENTS

In the experiments, we focused on three main sections to
analyze how to optimize the training process to gain faster
execution with higher accuracy. In the first set of experiments,
we observe how the model synchronization variation affects
the convergence of the sequential algorithm and analyze how
that information can be used to optimize the distributed version
of the algorithm. In the second set of experiments, we change
the model synchronization frequency (MSF) and parallelism
to observe how convergence can be obtained. In the third
set of experiments, we analyze the execution time variation
with respect to the variation of MSF for different parallelisms.
From these experiments, we analyze how an optimized training
model can be obtained to guarantee faster execution and higher
testing accuracy [20]. Ijcnn1, Webspam and Epsilon are the
datasets which are used in the experiments. In Table I, the
nature of the data sets is shown with respect to training, cross-
validation, testing, feature size and sparsity percentage. The
experiments were conducted in Intel(R) Xeon(R) distributed
cluster hosted in Future Systems. For the experiments, we use

Fig. 1. Cross Validation Accuracy Variation in Sequential Algorithm for
Ijcnn1 Dataset : Block Size = [1,2,4,8,512,1024]

Fig. 2. Training Time Variation with Variable Block Sizes on Ijcnn1 Dataset

single node core level parallelism for smaller data sets and
for the largest data set we use node-level parallelism with
Infiniband support in OpenMPI. Throughout the experiments
we kept the hyper-parameter C = 1 in (2) and the learning
rate as an adaptive diminishing function as in (4).

A. Effect of Block Size on Sequential Algorithm Convergence

The objective of these sequential experiments is to analyze
how the variation of model synchronization or block size af-
fects cross-validation accuracy. In sequential mode, the model
synchronization resembles the computational equivalence of
SRDSM in algorithm 2 to DMS in algorithm 3.

In Ijcnn1, we considered the block sizes 1,2,4,8,1024 and
block sizes 1,2,4,8,4096 for Webspam dataset to analyze the
effect on cross-validation accuracy. Figures 1 and 3 show
experiments on Ijcnn1 and Webspam data sets. The effect
from MSF over cross-validation accuracy is approximately
negligible in these two data sets. In the experiments, we initial-
ized multiple experiments with unique Gaussian initialization
for each experiment. Then we averaged the cross-validation
accuracy over multiple experiments with better convergence.
From experiments, we learned that the convergence of Ijcnn1
data set is highly sensitive on the initialization unlike Web-
spam data set. With this experiment setting, we were able to
get an accurate conclusion on the cross-validation accuracy
variation with respect to variable MSF. Figures 2 and 4 shows
the training time variation with MSF variation. When the

TABLE I
DATASETS

DataSet Training Data (60%,80%) Cross-Validation Data (60%,80%) Testing Data (60%,80%) Sparsity Features
Ijcnn1 21000 ,28000 7000,3500 7000,3500 40.91 22
Webspam 210000,280000 70000,35000 70000,35000 99.9 254
Epsilon 240000,320000 80000,40000 80000,40000 44.9 2000

Fig. 3. Cross Validation Accuracy Variation in Sequential Algorithm for
Webspam Dataset : Block Size = [1,2,4,8,4096]

Fig. 4. Training Time Variation with Variable Block Sizes on Webspam
Dataset

MSF is high (lower block size), the training time is much
higher and the training time dilutes down and becomes steady
after a threshold MSF value. This observation implies that
with a higher block size (lower MSF) allows the algorithm
to run much faster with the same convergence. The reason
for time dilution with higher block size comes with the less
overhead caused by average model calculation and cross-
validation accuracy calculation as they are executed when
the model synchronization is done. When MSF is lower, the
frequency of model averaging and cross-validation accuracy
calculation is lower and it provides a performance boost. The
results gathered from this section, reveals how the block size
affects the convergence of the algorithm. Here we used two
data sets, Webspam and Ijcnn1 to analyze what happens with
the variable block sizes. It is evident from the observations
from this section that for SGD-based SVM the block size
or mini-batch size provides a less variation on the cross-
validation accuracy.

Fig. 5. Cross Validation Accuracy Variation against Block Size with Paral-
lelism : Ijcnn1 Dataset

B. Model Synchronization Effect on Parallel and Sequential
Algorithm Convergence

In understanding how the frequent model synchronization
can affect the cross-validation accuracy in the sequential and
the parallel version, we conducted experiments to see how
the cross-validation accuracy behaves in the training period.
The main objective of these experiments is to see whether
the parallel algorithm and sequential algorithm behaves in a
similar way towards convergence. Using these experiments,
we can verify the approach we used in the experiments is
accurate. The comparison of distributed model synchronization
along with the replica of it in sequential mode allows us to
show that the developed model is functionally accurate. We
used Ijcnn1 and Webspam data sets to see how the distributed
and sequential models can provide similar results. All of the
results of these experiments can be referred from [20]. From
the results obtained in this section, it is evident that the
distributed model and sequential model provide similar results
ensuring that the distributed model functions accurately. This
observation ensures that the designed model is functionally
accurate in distributed paradigm.

