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Abstract—Big data tools have evolved rapidly in recent years. 
MapReduce is very successful but not optimized for many 
important analytics; especially those involving iteration. In this 
regard, Iterative MapReduce frameworks improve performance 
of MapReduce job chains through caching. Further Pregel, 
Giraph and GraphLab abstract data as a graph and process it in 
iterations. However, all these tools are designed with fixed data 
abstraction and have limitations in communication support. In 
this paper, we introduce a collective communication layer which 
provides optimized communication operations on several 
important data abstractions such as arrays, key-values and 
graphs, and define a Map-Collective model which serves the 
diverse communication demands in different parallel 
applications. In addition, we design our enhancements as plug-ins 
to Hadoop so they can be used with the rich Apache Big Data 
Stack. Then for example, Hadoop can do in-memory 
communication between Map tasks without writing intermediate 
data to HDFS. With improved expressiveness and excellent 
performance on collective communication, we can simultaneously 
support various applications from HPC to Cloud systems 
together with a high performance Apache Big Data Stack. 

Keywords—Collective Communication; Big Data Processing; 
Hadoop 

I. INTRODUCTION 
It is estimated that organizations with high-end computing 

infrastructures and data centers are doubling the amount of data 
they archive every year. Sophisticated machine learning 
techniques aim to offer the best results to return to the user. It 
did not take long for these ideas to be applied to the full range 
of scientific challenges. Many of the primary software tools 
used to do large-scale data analysis are required by these 
applications to optimize their performance. There is a need to 
integrate features of traditional high-performance computing, 
such as scientific libraries, communication and resource 
management middleware, with the rich set of capabilities found 
in the commercial Big Data ecosystem such as Apache open 
source software stack. The overarching question we will 
address is “How should we design, analyze and implement a 
unified and interoperable infrastructure to meet the 
requirements of a broad set of data intensive applications?”  

The primary software tools used to do the large-scale data 
analysis has evolved rapidly as shown in Fig. 1. The last 
decade witnessed a huge computing shift derived from 
publication of the Google MapReduce paper [1]. Since then, its 
open source version Hadoop [2] has become the mainstream of 
big data processing, with many other tools emerging to process 
different big data problems, extending the original MapReduce 
model to include iterative MapReduce. Tools such as Twister 
[3] and HaLoop [4] can cache loop invariant data locally to 
avoid repeat input data loading in a MapReduce job chain. 

Spark [5] also uses caching to accelerate iterative algorithms 
without restricting computation to a chain of MapReduce jobs. 
To process graph data, Google announced Pregel [6] and soon 
open source versions Giraph [7] and Hama [8] emerged.  

Whatever their differences, all such programs are based on 
a kind of “top-down” design. The whole programming model, 
from data abstraction to computation and communication 
pattern, is fixed. Users have to put their applications into the 
model, which could cause performance inefficiency. For 
example, in K-Means clustering [9] (Lloyd's algorithm [10]), 
every successive task needs all the centroids generated in the 
last iteration. Mahout [11] on Hadoop chooses to reduce the 
results of all the map tasks in one reduce task and store it on 
HDFS. This data is then read by all the map tasks in the job at 
the next iteration. The “reduce” stage can be parallelized by 
chunking intermediate data to partitions and using multiple 
reduce tasks to compute each part in parallel. This type of 
“(multi-)reduce-gather-broadcast” strategy is also applied in 
other frameworks through in-memory communication, e.g. 
Twister and Spark.  

Regardless, “gather-broadcast” is not an efficient way to 
relocate the new centroids generated by reduce tasks, especially 
when the centroids data grows large in size. The time 
complexity of “gather” is at least kdβ where k is the number of 
centroids, d is the number of dimensions and β is the 
communication time used to send each element in the centroids 
(communication initiation time α is neglected). Also the time 
complexity of “broadcast” is at least kdβ [12] [13].  Thus the 
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time complexity of “gather-broadcast” is about 2kdβ. But if we 
use allgather bucket algorithm [14], it is reduced to kdβ.  

In iterative algorithms, communication participated in by 
all the workers happens once or more per iteration. This makes 
communication algorithm performance crucial to the efficiency 
of the whole application. We call this “Collective 
Communication”. Rather than fixing communication patterns, 
we decided to separate this layer out and provide collective 
communication abstraction. Collective communication features 
in MPI [15], designed for HPC systems and supercomputers. 
While well defined, there are many limitations. It cannot 
support high level data abstractions other than arrays, objects, 
and related communication patterns on them, e.g. shuffling on 
key-values or message passing along edges in graphs. Another 
drawback is that it forces users to focus on every detail of a 
communication call. For example, users have to calculate the 
buffer size for data receiving, which is difficult to obtain in 
many applications as the amount of sending data may be very 
dynamic and unknown to the receivers.  

