
This space is reserved for the Procedia header, do not use it

High Performance LDA through Collective Model

Communication Optimization

Bingjing Zhang1, Bo Peng1,2, and Judy Qiu1

1 Indiana University, Bloomington, Indiana, U.S.A.
{zhangbj,pengb,xqiu}@indiana.edu
2 Peking University, Beijing, China

Abstract
LDA is a widely used machine learning technique for big data analysis. The application includes
an inference algorithm that iteratively updates a model until it converges. A major challenge
is the scaling issue in parallelization owing to the fact that the model size is huge and paral-
lel workers need to communicate the model continually. We identify three important features
of the model in parallel LDA computation: 1. The volume of model parameters required for
local computation is high; 2. The time complexity of local computation is proportional to the
required model size; 3. The model size shrinks as it converges. By investigating collective and
asynchronous methods for model communication in different tools, we discover that optimized
collective communication can improve the model update speed, thus allowing the model to
converge faster. The performance improvement derives not only from accelerated communi-
cation but also from reduced iteration computation time as the model size shrinks during the
model convergence. To foster faster model convergence, we design new collective communi-
cation abstractions and implement two Harp-LDA applicatons, “lgs” and “rtt”. We compare
our new approach with Yahoo! LDA and Petuum LDA, two leading implementations favoring
asynchronous communication methods in the field, on a 100-node, 4000-thread Intel Haswell
cluster. The experiments show that “lgs” can reach higher model likelihood with shorter or
similar execution time compared with Yahoo! LDA, while “rtt” can run up to 3.9 times faster
compared with Petuum LDA when achieving similar model likelihood.

Keywords: Parallel Computing, LDA, Big Model, Communication Optimization

1 Introduction

Latent Dirichlet Allocation (LDA) [1] is an important machine learning technique that has been
widely used in areas such as text mining, advertising, recommender systems, network analysis,
and genetics. Though extensive research on this topic exists, the data analysis community is
still endeavoring to scale it to web-scale corpora to explore more subtle semantics with a big
model which may contain billions of model parameters [5].

1

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

z1,1

zi,j

zi,1

Document Collection Topic assignment

x1,1

xi,j

xi,1

K*D

j

V*D

w

word-doc matrix

V*K

w

Nwkword-topic matrix

≈ ×

j

Mkjtopic-doc matrix

(a) (b)

Figure 1: (a) Topics Discovery (b) View of Matrix Decomposition

We identify that the size of model required for local computation is so large that sending
such data to every worker results in communication bottlenecks. The required computation
time is great due to the large model size. In addition, the model size shrinks as the model
converges. As a result, a faster communication method can speed up the model convergence,
in which the model size shrinks and reduces the iteration execution time.

By guaranteeing the algorithm correctness, various model communication strategies are de-
veloped in parallel LDA. Existing solutions favor asynchronous communication methods, since
it not only avoids global waiting but also quickly makes the model update visible to other work-
ers and thereby boosts the model convergence. We propose a more efficient approach in which
the model communication speed is improved upon with optimized collective communication
methods. We abstract three new communication operations and implement them on top of
Harp [15]. We develop two Harp-LDA applications and compare them with Yahoo! LDA1 and
Petuum LDA2, two well-known implementations in the domain. This is done on three datasets
each with a total of 10 billion model parameters. The results on a 100-node, 4000-thread Intel
Haswell cluster show that collective communication optimizations can significantly reduce the
communication overhead and improve the model convergence speed.

The following sections describe: the background of LDA application (Section 2), the big
model problem in parallel LDA (Section 3), the model communication challenges in parallel
LDA and related work (Section 4), Harp-LDA implementations (Section 5), experiments and
performance comparisons (Section 6), and conclusion (Section 7).