Fig. 6. Cross Validation Accuracy Variation against Block Size with Paral-
lelism : Webspam Dataset

C. Distributed Model Synchronizing Experiments

1) Distributed Model Synchronization on Convergence: In
the distributed model synchronizing experiments, we evaluate
how the algorithm convergence is affected by the model
synchronization frequency along with the variation of the
parallelism. We consider three groups of experiments for this,
in the first one we consider the high-frequency range where it
involves 1-8 block sizes. In the second group, 16-512 block
sizes for mid-range frequencies and for the third group, lower
frequencies with 512-4096 block sizes were used. The reason
behind variable frequency groups comes when we have a data
set with limited data size, we can only pick up to a certain
set of frequencies. For instance, in Ijcnn1 data set, the total
training data points are 28,000 (80% of data for training) and if
we have 32 processes to do the computation, a single process
will have only 875 data points, so the maximum block size we
can use is 875 and the minimum is 1 and they correspond to
lowest MSF and highest MSF respectively. In figures 7, 8 and
9, the parallel experiments on parallelism 32 for variable MSF
is shown. It is clear from these experiments that the variation
of cross-validation accuracy and value of the objective function
remains approximately the same with the denoted MSFs on all
three data sets. From these observations, we can understand
that frequent model synchronization is not highly vital to
obtain a higher cross-validation accuracy or a lower objective
function value, irrespective of the nature of the data set. As
same as in the sequential experiments, the random Gaussian
initialization is vital to identify the best initialization which
provides an accurate output. This is the same realization we
obtained from the sequential version of the algorithm and by
these results, we can verify the parallel model we developed
is consistent with the sequential form of the modified SGD-

Fig. 7. Distributed Model Synchronizing Algorithm on Ijcnn1 Dataset for
Parallelism [32] and Block Size = [1,2,4,8,512]

Fig. 8. Distributed Model Synchronizing Algorithm on Webspam Dataset for
Parallelism [32] and Block Size = [1,2,4,8,512]

based SVM algorithm. We conducted these experiments for
parallelism 2,4,8,16 and 32 and all these results can be seen
in [20].

In summarizing the experiments done on distributed model
synchronization on algorithm convergence, it is evident that
the effect from the block size over convergence of the algo-
rithm is approximately similar for all the block sizes explored
in the experiments.

Fig. 9. Distributed Model Synchronizing Algorithm on Epsilon Dataset for
Parallelism [32] and Block Size = [1,2,4,8,512]

2) Distributed Model Synchronization on Efficient Training:
Now we know that the MSF effect on the convergence of the
algorithm is relatively independent on faster convergence. The
next important factor is to determine how to select an MSF to
obtain a fast training model. In analyzing this fact, first, we
consider the overall training time needed on variable MSF with
variable parallelisms. In figures 13, 14 and 15 the training time
variation for variable MSFs on 2, 16 and 32 MPI processes is
shown. It is evident from these results that higher MSF (lower
block sizes) has a higher overhead in the training process.
This effect dilutes down when the MSF is reduced. And the
fluctuation diminishes at the lowest MSFs for each data set.
In understanding the reason for the lagging in efficiency for
higher MSF region, we conducted the same experiment by
doing a benchmark on the communication and computation
time for variable MSFs on variable parallelisms.

The training time breakdown for Ijcnn1, Webspam and
Epsilon data sets for parallelism of 32, 16 and 2 are in figures
12, 11 and 10, respectively. In the higher MSF region (block
sizes 1-8) the communication overhead is very high with
respect to the lower MSF region (block size beyond 8). It
is evident from this experiment that when MSF is higher the
total communication overhead is high and it makes the training
model run much slower than that of lower MSF. In considering
the total communication overhead, there are two main factors
governing the communication delay. The main reason is the
MSF value and the second reason is the magnitude of the
vector which is communicated over the network or over the
processes. Ijcnn1 communicates a vector with 22 dimensions,
Webspam a vector of 254 dimensions and Epsilon a vector
of 2000 dimensions. It is clear from the time breakdown
experiments that, when the vector shared over the network

TABLE II
EXPERIMENT SUMMARY : 60% TRAINING DATA

Dataset
Sequential

Timing
(s)