In response to these issues, we present Harp library. Harp 
provides data abstractions and related communication 
abstractions with optimized implementation. By plugging Harp 
into Hadoop, we convert MapReduce model to Map-Collective 
model and enable efficient in-memory communication between 
map tasks across a variety of important data analysis 
applications. The word “harp” symbolizes how parallel 
processes cooperate through collective communication for 
efficient data processing, just as strings in harps can make 
concordant sound (see Fig. 2). The inclusion of collective 
communication abstraction and Map-Collective model means 
Harp is neither a replication of MPI nor an attempt to transplant 
MPI into the Hadoop system [16], as we will elaborate in 
subsequent sections. 

In the rest of this paper, Section 2 discusses about related 
work. Section 3 describes the abstraction of collective 
communication. Section 4 shows how Map-Collective model 
works in Hadoop-Harp. Section 5 gives several applications 
implemented in Harp. Section 6 shows the performance of 
Harp through benchmarking on the applications.  

II. RELATED WORK 
The landscape of big data tools grows bigger and more 

complicated. Each tool has its own computation model with 
related data abstraction and communication abstraction in order 
to achieve optimization for different applications. Before the 
MapReduce model, MPI was the main tool used for large-scale 
simulation, exclusive on expensive hardware such as HPC or 
supercomputers. But MapReduce tries to use commodity 
machines to solve big data problems. This model defines data 
abstraction as key-value pairs and computation flow as “map, 
shuffle and then reduce”. One advantage of this tool is that it 
doesn’t rely on memory to load and process all the data, instead 
using local disks. MapReduce model can solve problems where 
the data size is too large to fit into the memory. Furthermore, it 
also provides fault tolerance, which is important to big data 
processing. The open source implementation Hadoop [2] is 
widely used nowadays in both industry and academia. 

MapReduce became popular for its simplicity and 
scalability, yet is still slow when running iterative algorithms. 
The resultant chain of MapReduce jobs means repeat input data 
loading occurs in each iteration. Several frameworks such as 
Twister [3], HaLoop [4] and Spark [5] solve this problem by 
caching intermediate data. Another model used for iterative 
computation is the Graph model, which abstracts data as 
vertices and edges. Here computation happens on vertices, and 
each worker caches vertices and related out-edges as graph 
partitions. The whole parallelization is BSP (Bulk Synchronous 
Parallel) style. There are two open source projects following 
Pregel’s design. One is Giraph [7] and another is Hama [8]. 
Giraph exactly follows iterative BSP graph computation 
pattern while Hama tries to build a general BSP computation 
model. By contrast, GraphLab [17] [18] abstracts data as a 
“data graph” and uses consistency models to control vertex 
value update. GraphLab was later enhanced with PowerGraph 
[19] abstraction to reduce the communication overhead. This 
was also learned by GraphX [20].  

The third model is DAG, which abstracts computation flow 
as a directed acyclic graph. Each vertex in the graph is a 
process, and each edge is a communication channel between 
two processes. DAG model is helpful to those applications 
which have complicated parallel workflows. Dryad [21] is an 
example of a parallel engine using DAG. Tools employing this 
model are often used for query and stream data processing.  

Some attempts have been made to blend select features of 
these models. For example, Spark’s RDD data abstraction and 
transformation operations are very similar to MapReduce 
model. But it organizes computation tasks as DAGs. 
Stratosphere [22] and REEF [23] also try to support several 
different models in one framework. “Broadcast” operation 
from MPI is added in Hadoop by using distributed cache 
through a simple algorithm (one-by-one sending). And it is 
optimized by using BitTorrent technology in Spark [24] or 
using a pipeline-based chain algorithm in Twister [12] [13].  

For all these tools, communication is still hidden and 
coupled with the computation flow. Though these programs 
[12] [13] [24] [25] try to add or improve collective 
communication operations, they are still limited in type and 
constrained by the computation flow. As a result, it is 
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necessary to build a separated communication layer 
abstraction. With this we can build a computation model that 
provides a rich set of communication operations and grants 
users flexibility in choosing operations suitable to their 
applications. 

A common question is why we don’t use MPI directly since 
it already offers collective communication abstraction. There 
are many reasons. Firstly the collective communication in MPI 
is still limited in abstraction. It provides a low level data 
abstraction on arrays and objects so that many collective 
communication operations used in other big data tools are not 
provided directly in MPI. Besides, MPI doesn’t provide 
computation abstraction, such that writing MPI applications is 
difficult compared with other big data tools. Thirdly, MPI is 
commonly deployed on HPC or supercomputers. Despite 
projects like [16], it is not as well integrated with cloud 
environments as Hadoop ecosystems. 