2 Background

LDA modeling techniques can find latent structures inside the training data which are ab-
stracted as a collection of documents, each with a bag of words. It models each document as
a mixture of latent topics, and each topic as a multinomial distribution over words. Then an
inference algorithm works iteratively until it outputs the converged topic assignments for the
training data (see Fig. 1(a)). Similar to Singular Value Decomposition (SVD) (see Fig. 1(b)),
LDA can be viewed as a sparse matrix decomposition technique on a word-document matrix,
but it roots on a probabilistic foundation and has totally different computation characteristics.

Among the inference algorithms for LDA, Collapsed Gibbs Sampling (CGS) [12] shows high

1 https://github.com/sudar/Yahoo_LDA
2 https://github.com/petuum/bosen/wiki/Latent-Dirichlet-Allocation

2

https://github.com/sudar/Yahoo_LDA
https://github.com/petuum/bosen/wiki/Latent-Dirichlet-Allocation

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

scalability in parallelization [3, 11], especially compared with another commonly used algorithm,
Collapsed Variational Bayes (CVB3) [1]. CGS is a Markov chain Monte Carlo (MCMC) type
algorithm. In the “initialize” phase, each training data point, or token, is assigned to a random
topic denoted as zij . Then it begins to reassign topics to each token xij = w by sampling from
a multinomial distribution of a conditional probability of zij :

p
(
zij = k | z¬ij , x, α, β

)
∝

N¬ijwk + β∑
wN

¬ij
wk + V β

(
M¬ijkj + α

)
(1)

Here superscript ¬ij means that the corresponding token is excluded. V is the vocabulary
size. Nwk is the token count of word w assigned to topic k in K topics, and Mkj is the token
count of topic k assigned in document j. The matrices Zij , Nwk and Mkj , are the model.
Hyperparameters α and β control the topic density in the final model output. The model
gradually converges during the process of iterative sampling. This is the phase where the
“burn-in” stage occurs and finally reaches the “stationary” stage.

The sampling performance is more memory-bound than CPU-bound. The computation
itself is simple, but it relies on accessing two large sparse model matrices in the memory.
In Algorithm. 1, sampling occurs by the column order of the word-document matrix, called
“sample by document”. Although Mkj is cached when sampling all the tokens in a document
j, the memory access to Nwk is random since tokens are from different words. Symmetrically,
sampling can occur by the row order, called “sample by word”. In both cases, the computation
time complexity is highly related to the size of model matrices. SparseLDA [14] is an optimized
CGS sampling implementation mostly used in state-of-the-art LDA trainers. In Line 10 of
Algorithm. 1, the conditional probability is usually computed for each k with a total of K
times, but SparseLDA decreases the time complexity to the number of non-zero items in one
row of Nwk and in one column of Mkj , both of which are much smaller than K on average.

Algorithm 1: LDA Collapsed Gibbs Sampling Algorithm

input : training data X, the number of topics K, hyperparamters α, β
output: topic assignment matrix Zij , topic-document matrix Mkj , word-topic matrix Nwk
1 Initialize Mkj , Nwk to zeros // Initialize phase

2 foreach document j ∈ [1, D] do
3 foreach token position i in document j do
4 zi,j = k ∼Mult(1

K) // sample topics by multinomial distribution

5 mk,j += 1;nw,k += 1 // token xi,j is word w, update the model matrices

// Burn-in and Stationary phase

6 repeat
7 foreach document j ∈ [1, D] do
8 foreach token position i in document j do
9 mk,j −= 1;nw,k −= 1 // decrease counts

10 zi,j = k′ ∼ p(zi,j = k|rest) // sample a new topic by Eq.(1)

11 mk′,j += 1;nw,k′ += 1 // increase counts for the new topic

12 until convergence;

3 CVB algorithm is used in Spark LDA (http://spark.apache.org/docs/latest/mllib-clustering.html)
and Mahout LDA (https://mahout.apache.org/users/clustering/latent-dirichlet-allocation.html)

3

http://spark.apache.org/docs/latest/mllib-clustering.html
https://mahout.apache.org/users/clustering/latent-dirichlet-allocation.html

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

3 Big Model Problem in Parallel LDA

Sampling on Zij in CGS is a strict sequential procedure, although it can be parallelized without
much loss in accuracy [3]. Parallel LDA can be performed in a distributed environment or a
shared-memory environment. Due to the huge volume of the training documents, we focus
on the distributed environment which is formed by a number of compute nodes deployed with
a single worker process apiece. Every worker takes a partition of the training document set
and performs the sampling procedure with multiple threads. The workers either communicate
through point-to-point communication or collective communication.