Parallel
Timing

(s)

Sequential
Accuracy

Parallel
Accuracy

Speed
Up

(x1 vs x32)
Ijcnn1 22.19 1.37 90.63 91.51 16.20
Webspam 2946.49 120.02 87.69 89.12 24.55
Epsilon 22208.07 968.782 80.06 84.36 22.92

or processes has a higher dimension, the communication
overhead is very high. When training data sets with higher data
sizes and higher dimensions the communication overhead are
very high. To mitigate this issue in training, we can increase
the block size (decreasing MSF) so that a minimum amount
of communication is done. Along with higher MSF, there is
an additional computation overhead added in calculating the
cross-validation accuracy and objective function value per each
communication. The algorithm convergence is decided by the
optimum value recorded by each of these variables. So each
time we do a communication to synchronize the model, we
check the convergence of the algorithm. This computation
overhead is proportional to the size of the cross-validation
data set. This effect dilutes down to a negligible value when
a lower MSF is used. The effect can be clearly seen when the
computation time for block size 1 and 2 are analyzed. The
computation time for block size 1 is obviously high for all the
data sets, but this effect dilutes down as the MSF lowers. But
the effect from this computation overhead on the efficiency of
the algorithm is lesser than that of communication overhead.

In this section, the conducted experiments elaborates that
the high communication overhead is associated with the
least block sizes and lesser communication overhead can be
achieved by increasing the block size in communication. And
also the ratio of computation time to communication time is
very high in the lower block sizes.

3) Distributed Model Synchronization on Prediction Model:
The most important fact after training is to obtain a higher test-
ing accuracy from the optimized trained model. It is important
to see whether there is an effect from MSF on the testing
accuracy for each data set. In figure 16, the testing accuracy
variation on variable MSFs for all three datasets is shown
with respect to the parallelisms of 2, 16 and 32. It is evident
from these results that the testing accuracy is not affected
not more than ±1.0% in all three data sets. This observation
provides us with the final proof we needed to understand the
effect from the MSF variation over a highly optimized training
model. The MSF effect on prediction model, convergence and
efficiency of the training model shows that a lower MSF is
the best fit to train the SGD-based SVM algorithm to obtain
an efficient high accurate model. Table II shows the summary
of the experiments done in this research covering the aspects
of improved efficiency, high testing accuracy and better speed
up. From these results, it is clear that the MSF optimized
distributed model training is a better solution in training larger
data sets with SVM.

Fig. 10. Training Time Breakdown in Data sets for Parallelisms 2, 80% Training Set

Fig. 11. Training Time Breakdown in Data sets for Parallelisms 16, 80% Training Set

Fig. 12. Training Time Breakdown in Data sets for Parallelisms 32, 80% Training Set

VI. CONCLUSION AND FUTURE WORK

In understanding the distributed scaling of the SGD-based
SVM algorithm, it is vital to keep track on the effect of
the model synchronization frequency on the convergence of
the algorithm. The convergence is governed by the cross-
validation accuracy and value of the objective function. Both
parameters need to be simultaneously optimized such that the
fluctuation of each variable must be the least or satisfy an
expected threshold where we call, the algorithm has reached
the convergence. The final outcome from the trained model is
to guarantee the expected high accuracy in the testing phase.
In our research, it is evident that the model synchronization

frequency is a key factor as far as fast execution and fast
convergence are considered.

Our research also shows that high MSF value is loosely
coupled with the convergence of the training model, test
accuracy and efficient execution. This allows us to use the
MSF as lower as possible to obtain a fast training model
with high accuracy. The efficiency of the training model is
highly valuable when training large data sets with higher
dimensions and this is evident with the observations we made
on Ijcnn1, Webspam and Epsilon data sets. With reference
to the standard SGD-based sequential SVM algorithm, our
distributed model provides higher accuracy for all three data

Fig. 13. Distributed Training Time Variation: Parallelism = 2, 80% Training
Set

Fig. 14. Distributed Training Time Variation: Parallelism = 16, 80% Training
Set

sets with less over-fitting on training data. This shows that
our model synchronization optimization is better in gaining a
higher testing accuracy with efficient execution.

We are currently working on implementing this idea with
our big data toolkit Twister2 for both batch and streaming
training of SVM. Our streaming idea is still experimental
and we are working on improving the streaming model based
on the findings of this research. Model update of a system
in production is another aspect we are evaluating with the
findings from this research.

Towards developing streaming and batch based machine
learning applications with edge devices, it is vital to obtain
maximum performance from resources. Our final objective is
to expand this model on training high volume data in edge
devices in sensory networks to obtain highly efficient training
with limited resources.