III. COLLECTIVE COMMUNICATION ABSTRACTION 
We have taken several steps to achieve high efficiency. To 

support different types of communication patterns in big data 
tools, we abstract data types in a hierarchy. Then we define 
collective communication operations on top of the data 
abstractions. Lastly to improve the efficiency of 
communication, we add memory a management module in 
implementation for data caching and reuse. 

A. Hierarchical Data Abstraction 
In Fig. 3, we abstract data horizontally as arrays, key-values 

or vertices, edges and messages in graphs. Vertically we build 
abstractions from basic types to partitions and tables.  

Firstly, any data which can be sent or received is an 
implementation of interface Commutable. At the lowest level, 
there are two basic types under this interface: arrays and 
objects. Based on the component type of an array, currently we 
have byte array, int array, long array and double array. For 
object type, to describe graph data there is vertex object, edge 
object and message object; to describe key-value pairs, we use 
key object and value object.   

Next, at the middle level, basic types are wrapped as array 
partitions, key-value partitions and graph partitions (edge 
partition, vertex partition and message partition). Notice that 
we follow the design of Giraph; edge partition and message 
partition are built from byte arrays but not from edge objects or 
message objects directly. When reading, bytes are converted to 
an edge object or a message object. When writing, either the 
edge object or the message object is serialized and written back 
to byte arrays. 

At the top level are tables containing several partitions each 
with a unique partition ID. If two partitions with the same ID 
are added to the table it will solve the ID conflict by either 
combining or merging them into one. Tables on different 
workers are associated with each other through table IDs. 
Tables sharing the same table ID are considered as one dataset 
and “collective communication” is defined as redistribution or 
consolidation of partitions in this dataset. For example, in Fig. 
4, a set of tables associated with ID 0 is defined on workers 
from 0 to N. Partitions from 0 to M are distributed among these 
tables. A collective communication operation on Table 0 is to 
move the partitions between these tables. We will talk more in 
detail about the behavior of partition movement in collective 
communication operations.  

B. Collective Communication Operations 
Collective communication operations are defined on top of 

the data abstractions. Currently three categories of collective 
communication operations are supported: 

1) Collective communication inherited from MPI 
collective communication operations, such as “broadcast”, 
“allgather”, and “allreduce”. 

2) Collective communication inherited from MapReduce 
“shuffle-reduce” operation, e.g. “regroup” operation with 
“combine or reduce” support. 

3) Collective communications abstracted from graph 
communication, such as “regroup vertices or edges”, “move 
edges to vertices” and “send messages to vertices”. 

Some collective communication operations tie to certain 
data abstractions. For example, graph collective 
communication operations have to be done on graph data. But 
for other operations, the boundary is blurred. “allgather” 
operation can be used on array tables, key-value tables, and 
vertex tables. But currently we only implement it on array 
tables and vertex tables. The following is a table which 
summarizes all the operations identified from applications and 
related data abstractions (see Table I). We will continue adding 
other collective communication operations not shown on this 
table in the future.  

If we take another look at Fig. 4 and use “regroup” as an 
example, for N + 1 workers, workers are ranked from 0 to N. 
Here Worker 0 is selected as the master worker which collects 
the partition distribution information on all others. Each worker 
reports the current table ID and the partition IDs it owns. Table 
ID is used to identify if the collective communication is on the 
same dataset. Once all the partition IDs are received, the master 
worker decides the destination worker IDs of each partition. 
Usually the decision is done through modulo operation. Once 
the master’s decision is made, the result is broadcasted to all 
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workers, after which each worker starts to send out and receive 
partitions from one another (see Fig. 5).  

Each collective communication can be implemented in 
many different algorithms. For example, we have two 
implementations of “allreduce”. One is “bidirectional-exchange 
algorithm” [14] and another is “regroup-allgather algorithm”. 
When the data size is large and each table has many partitions, 
“regroup-allgather” is more suitable because it has less data 
sending and more balanced workload on each worker. But if 
the table on each worker only has one or a few partitions, 
“bidirectional-exchange” is more effective. Currently different 
algorithms are provided in different operation calls, but we 
intend to provide automatic algorithm selection in the future. 

In addition, we also optimize the “decision making” stages 
of several collective communication operations when the 
partition distribution is known in the application context. 
Normally just like in Fig. 5, the master worker has to collect 
the partition distribution on each worker and broadcast the 
“regroup” decision to let them know which partition to send 
and which to receive. But when the partition distribution is 
known, this step can be skipped. In general, we enrich Harp 
collective communication library by providing different 
implementations for each operation so that users can choose 
the proper one based on the application requirement. 