LDA model contains four parts: I. Zij - topic assignments on tokens, II. Nwk - token counts
of words on topics (word-topic matrix), III. Mkj - token counts of documents on topics (topic-
document matrix), and IV.

∑
wNwk - token counts of topics. Here Zij is always stored along

with the training tokens. For the other three, because the training tokens are partitioned by
document, Mkj is stored locally while Nwk and

∑
wNwk are shared. For the shared model parts,

a parallel LDA implementation may use the latest model or the stale model in the sampling
procedure. The latest model means the current model parameters used in computation are
up-to-date and not modified simultaneously by other workers, while the stale model means the
model parameters are old. We show that the model consistency is important to convergence
speed in Section 6.

Now we calculate the size of Nwk, a huge but sparse V ∗K matrix. We note that the word
distribution in the training data generally follows a power law. If we sort the words based on
their frequencies from high to low, for a word with rank i, its frequency is freq(i) = C ∗ i−λ.
Then for W , the total number of training tokens, we have

W =

V∑
i=1

freq(i) =

V∑
i=1

(C ∗ i−λ) ≈ C ∗ (lnV + γ +
1

2V
) (2)

Here λ is a constant near 1, constant C = freq(1). To simplify the analysis, we consider λ = 1.
Then W is the partial sum of harmonic series which have logarithmic growth, where γ is the
Euler-Mascheroni constant ≈ 0.57721. The real model size (denoted as S) depends on the count
of non-zero cells. In the “initialize” phase of CGS, with random topic assignment, a word i gets
max(K, freq(i)) non-zero cells. If freq(J) = K, then J = C/K, and we get:

Sinit =

J∑
i=1

K +

V∑
i=J+1

freq(i) = W −
J∑
i=1

freq(i) +

J∑
i=1

K = C ∗ (lnV + lnK − lnC + 1) (3)

The actual initial model size Sinit is logarithmic to matrix size V ∗K, which means S << V ∗K.
However this does not mean Sinit is small. Since C can be very large, even C ∗ ln(V ∗K) can
result in a large number. In the progress of iterations, the model size shrinks as the model
converges. When a stationary state is reached, the average number of topics per word drops to
a certain small constant ratio of K, which is determined by the concentration parameters α, β
and the nature of the training data itself.

The local vocabulary size V ′ of each worker determines the model volume required for
computation. When documents are randomly partitioned to N processes, every word with a
frequency larger than N has a high probability of occurring on all the processes. If freq(L) =
N at rank L, we get: L = W

(lnV+γ)∗N . For a large training dataset, the ratio between L

and V is often very high, indicating that the local computation requires most of the model
parameters. Fig. 2 shows the difficulty of controlling local vocabulary size in random document

4

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

100 101 102 103 104 105 106 107

Word Rank

100

101

102

103

104

105

106

107

108

109

1010
W

or
d

Fr
eq

ue
nc

y

clueweb
y= 109. 9x−0. 9

enwiki
y= 107. 4x−0. 8

100 101 102 103 104

Document Collection Partition Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
oc

ab
ul

ar
y

Si
ze

 o
f P

ar
tit

io
n

(%
)

clueweb
enwiki

(a) (b)

Figure 2: (a) Zipf’s Law of the Word Frequencies (b) Vocabulary Size vs. Document Partitioning

partitioning. When 10 times more partitions are introduced, there is only a sub-linear decrease
in the vocabulary size per partition. We will use “clueweb” and “enwiki” datasets as examples
(the contents of these datasets are discussed in Section 6). In “clueweb”, each partition gets
92.5% of V when the training documents are randomly split into 128 partitions. “enwiki” is
around 12 times smaller than “clueweb”. It gets 90% of V with 8 partitions, keeping a similar
ratio. In summary, though the local model size reduces as the number of compute nodes grows,
it is still a high percentage of V in many situations.