ACKNOWLEDGMENT

This work was partially supported by NSF CIF21 DIBBS
1443054. We extend our gratitude to NSF for providing
us funding to continue this project. And also we extend
our gratitude to Future Systems team for their support with
infrastructure to run our system and Digital Science Center
for their guidance and the support to complete this research.

Fig. 15. Distributed Training Time Variation: Parallelism = 32, 80% Training
Set

Fig. 16. Distributed Testing Accuracy Variation with Block Size: Parallelism
32

REFERENCES

[1] Zhang, Kai, et al. ”Scaling up kernel svm on limited resources: A low-
rank linearization approach.” Artificial intelligence and statistics. 2012.

[2] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks.
Mach. Learn. 20, 3 (September 1995), 273-297iu-psgdsvmc.

[3] Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon, A Divide-and-Conquer
Solver for Kernel Support Vector Machines, Article:CoRR, eprint.
1311.0914,(2013).

[4] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for
support vector machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article
27 (May 2011), 27 pages.

[5] John C. Platt. 1999. Fast training of support vector machines using se-
quential minimal optimization. In Advances in kernel methods, Bernhard
Schölkopf, Christopher J. C. Burges, and Alexander J. Smola (Eds.).
MIT Press, Cambridge, MA, USA 185-208.

[6] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second
order information for training SVM. Journal of Machine Learning
Research, 6:1889–1918, 2005.

[7] Yang, Jifei and Ye, C.-Z and Quan, Y and Chen, Ni-Yun. (2004).
Simplified SMO algorithm for support vector regression. 33. 533-537.

[8] Machine Learning Course, The Simplified SMO Algorithm, North
Eastern University, College of Computer and Information Science

[9] Kim HC, Pang S, Je HM, Kim D, Bang SY. Constructing support vector
machine ensemble. Pattern recognition. 2003 Dec 1;36(12):2757-67.

[10] Cao, Li Juan, et al. ”Parallel sequential minimal optimization for the
training of support vector machines.” IEEE Trans. Neural Networks 17.4
(2006): 1039-1049.

[11] Edward Y. Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li,
Zhihuan Qiu, and Hang Cui. 2007. PSVM: parallelizing support vector
machines on distributed computers. In Proceedings of the 20th Interna-
tional Conference on Neural Information Processing Systems (NIPS’07),

J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (Eds.). Curran
Associates Inc., USA, 257-264.

[12] Chang, Edward Y. ”Psvm: Parallelizing support vector machines on
distributed computers.” Foundations of Large-Scale Multimedia Infor-
mation Management and Retrieval. Springer, Berlin, Heidelberg, 2011.
213-230.

[13] Zinkevich, Martin, et al. ”Parallelized stochastic gradient descent.”
Advances in neural information processing systems. 2010.

[14] A. Z. Zeyuan, C. Weizhu, W. Gang, Z. Chenguang and C. Zheng, ”P-
packSVM: Parallel Primal grAdient desCent Kernel SVM,” 2009 Ninth
IEEE International Conference on Data Mining, Miami, FL, 2009, pp.
677-686. doi: 10.1109/ICDM.2009.29

[15] Y. Lin et al., ”Large-scale image classification: Fast feature extraction
and SVM training,” CVPR 2011, Colorado Springs, CO, USA, 2011,
pp. 1689-1696. doi: 10.1109/CVPR.2011.5995477

[16] Shalev-Shwartz, Shai, et al. ”Pegasos: Primal estimated sub-gradient
solver for svm.” Mathematical programming 127.1 (2011): 3-30.

[17] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved GLM-
NET for l1-regularized logistic regression. Journal of Machine Learning
Research, 13:1999-2030, 2012.

[18] Danil Prokhorov. IJCNN 2001 neural network competition. Slide pre-
sentation in IJCNN’01, Ford Research Laboratory, 2001.

[19] De Wang, Danesh Irani, and Calton Pu. ”Evolutionary Study of Web
Spam: Webb Spam Corpus 2011 versus Webb Spam Corpus 2006”. In
Proc. of 8th IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom 2012).
Pittsburgh, Pennsylvania, United States, October 2012.

[20] Vibhatha Abeykoon, Geoffrecy Fox. ”Parallel Stochastic Gradient De-
scent based Experiment Web Results”, Digital Science Center, Indiana
University Bloomington, United States, February 2019. [Online]. Avail-
able: https://iu.app.box.com/s/eqauk3bknywifdmkao6wpp4gp36o2es9.
[Accessed: 22-Feb-2019]