C. Implementation 
To make the collective communication abstraction work, 

we design and implement several components on each worker 
to send and receive data. These components are resource pool, 
receiver and data queue. Resource pool is crucial in 
computation and collective communication of iterative 
algorithms. In these algorithms, the collective communication 
operations are called repeatedly and the intermediate data 
between iterations is similar in size, just with different content. 
Resource pool caches the data used in the last iteration to 
enable it to reuse them in the next. Therefore the application 
can avoid repeat allocation of memory and lower the time used 
on garbage collection.  

The process of sending proceeds as follows: the worker 
first serializes the data to a byte array fetched from the resource 
pool and then sends it through the socket. Receiving is 
managed by the receiver component. It starts a thread to listen 
to the socket requests. For each request, the receiver spawns a 

handler thread to process it. We use “producer-consumer” 
model to process the data received. For efficiency, data is 
identified by its related metadata information. Handler threads 
add the data received to the data queue. The main thread of the 
worker fetches data from the queue and examines if it belongs 
to this round of communication. If yes, the data is removed 
from the queue; otherwise it will be put back into the queue 
again. 

IV. MAP-COLLECTIVE MODEL 
The collective communication abstraction we proposed is 

designed to run in a general environment with a set of parallel 
Java processes. Each worker only needs a list of all workers’ 
locations to start the communication. Therefore this work can 
be used to improve collective communication operations in any 
existing big data tool. But since communication is hidden in 
these tools, the applications still cannot benefit from the 
expressiveness of collective communication abstraction. As a 
solution we deploy Map-Collective model to enable using 
collective communications in map tasks. In this section, we are 
going to talk about several features of Map-Collective model. 

A. Hadoop Plugin and Harp Installation 
Harp is designed as a plugin to Hadoop. Currently it 

supports Hadoop-1.2.1 and Hadoop-2.2.0. To install Harp 
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TABLE I. Collective Communication Operations and the Data 
Abstractions Supported (“√” means “supported” and “implemented” and 
“○” means “supported” but “not implemented)  

Operation Name Array  
Table 

Key-Value 
Table 

Graph  
Table 

Broadcast √ ○ √ (Vertex) 

Allgather √ ○ √ (Vertex) 

Allreduce √ ○ ○ (Vertex) 

Regroup √ √ √ (Edge) 

Send all messages to 
vertices   √ 

Send all edges to 
vertices   √ 

 



library, users only need to put the Harp jar package into the 
Hadoop library directory. For Hadoop 1, users need to 
configure the job scheduler to the scheduler designed for Map-
collective jobs. But in Hadoop 2.0, since YARN resource 
management layer and MapReduce framework are separated, 
users are not required to change the scheduler. Instead, they 
just need to set "mapreduce.framework.name" to "map-
collective" in client job configuration. Harp will launch a 
specialized application master to request resources and 
schedule Map tasks.  

B. MAP-COLLECTIVE INTERFACE 
In Map-Collective model, user-defined mapper classes are 

extended from the class CollectiveMapper which is extended 
from the class Mapper in the original MapReduce framework. 
In CollectiveMapper, users need to override a method 
“mapCollective” with application code. While similar to 
“mapCollective” method differs from Class Mapper in that it 
employs KeyValReader to provide flexibility to users; 
therefore they can either read all key-values into the memory 
and cache them or read them part by part to fit the memory 
constraint (see Table II). 

Here is an example of how to do “allgather” in 
“mapCollective” method (see TABLE III). Firstly we generate 
several array partitions with arrays fetched from the resource 
pool and add these partitions into an array list. The total 
number of partitions on all the workers is specified by 
numPartitions. Each worker has numPartition/numMappers 
partition (we assume numPartitions % numMappers = 0). Then 
we add these partitions in an array table and invoke “allgather”. 
DoubleArrPlus is the combiner class used in these array tables 
to solve partition ID conflict in partition receiving. The 
“allgather” method used here is called “allgatherTotalKnown”. 
Because the total number of partitions is provided as a 
parameter in this version of “allgather”, workers don’t need to 
negotiate the number of partitions to receive from each worker, 
but send out all the partitions they own to their neighbor 
directly with the bucket algorithm. 

C. BSP Style Parallelism 
To enable in-memory collective communication between 

workers, we need to make every worker alive simultaneously. 
As a result, instead of dynamic scheduling, we use static 
scheduling. Workers are separated into different nodes and do 
collective communication iteratively. The whole parallelism 
follows the BSP pattern.   