4 Model Communication Challenges in Parallel LDA and
Related Work

The analysis in previous sections shows three key properties of the big LDA model: 1. The
initial model size is huge but it reduces as the model converges; 2. The model parameters
required in local computation is a high percentage of all the model parameters; 3. The local
computation time is related to the local model size. These properties indicate that model
communication optimization is necessary because it can accelerate the model update process
and result in a huge benefit in computation and communication of later iterations. Of the
various communication methods used in state-of-the-art implementations, we abstract them
into two types of communication models (see Fig. 3(a)).

In Communication Model Type A, the computation occurs on the stale model. Before
performing the sampling procedure, workers fetch the related model parameters to the local
memory. After the computation, they send updates back to the model. There are many com-
munication models in this category. In A1, without storing a shared model, it synchronizes local
model parameters through an “allreduce” operation [4]. PLDA [10] follows this communication
model. “allreduce” is routing optimized, but it does not consider the model requirement in
local computation, causing high memory usage and high communication load. In A2, model
parameters are fetched and returned directly in a collective way. PowerGraph LDA4 follows this
communication model [6]. Though it communicates less model parameters compared with A1,

4 https://github.com/dato-code/PowerGraph/tree/master/toolkits/topic_modeling

5

https://github.com/dato-code/PowerGraph/tree/master/toolkits/topic_modeling

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

Model

Worker Worker Worker

• The stale model
• A1. Allreduce collective

- PLDA
A2. Unoptimized collective

- PowerGraph LDA
A3. Point-to-point

(asynchronous)
- Yahoo! LDA

Communication Model Type B

Communication Model Type A

Worker Worker Worker

Model 1 Model 2 Model 3
• The latest model
• B1. Point-to-point

(asynchronous)
- Petuum LDA

Training Data

1 Load

WorkerWorkerWorker

Sync

4

Global
Model 2

Compute

2

Global
Model 3

Compute

2

Global
Model 1

Compute

2

33 SyncSync3

Iteration

Local
Model

Local
Model

Local
Model

WorkerWorkerWorker

Rotate

Global
Model 2

Compute

2

Global
Model 3

Compute

2

Global
Model 1

Compute

2

33 RotateRotate3

lgs
(use syncLocalWithGlobal
& syncGlobalWithLocal)

rtt
(use rotateGlobal)

(a) (b)

Figure 3: (a) Communication Models (b) Harp-LDA Implementations

the performance is low for lack of routing optimization. A more popular communication model
is A3, which uses asynchronous point-to-point communication. Yahoo! LDA [13, 2] and Pa-
rameter Server [7] follow this communication model. In A3, each worker independently fetches
and updates the related model parameters without waiting for other workers. A3 can ease the
communication overhead, however, its model update rate is not guaranteed. A word’s model
parameters may be updated either by changes from all the training tokens, a part of them, or
even no change. A solution to this problem is to combine A3 and A2. This is implemented in
Petuum (version 0.93) LDA [8].

In Communication Model Type B, each worker first takes a partition of the model param-
eters, after which the model partitions are “shifted” between workers. When all the partitions
are accessed by all the workers, an iteration is completed. There is only one communication
model B1 which uses asynchronous point-to-point communication. Petuum (version 1.1) LDA
[9] follows this model.

A better solution for Communication Model Type A can be a conjunction of A1 and A2
with new collective communication abstractions. There are three advantages to such a strategy.
First, considering the model requirement in local computation, it reduces the model parameters
communicated. Second, it optimizes routing through searching “one-to-all” communication
patterns. Finally, it maintains the model update rate compared with asynchronous methods.
For Communication Model Type B, using collective communication is also helpful because it
maximizes bandwidth usage between compute nodes and avoids flooding the network with small
messages, which is what B1 does.