Here we use our Harp implementation in Hadoop-2.2.0 to 
talk about the scheduling mechanism and initialization of the 
environment. The whole process is similar launching 
MapReduce applications in Hadoop-2.2.0. In job configuration 
at client side, users need to set "mapreduce.framework.name" 

to "map-collective". Then the system chooses 
MapCollectiveRunner as job client instead of default 
YARNRunner for MapReduce jobs. MapCollectiveRunner 
launches MapCollectiveAppMaster to the cluster. When 
MapCollectiveAppMaster requests resources, it schedules the 
tasks to different nodes. This can maximize memory sharing 
and multi-threading on each node and save the intermediate 
data size in collective communication.  

In the launching stage, MapCollectiveAppMaster records 
the location of each task and generates two lists. One contains 
the locations of all the workers and another contains the 
mapping between map task IDs and worker IDs. These files 
currently are stored on HDFS and shared among all the 
workers.  To ensure every worker has started, we use a 
“handshake”-like mechanism to synchronize them. In the first 
step, the master worker tries to ping its subordinates by sending 
a message. In the second step, slave workers who received the 
ping message will send a response back to acknowledge they 
are alive. In the third step, once the master gets all the 
responses, it broadcasts a small message to all workers to 
notify them of the initialization’s success. 

When the initialization is done, each worker invokes 
“mapCollective” method to do computation and 
communication. We design the interface “doTasks” to enable 
users to launch multithread tasks. Given an input partition list 
and a Task object with user-defined “run” method, the 
“doTasks” method can automatically do multi-threading 
parallelization and return the outputs. 

TABLE II. “mapCollective” interface 

protected void mapCollective( 
    KeyValReader reader,  
    Context context) throws IOException,  
    InterruptedException { 
  // Put user code here… 
} 
 

TABLE III. “Allgather” code example 

// Generate array partitions 
List<ArrPartition<DoubleArray>>  

arrParList = new ArrayList< 
    ArrPartition<DoubleArray>>(); 
for (int i = workerID;  
    i < numPartitions; i += numMappers){   
  DoubleArray array = new DoubleArray(); 
  double[] doubles =  
      pool.getDoubleArrayPool(). 
      getArray(arrSize); 
  array.setArray(doubles); 
  array.setSize(arrSize); 
  for (int j = 0; j < arrSize; j++) { 
    doubles[j] = j;  
  } 
  arrParList.add( 
      new ArrPartition<DoubleArray>( 
      array, i)); 
} 
// Define array table 
ArrTable<DoubleArray, DoubleArrPlus>  
    arrTable =  
    new ArrTable< 
    DoubleArray, DoubleArrPlus>( 
    0, DoubleArray.class,  
    DoubleArrPlus.class); 
// Add partitions to the table 
for (ArrPartition<DoubleArray> arrPar : 
    arrParList) { 
  arrTable.addPartition(arrPar); 
} 
// Allgather 
allgatherTotalKnown( 
    arrTable, numPartitions); 
 



D. Fault Tolerance 
When it comes to fault tolerance, detection and recovery 

are crucial system features. Currently our effort is to ensure 
every worker can report exceptions or faults correctly without 
getting hung up. With careful implementation and based on the 
results of testing, this issue is solved. 

Fault recovery poses a challenge because the execution 
flow in each worker is very flexible. Currently we do job level 
fault recovery. Based on the execution time length of scale, 
jobs with a large number of iterations can be separated into a 
small number of jobs, each of which contains several iterations. 
This naturally forms checkpointing between iterations. Because 
Map-Collective jobs are very efficient on performance, this 
method is feasible without generating large overhead. At the 
same time, we are also investigating task-level recovery by re-
synchronizing new launched tasks with other old live tasks. 

E. Layered Architecture 
Fig. 6 shows how different layers interface with each other 

in the Map-collective model. At the bottom level is the 
MapReduce framework. The modified MapReduce framework 
exposes the network location of tasks in the cluster to Harp in 
the upper level.  Harp builds collective communication 
abstraction and provides collective communication operators, 
hierarchical data types of tables and partitions, and the memory 
allocation management pool. All these 3 components interface 
with the Map-Collective programming model. After wrapping, 
Map-Collective model provides 3 components to the 
applications: a method interface called mapCollective, a set of 
collective communication APIs which can be invoked in the 
mapCollective interface, and the data abstraction of array data, 
Key-Value data and graph data. 

V. APPLICATIONS 
 We've implemented three applications using Harp: K-

Means clustering, Force-directed Graph Drawing Algorithm, 
and Weighted Deterministic Annealing SMACOF. The first 
two algorithms are very simple. Both of them use a single 
collective communication operation per iteration. But the third 
is much more complicated. It has nested iterations, and two 
different collective communication operations are used 

alternately. In data abstraction, the first and third algorithms 
use array abstraction, while the second one utilizes graph 
abstraction. For key-value abstraction, we only implemented 
Word Count. We don’t introduce it here because it is very 
simple, with only one “regroup” operation and no iterations. 