5 Harp-LDA Implementations

Based on the analysis above, we parallelize LDA with optimized collective communication
abstractions on top of Harp [15], a collective communication library plugged into Hadoop5. We
use “table” abstractions defined in Harp to organize the shared model parameters. Each table
may contain one or more model partitions, and the tables defined on different processes are

5 http://hadoop.apache.org

6

http://hadoop.apache.org

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

associated to manage a distributed model. We partition the model parameters based on the
range of word frequencies in the training dataset. The lower the frequency of the word, the
higher the partition ID given. Then we map partition IDs to process IDs based on the modulo
operation. In this way, each process contains model partitions with words whose frequencies
are ranked from high to low.

We add three collective communication operations. The first two operations, “syncGlob-
alWithLocal” and “syncLocalWithGlobal”, are paired. Here another type of table is defined
to describe the local models. Each partition in these tables is considered a local version of
a global partition according to the corresponding ID. “syncGlobalWithLocal” merges parti-
tions from different local model tables to one in the global tables while “syncLocalWithGlobal”
redistributes the model partitions in the global tables to local tables. Routing optimized broad-
casting [4] is used if “one-to-all” communication patterns are detected. Lastly, “rotateGlobal”
considers processes in a ring topology and shifts the model partitions from one process to the
next neighbor.

We present two parallel LDA implementations. One is “lgs”, which uses “syncGlobalWith-
Local” paired with “syncLocalWithGlobal”. Another is “rtt”, which uses “rotateGlobal” (see
Fig. 3(b)). In both implementations, the computation and communication are pipelined, i.e.,
the model parameters are sliced in two and communicated in turns. Model Part IV is synchro-
nized through A1 at the end of every iteration. SparseLDA algorithm is used for the sampling
procedure. “lgs” samples by document while “rtt” samples by word. This is done to keep the
consistency between implementations for unbiased communication performance comparisons in
future experiments.

6 Experiments

Experiments are done on a cluster6 with Intel Haswell architecture. This cluster contains 32
nodes each with two 18-core 36-thread Xeon E5-2699 processors and 96 nodes each with two 12-
core 24-thread Xeon E5-2670 processors. All the nodes have 128GB memory and are connected
with 1Gbps Ethernet (eth) and Infiniband (ib). For testing, 31 nodes with Xeon E5-2699 and
69 nodes with Xeon E5-2670 are used to form a cluster of 100 nodes, each with 40 threads. All
the tests are done with Infiniband through IPoIB support.

“clueweb”7, “enwiki” and “bi-gram”8 three datasets are used (see Table 1). The model
parameter settings are comparable to other research work [5], each with a total of 10 billion
parameters. α and β are both fixed to a commonly used value 0.01 to exclude dynamic tuning.
We test several implementations: “lgs”, “lgs-4s” (“lgs” with 4 rounds of model synchronization
per iteration, each round with 1/4 of the training tokens) and “rtt”. To evaluate the quality
of the model outputs, we use the model likelihood on the training dataset to monitor model
convergence. We compare our implementations with two leading implementations, Yahoo! LDA
and Petuum LDA, and thereby learn how the communication methods affect LDA performance
by studying the model convergence speed.