A. K-Means Clustering 
K-Means Clustering is an algorithm to cluster large 

numbers of data points to a predefined set of clusters. We use 
Lloyd's algorithm [10] to implement K-Means Clustering in 
Map-Collective model.  

In Hadoop-Harp, each worker loads a part of the data points 
and caches them into memory as array partitions. The master 
worker loads the initial centroids file and broadcasts it to all the 
workers.  Later, for every iteration a worker calculates its own 
local centroids and then uses “allreduce” operation at the end to 
produce the global centroids of this iteration on each worker.  
After several iterations, the master worker will write the final 
version of centroids to HDFS. 

We use a pipeline-based method to do broadcasting for 
initial centroids distribution [12]. For “allreduce” in each 
iteration, due to the large size of intermediate data, we use 
“regroup-allgather”. Each local intermediate data is chunked to 
partitions. We firstly “regroup” them based on partition IDs. 
Next, on each worker we reduce the partitions with the same 
ID to obtain one partition of the new centroids. Finally, we do 
“allgather” on new generated data to let every worker have all 
the new centroids. 

B. Force-directed Graph Drawing Algoritm 
We implement a Hadoop-Harp version of the Fruchterman-

Reingold algorithm which produces aesthetically-pleasing, 
two-dimensional pictures of graphs by doing simplified 
simulations of physical systems [26]. 

Vertices of the graph are considered as atomic particles. At 
the beginning, vertices are randomly placed in a 2D space. The 
displacement of each vertex is generated based on the 
calculation of attractive and repulsive forces. In each iteration, 
the algorithm calculates the effect of repulsive forces to push 
them away from each other, then calculates attractive forces to 
pull them close, limiting the total displacement by temperature. 
Both attractive and repulsive forces are defined as functions of 
distances between vertices following Hook’s law.  

In Hadoop-Harp implementation, graph data is stored as 
partitions of adjacency lists in files and then loaded into edge 
tables to be partitioned based on the hash values of source 
vertex ID. We use “regroupEdges” operation to move edge 
partitions with the same partition ID to the same worker. We 
create vertex partitions based on edge partitions, which are then 
used to store displacement of vertices calculated in one 
iteration.   

The initial vertex positions are generated randomly. We 
store them in another set of tables and broadcast them to all 
workers before starting iterations. Then in each iteration, once 
displacement of vertices is calculated, new vertex positions are 
generated. Because the algorithm requires calculation of the 
repulsive forces between every two vertices, we use “allgather” 
to redistribute the current positions of the vertices to all the 
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workers. By combining multiple collective communication 
operations from different categories, we show the flexibility of 
Hadoop-Harp in implementing different applications.  

C. Weighted Deterministic Annealing SMACOF 
Generally, Scaling by MAjorizing a COmplicated Function 

(SMACOF) is a gradient descent-type of algorithm which is 
widely used for large-scale Multi-dimensional Scaling (MDS) 
problems [27]. The main purpose of this algorithm is to project 
points from high dimensional space to 2D or 3D space for 
visualization by providing pair-wise distances of the points in 
original space. Through iterative stress majorization, the 
algorithm tries to minimize the difference between distances of 
points in original space and their distances in the new space.  

Weighted Deterministic Annealing SMACOF (WDA-
MSACOF) is an algorithm that improves the original 
SMACOF. SMACOF avoided a computationally intense 
matrix inversion step, as for unweighted terms the (pseudo)-
inverse of solution can be determined analytically. WDA-
SMACOF uses deterministic annealing techniques to avoid 
local optima during stress majorization, and it employs 
conjugate gradient for the equation solving with a non-trivial 
matrix in order to keep the time complexity of the algorithm in 
O(N2). For example practical cases with around a million 
unknowns use from 5 to 200 conjugate gradient iterations [28]. 
Originally the algorithm is commonly used in a data clustering 
and visualization pipeline called DACIDR [29]. In the past, the 
workflow used both Hadoop and Twister in order to achieve 
maximum performance [30]. With the help of Harp, this 
pipeline can be directly implemented instead of using the 
hybrid MapReduce model. 

WDA-SMACOF has nested iterations. In every outer 
iteration, we firstly do an update on an order N matrix, then 
perform a matrix multiplication; we calculate the coordination 
values of points on the target dimension space through 
conjugate gradient process. The stress value of this iteration is 
determined as the final step. Inner iterations are the conjugate 
gradient process, which is used to solve the equation similar to 
Ax=b in iterations of matrix multiplications. 

In the original Twister implementation of the algorithm, the 
three different computations in outer iterations are separated 
into three MapReduce jobs and run alternatively. There are two 
flaws in this method. One is that the static data cached cannot 
be shared between jobs. As such there is duplication in caching 
which causes high memory usage. Another issue is that the 
results from the last job have to be collected back to the client 
and broadcast to the next job. This process is inefficient and 
can be replaced by optimized collective communication calls. 

In Hadoop-Harp, we improve the parallel implementation 
using “allgather” and “allreduce”, two collective 
communication operations. Conjugate gradient process uses 
“allgather” to collect the results from matrix multiplication and 
“allreduce” for those from inner product calculations. In outer 
iterations, “allreduce” is used to sum the result of stress value 
calculations. We use bucket algorithm in “allgather” and bi-
directional exchange algorithm in “allreduce”. 

VI. EXPERIMENTS 
The experiments include three applications as described in 

section V. We evaluate the performance of Hadoop-Harp on 
Big Red II supercomputer [31]. 

A. Test Environment 
The applications use the nodes in “cpu” queue on Big Red 

II. Each node has 32 processors and 64 GB memory. The nodes 
are connected with Cray Gemini interconnect. 

Hadoop-2.2.0 and JDK 1.7.0_45 are installed on Big Red 
II. Hadoop is not naturally adopted by supercomputers like Big 
Red II, so we need to make some adjustments. Firstly, we have 
to submit a job in Cluster Compatibility Mode (CCM) but not 
Extreme Scalability Mode (ESM). In addition, because there is 
no local disk on each node and /tmp directory is mapped to part 
of the memory (about 32GB), we cannot hold large data on 
local disks in HDFS. For small input data, we still use HDFS, 
but for greater amounts, we choose to use Data Capacitor II 
(DC2), the file system connected to compute nodes. We create 
partition files in Hadoop job client, each of which contains 
several file paths on DC2. The number of partition files is 
matched with the number of map tasks. Each map task reads all 
file paths in a partition file as key-value pairs and then reads 
the real file contents from DC2. In addition, the 
implementation of communication in Harp is based on Java 
socket; we did no optimization aimed at Cray Gemini 
interconnect.  

In all the tests, we deploy one worker on each node and 
utilize 32 processors to do multi-threading inside. Generally we 
test on 8 nodes, 16 nodes, 32 nodes, 64 nodes and 128 nodes 
(which is the maximum number of nodes allowed for job 
submission on Big Red II). This means 256 processors, 512 
processors, 1024 processors, 2048 processors and 4096 
processors. To reflect the scalability and the communication 
overhead, we calculate efficiency based on the number of 
nodes but not the number of processors.  

In JVM execution command of each worker, we set both 
“Xmx” and “Xms” to 54000M, “NewRatio” to 1 and 
“SurvivorRatio” to 98. Because most memory allocation is 
cached and reused, it is not necessary to keep large survivor 
spaces. We increase SurvivorRatio and lower down survivor 
spaces to a minimum so we can leave most of the young 
generation to Eden space.  

B. Results on K-Means Clustering 
We run K-Means clustering with two different generated 

random data sets. One is clustering 500 million 3D points into 
ten thousand clusters, while another is clustering 5 million 3D 
points into 1 million clusters. In the former, the input data is 
about 12 GB and the ratio of points to clusters is 50000:1. In 
the larger case, the input data size is only about 120 MB but the 
ratio is 5:1. Such a ratio is commonly high in clustering but the 
low ratio is used in a different scenario where the algorithm 
tries to do fine-grained clustering as classification [32] [33]. 
Because each point is required to calculate distance with all the 
cluster centers, total workload of the two tests are similar. 

The baseline test uses 8 nodes then it scales up to 16, 32, 64 
and 128 nodes. The execution time and speedup are shown in 



Fig. 7. Due to the cache effect, we see “5 million points and 1 
million centroids” is slower than “500 million points and 10 
thousand centroids” when the number of nodes is small. But as 
the number of nodes increases, they draw closer to one another. 
For speedup, we assume we have the linear speedup on the 
smallest number of nodes we test. So we consider the speedup 
on 8 nodes is 8. The experiments show the speedup comparison 
in both test cases is close to linear.  

C. Results on Force-directed Graph Drawing Algorithm 
This algorithm runs with a graph of 477,111 vertices and 

665,599 undirected edges. The graph represents a retweet 
network about the presidential election in 2012 from Twitter 
[34].  

Although the size of input data is fairly small, the algorithm 
is computation intensive. We load vertex ID as ‘int’ and initial 
random coordination values as ‘float’. The total size is about 
16M. We test the algorithm on 1 node as the base case and then 
scale to 8, 16, 32, 64 and 128 nodes. Execution time of 20 
iterations and speedup are shown in Fig. 8. From 1 node to 16 
nodes, we observe almost linear speedup. It drops smoothly 
after 32 nodes. On 128 nodes, because the computation time 
per iteration slows to around 3 seconds, the speedup drops 
sharply.  