6.1 Model Convergence Speed Measured by Iteration

We compare the model convergence speed by analyzing model outputs on Iteration 1, 10, 20...
200. In an iteration, every training token is sampled once. Thus the number of model updates

6 https://portal.futuresystems.org
710% of ClueWeb09 (a collection of English web pages, http://lemurproject.org/clueweb09.php/)
8 Both “enwiki” and “bi-gram” are English articles from Wikipedia (https://www.wikipedia.org)

7

https://portal.futuresystems.org
http://lemurproject.org/clueweb09.php/
https://www.wikipedia.org

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

Dataset Num. of Num. of Vocabulary Doc Len. Num. of Init. Model
Docs Tokens AVG/STD Topics Size

clueweb 50.5M 12.4B 1M 224/352 10K 14.7GB
enwiki 3.8M 1.1B 1M 293/523 10K 2.0GB
bi-gram 3.9M 1.7B 20M 434/776 500 5.9GB

Table 1: Training Data Settings in the Experiments

0 50 100 150 200
Iteration Number

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e11

lgs
Yahoo!LDA
rtt
Petuum
lgs-4s

0 50 100 150 200
Iteration Number

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e10

lgs
Yahoo!LDA
rtt
Petuum

(a) (b)

Figure 4: (a) Model Convergence Speed on “clueweb” (b) Model Convergence Speed on “enwiki”

in each iteration is equal. Then we see how the model converges with the same amount of
model updates.

On “clueweb” (see Fig. 4(a)), Petuum has the highest model likelihood on all iterations.
Due to “rtt”’s preference of using stale thread-local model parameters in multi-thread sampling,
the convergence speed is slower. The lines of “rtt” and “lgs” are overlapped for their similar
convergence speeds. In contrast to “lgs”, the convergence speed of “lgs-4s” is as high as Petuum.
This shows that increasing the number of model update rounds improves the convergence speed.
Yahoo! LDA has the slowest convergence speed because asynchronous communication does not
guarantee all the model updates were seen in each iteration. On “enwiki” (see Fig. 4(b)), as
before, Petuum achieves the highest accuracy out of all iterations. “rtt” converges to the same
model likelihood level as Petuum at iteration 200. “lgs” demonstrates slower convergence speed
but still achieves high model likelihood, while Yahoo! LDA has both the slowest convergence
speed and the lowest model likelihood at iteration 200.

These results match with our previous analysis. Though the number of model updates
is the same, an implementation using the stale model converges slower than one using the
latest model. For those using the stale model, “lgs-4s” is faster than “lgs” while “lgs” is faster
than Yahoo! LDA. This means by increasing the number of model update rounds, the model
parameters used in computation is newer, and the convergence speed is improved.

8

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

0 5000 10000 15000 20000 25000
Execution Time (s)

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5
M

od
el

 L
ik

el
ih

oo
d

1e11

lgs
Yahoo!LDA
lgs-4s

0 500 1000 1500 2000 2500 3000 3500
Execution Time (s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e10

lgs
Yahoo!LDA

(a) (b)

0 5000 10000 15000 20000 25000
Execution Time (s)

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

lgs-iter
Yahoo!LDA-iter
lgs-4s-iter

0 500 1000 1500 2000 2500 3000 3500
Execution Time (s)

0

10

20

30

40

50

60

70

80

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

lgs-iter
Yahoo!LDA-iter

(c) (d)

Figure 5: Model Likelihood vs. Elapsed Time on (a) “clueweb” (b) “enwiki”; Iteration Time
vs. Elapsed Time on (c) “clueweb” (d) “enwiki”

6.2 Model Convergence Speed Measured by Elapsed Time

We first compare the execution speed between “lgs” and Yahoo! LDA. On “clueweb”, we show
the convergence speed based on elapsed execution time (see Fig. 5(a)). Yahoo! LDA takes
more time to finish Iteration 1 due to its slow model initialization, which demonstrates that
it has a sizable overhead on the communication end. In later iterations, while “lgs” converges
faster, Yahoo! LDA catches up after 30 iterations. This observation can be explained by our
slower computation speed. To counteract the computation overhead, we increase the number of
model synchronization rounds per iteration to four. Thus the computation overhead is reduced
by using a newer and smaller model. Although the execution time for “lgs-4s” is still slightly
longer than Yahoo! LDA, it obtains higher model likelihood and maintains faster convergence
speed during the whole execution.

Similar results are shown on “enwiki”, but this time “lgs” not only achieves higher model
likelihood but also has faster model convergence speed throughout the whole execution (see Fig.
5(b)). From both experiments, we learn that though the computation is slow in “lgs”, with

9

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

0 1000 2000 3000 4000 5000 6000 7000 8000
Execution Time (s)

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5
M

od
el

 L
ik

el
ih

oo
d

1e11

rtt
Petuum

0 1000 2000 3000 4000 5000 6000 7000
Execution Time (s)

0

50

100

150

200

250

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(a) (b)

1 2 3 4 5 6 7 8 9 10
Iteration

0

50

100

150

200

250

300

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

181

131
121 116 112

106
100

92
85 80

57

23
21

18 19
18

17
18

16
15

59 54 52 50 48 44 42 39 36 35

33
30 28 32

29 29 31 29 30 26

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

191 192 193 194 195 196 197 198 199 200
Iteration

0

5

10

15

20

25

30

35

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

23 23 23 23 23 23 23 23 23 23

3
3 3

2
3 3 3 2 3 3

19 19 19 19 19 19 19 19 19 19

10
10

10
11

9 10 9 9 10 10

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(c) (d)

Figure 6: Comparison on “clueweb” (a) Model Likelihood vs. Elapsed Time (b) Iteration Time
vs. Elapsed Time’ (c) First 10 Iteration Times (d) Final 10 Iteration Times

collective communication optimization, the model size quickly shrinks so that its computation
time is reduced significantly. At the same, although Yahoo! LDA does not have any extra
overhead other than computation in each iteration, its iteration execution time reduces slowly
because it keeps computing with an older model (see Fig. 5(c)(d)).

Next we compare “rtt” and Petuum LDA on “clueweb”and “bi-gram”. On “clueweb”, the
execution times and model likelihood achieved on both sides are similar (see Fig. 6(a)). Both
are around 2.7 times faster than the results in “lgs” and Yahoo! LDA. This is because they
use the latest model parameters for sampling, and using the “sample by word” method leads to
better performance. Though “rtt” has higher computation time compared with Petuum LDA,
the communication overhead per iteration is lower. When the execution arrives at the final
few iterations, while computation time per iteration in “rtt” is higher, the whole execution
time per iteration becomes lower (see Fig. 6(b)(c)(d)). This is because Petuum communicates
each word’s model parameters in small messages and generates high overhead. On “bi-gram”,
the results show that Petuum does not perform well when the number of words in the model
increases. The high overhead in communication causes the convergence speed to be slow, and

10

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

0 1000 2000 3000 4000 5000 6000
Execution Time (s)

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7
M

od
el

 L
ik

el
ih

oo
d

1e10

rtt
Petuum

0 1000 2000 3000 4000 5000 6000
Execution Time (s)

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(a) (b)

1 2 3 4 5 6 7 8 9 10
Iteration

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

28

16
12 11 10 9 8 7 7 6

71

38

31
29

36 36

27
25 25 25

7 7 7 7 6 6 6 6 6 6

110

87
84

82 81
86 86 85

102

84

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

53 54 55 56 57 58 59 60 61 62
Iteration

0

20

40

60

80

100

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

4 4 4 4 4 4 4 4 4 4

19 20 21 21 19 19 19 19 19 20

6 6 6 6 6 6 6 6 6 6

82
86 86

84 86
81

86 87
83

88

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(c) (d)

Figure 7: Comparison on “bi-gram” (a) Model Likelihood vs. Elapsed Time (b) Iteration Time
vs. Elapsed Time (c) First 10 Iteration Times (d) Final 10 Iteration Times

Petuum cannot even continue executing after 60 iterations due to a memory outage (see Fig.
7(a)). Fig. 7(b)(c)(d) shows this performance difference on communication.