D. Results on WDA-SMACOF 
The WDA-SMACOF algorithm runs with different 

problem sizes including 100K points, 200K points, 300K 
points and 400K points. Each point represents a gene sequence 
in a dataset of representative 454 pyrosequence from spores of 
known AM fungal species [28]. Because the input data is the 
distance matrix of points and related weight matrix and V 
matrix, the total size of input data is in quadratic growth. We 
cache distance matrix in short arrays, weight matrix in double 
arrays and V matrix in int arrays. Then the total size of input 
data is about 140 GB for 100K problem, about 560 GB for 
200K problem, 1.3 TB for 300K problem and 2.2 TB for 400K 
problem.   

The input data is stored in DC2 and each matrix is split into 
4096 files. They are loaded from there to workers. Due to 
memory limitations, the minimum number of nodes required to 
run the 100K problem is 8. Then we scale 100K problems on 8, 
16, 32, 64 and 128 nodes. But for the 200K problem, the 
minimum number of nodes required is 32. So we scale the 
200K problem on 32, 64 and 128 nodes. With the 300K 
problem, the minimum node requirement is 64, so we scale 
300K problems from 64 to 128 nodes. Lastly for the 400K 
problem, we only run it on 128 nodes because this is the 
minimum requirement for that amount. 

Here we give the execution time, parallel efficiency and 
speedup (see Fig. 9, Fig. 10, Fig. 11). Because we cannot run 
each input on a single machine, we choose the minimum 
number of nodes to run the job as the base to calculate parallel 
efficiency and speedup. In most cases, the efficiency values are 
very good. The only point that has low efficiency is 100K 
problems on 128 nodes. This is a standard effect in parallel 
computing where the small problem size reduces compute time 
compared to communication which in this case has an 

overhead of about 40% of total execution time, and the overall 
efficiency drops. 

VII. CONCLUSION 
In this paper, we investigate basic architecture issues and 

the challenges of data analysis tools for complex scientific 
applications. Based on our analysis of different big data tools, 
we propose to abstract a collective communication layer from 
these computation models. We build Map-Collective as a 
unified model to improve the performance and expressiveness 
of big data tools. 

With three applications K-Means Clustering, Force-directed 
Graph Drawing and WDA-SMACOF, we demonstrate that the 
Map-Collective model can be simply expressed with the 
combination of proposed collective communication 
abstractions. The experiments show that we can scale these 
applications to 128 nodes with 4096 processors on the Big Red 
II supercomputer, where the speedup in most tests is close to 
linear and we’re looking at running it at much larger scales.  

Map-Collective [12][25] communication layer is designed 
in a pluggable, infrastructure agnostic way. It can be used in 
Hadoop ecosystem and HPC system. Harp has an open source 

 
Fig. 7. Execution Time and Speedup of K-Means Clustering 

 
Fig. 8. Execution Time and Speedup of Force-Directed Graph Drawing 

Algorithm 

 

 

0

20

40

60

80

100

120

140

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140

Speedup

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
ds

)

Number of Nodes
500M points 10K centroids Execution Time
5M points 1M centroids Execution Time
500M points 10K centroids Speedup
5M points 1M centroids Speedup

0

10

20

30

40

50

60

70

80

90

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140

Speedup

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
ds

)

Number of Nodes

Execution Time Speedup



collective communication library that can be plugged into 
Hadoop. With this plug-in, Map-Reduce jobs can be 
transformed into Map-Collective jobs and users can invoke 
efficient in memory message passing operations such as 

collective communication (e.g. broadcast and group-by) and 
point-to-point communication directly within Map tasks. For 
the first time, Map-Collective brings high performance to the 
Apache Big Data Stack in a clear communication abstraction, 
which did not exist before in the Hadoop ecosystem. We 
expect Harp to equal MPI performance with straightforward 
optimizations. Note that these ideas will allow simple 
modifications of Mahout library that will drastically improve 
the typical low parallel performance of Mahout; this 
demonstrates value of building new abstractions into Hadoop 
rather than developing a totally new infrastructure as we did in 
our prototype Twister system. 

Future work will also look at including the high 
performance dataflow communication libraries being 
developed for simulation (exascale) and incorporate them as 
implementations in the Map-Collective abstraction. We will 
extend the work on fault tolerance to evaluate the current best 
practice in MPI, Spark and Hadoop. We are working with 
several application groups and will extend the data abstractions 
to for example include those needed in pixel and spatial 
problems. 
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