7 Conclusion

Through the analysis on the LDA model, we identify three model properties in parallel LDA
computation: 1. The model requirement in local computation is high; 2. The time complexity
of local sampling is related to the required model size; 3. The model size shrinks as it converges.
These properties suggest that using collective communication optimizations can improve the
model update speed, which allows the model to converge faster. When the model converges
quickly, its size shrinks greatly, and the iteration execution time also reduces. We show that
optimized collective communication methods perform better than asynchronous methods in
parallel LDA. “lgs” results in faster model convergence and higher model likelihood at iteration
200 compared to Yahoo! LDA. On “bi-gram”, “rtt” shows significantly lower communication

11

High Performance LDA through Collective Model Communication Optimization Zhang, Peng and Qiu

overhead than Petuum LDA, and the total execution time of “rtt” is 3.9 times faster. On
“clueweb”, although the computation speed of the first iteration is 2- to 3-fold slower, the total
execution time remains similar.

Despite the implementation differences between “rtt”, “lgs”, Yahoo! LDA, and Petuum
LDA, the advantages of collective communication methods are evident. Compared with asyn-
chronous communication methods, collective communication methods can optimize routing be-
tween parallel workers and maximize bandwidth utilization. Though collective communication
will result in global waiting, the resulting overhead is not as high as speculated. The chain reac-
tion set off by improving the LDA model update speed amplifies the benefits of using collective
communication methods. In future work, we will focus on improving intra-node LDA perfor-
mance in many-core systems and apply our model communication strategies to other machine
learning algorithms facing big model problems.

Acknowledgments

We gratefully acknowledge support from Intel Parallel Computing Center (IPCC) Grant, NSF
1443054 CIF21 DIBBs 1443054 Grant, and NSF OCI 1149432 CAREER Grant. We appreciate
the system support offered by FutureSystems.

References

[1] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. The Journal of Machine Learning
Research, 3:993–1022, 2003.

[2] A. Ahmed et al. Scalable Inference in Latent Variable Models. In WSDM, 2012.

[3] D. Newman et al. Distributed Algorithms for Topic Models. The Journal of Machine Learning
Research, 10:1801–1828, 2009.

[4] E. Chan et al. Collective Communication: Theory, Practice, and Experience. Concurrency and
Computation: Practice and Experience, 19(13):1749–1783, 2007.

[5] E. Xing et al. Petuum: A New Platform for Distributed Machine Learning on Big Data. In KDD,
2015.

[6] J. Gonzalez et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In
OSDI, 2012.

[7] M. Li et al. Scaling Distributed Machine Learning with the Parameter Server. In OSDI, 2014.

[8] Q. Ho et al. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server.
In NIPS, 2013.

[9] S. Lee et al. On Model Parallelization and Scheduling Strategies for Distributed Machine Learning.
In NIPS, 2014.

[10] Y. Wang et al. PLDA: Parallel Latent Dirichlet Allocation for Large-scale Applications. In
Algorithmic Aspects in Information and Management, pages 301–314. 2009.

[11] Y. Wang et al. Peacock: Learning Long-Tail Topic Features for Industrial Applications. ACM
Transactions on Intelligent Systems and Technology, 6(4), 2015.

[12] P. Resnik and E. Hardist. Gibbs Sampling for the Uninitiated. Technical report, University of
Maryland, 2010.

[13] A. Smola and S. Narayanamurthy. An Architecture for Parallel Topic Models. Proceedings of the
VLDB Endowment, 3(1-2):703–710, 2010.

[14] L. Yao, D. Mimno, and A. McCallum. Efficient Methods for Topic Model Inference on Streaming
Document Collections. In KDD, 2009.

[15] B. Zhang, Y. Ruan, and J. Qiu. Harp: Collective Communication on Hadoop. In IC2E, 2014.

12

	Introduction
	Background
	Big Model Problem in Parallel LDA
	Model Communication Challenges in Parallel LDA and Related Work
	Harp-LDA Implementations
	Experiments
	Model Convergence Speed Measured by Iteration
	Model Convergence Speed Measured by Elapsed Time

	Conclusion

