
Harp: Collective Communication on Hadoop
Bingjing Zhang, Yang Ruan, Judy Qiu

Computer Science Department
Indiana University

Bloomington, IN, USA

Abstract—Big data tools have evolved rapidly in recent years.
MapReduce is very successful but not optimized for many
important analytics; especially those involving iteration. In this
regard, Iterative MapReduce frameworks improve performance
of MapReduce job chains through caching. Further Pregel,
Giraph and GraphLab abstract data as a graph and process it in
iterations. However, all these tools are designed with fixed data
abstraction and have limitations in communication support. In
this paper, we introduce a collective communication layer which
provides optimized communication operations on several
important data abstractions such as arrays, key-values and
graphs, and define a Map-Collective model which serves the
diverse communication demands in different parallel
applications. In addition, we design our enhancements as plug-ins
to Hadoop so they can be used with the rich Apache Big Data
Stack. Then for example, Hadoop can do in-memory
communication between Map tasks without writing intermediate
data to HDFS. With improved expressiveness and excellent
performance on collective communication, we can simultaneously
support various applications from HPC to Cloud systems
together with a high performance Apache Big Data Stack.

Keywords—Collective Communication; Big Data Processing;
Hadoop

I. INTRODUCTION
It is estimated that organizations with high-end computing

infrastructures and data centers are doubling the amount of data
they archive every year. Sophisticated machine learning
techniques aim to offer the best results to return to the user. It
did not take long for these ideas to be applied to the full range
of scientific challenges. Many of the primary software tools
used to do large-scale data analysis are required by these
applications to optimize their performance. There is a need to
integrate features of traditional high-performance computing,
such as scientific libraries, communication and resource
management middleware, with the rich set of capabilities found
in the commercial Big Data ecosystem such as Apache open
source software stack. The overarching question we will
address is “How should we design, analyze and implement a
unified and interoperable infrastructure to meet the
requirements of a broad set of data intensive applications?”

The primary software tools used to do the large-scale data
analysis has evolved rapidly as shown in Fig. 1. The last
decade witnessed a huge computing shift derived from
publication of the Google MapReduce paper [1]. Since then, its
open source version Hadoop [2] has become the mainstream of
big data processing, with many other tools emerging to process
different big data problems, extending the original MapReduce
model to include iterative MapReduce. Tools such as Twister
[3] and HaLoop [4] can cache loop invariant data locally to
avoid repeat input data loading in a MapReduce job chain.

Spark [5] also uses caching to accelerate iterative algorithms
without restricting computation to a chain of MapReduce jobs.
To process graph data, Google announced Pregel [6] and soon
open source versions Giraph [7] and Hama [8] emerged.

Whatever their differences, all such programs are based on
a kind of “top-down” design. The whole programming model,
from data abstraction to computation and communication
pattern, is fixed. Users have to put their applications into the
model, which could cause performance inefficiency. For
example, in K-Means clustering [9] (Lloyd's algorithm [10]),
every successive task needs all the centroids generated in the
last iteration. Mahout [11] on Hadoop chooses to reduce the
results of all the map tasks in one reduce task and store it on
HDFS. This data is then read by all the map tasks in the job at
the next iteration. The “reduce” stage can be parallelized by
chunking intermediate data to partitions and using multiple
reduce tasks to compute each part in parallel. This type of
“(multi-)reduce-gather-broadcast” strategy is also applied in
other frameworks through in-memory communication, e.g.
Twister and Spark.

Regardless, “gather-broadcast” is not an efficient way to
relocate the new centroids generated by reduce tasks, especially
when the centroids data grows large in size. The time
complexity of “gather” is at least kdβ where k is the number of
centroids, d is the number of dimensions and β is the
communication time used to send each element in the centroids
(communication initiation time α is neglected). Also the time
complexity of “broadcast” is at least kdβ [12] [13]. Thus the

Fig. 1. Big Data Analysis Tools

time complexity of “gather-broadcast” is about 2kdβ. But if we
use allgather bucket algorithm [14], it is reduced to kdβ.

In iterative algorithms, communication participated in by
all the workers happens once or more per iteration. This makes
communication algorithm performance crucial to the efficiency
of the whole application. We call this “Collective
Communication”. Rather than fixing communication patterns,
we decided to separate this layer out and provide collective
communication abstraction. Collective communication features
in MPI [15], designed for HPC systems and supercomputers.
While well defined, there are many limitations. It cannot
support high level data abstractions other than arrays, objects,
and related communication patterns on them, e.g. shuffling on
key-values or message passing along edges in graphs. Another
drawback is that it forces users to focus on every detail of a
communication call. For example, users have to calculate the
buffer size for data receiving, which is difficult to obtain in
many applications as the amount of sending data may be very
dynamic and unknown to the receivers.

In response to these issues, we present Harp library. Harp
provides data abstractions and related communication
abstractions with optimized implementation. By plugging Harp
into Hadoop, we convert MapReduce model to Map-Collective
model and enable efficient in-memory communication between
map tasks across a variety of important data analysis
applications. The word “harp” symbolizes how parallel
processes cooperate through collective communication for
efficient data processing, just as strings in harps can make
concordant sound (see Fig. 2). The inclusion of collective
communication abstraction and Map-Collective model means
Harp is neither a replication of MPI nor an attempt to transplant
MPI into the Hadoop system [16], as we will elaborate in
subsequent sections.

In the rest of this paper, Section 2 discusses about related
work. Section 3 describes the abstraction of collective
communication. Section 4 shows how Map-Collective model
works in Hadoop-Harp. Section 5 gives several applications
implemented in Harp. Section 6 shows the performance of
Harp through benchmarking on the applications.

II. RELATED WORK
The landscape of big data tools grows bigger and more

complicated. Each tool has its own computation model with
related data abstraction and communication abstraction in order
to achieve optimization for different applications. Before the
MapReduce model, MPI was the main tool used for large-scale
simulation, exclusive on expensive hardware such as HPC or
supercomputers. But MapReduce tries to use commodity
machines to solve big data problems. This model defines data
abstraction as key-value pairs and computation flow as “map,
shuffle and then reduce”. One advantage of this tool is that it
doesn’t rely on memory to load and process all the data, instead
using local disks. MapReduce model can solve problems where
the data size is too large to fit into the memory. Furthermore, it
also provides fault tolerance, which is important to big data
processing. The open source implementation Hadoop [2] is
widely used nowadays in both industry and academia.

MapReduce became popular for its simplicity and
scalability, yet is still slow when running iterative algorithms.
The resultant chain of MapReduce jobs means repeat input data
loading occurs in each iteration. Several frameworks such as
Twister [3], HaLoop [4] and Spark [5] solve this problem by
caching intermediate data. Another model used for iterative
computation is the Graph model, which abstracts data as
vertices and edges. Here computation happens on vertices, and
each worker caches vertices and related out-edges as graph
partitions. The whole parallelization is BSP (Bulk Synchronous
Parallel) style. There are two open source projects following
Pregel’s design. One is Giraph [7] and another is Hama [8].
Giraph exactly follows iterative BSP graph computation
pattern while Hama tries to build a general BSP computation
model. By contrast, GraphLab [17] [18] abstracts data as a
“data graph” and uses consistency models to control vertex
value update. GraphLab was later enhanced with PowerGraph
[19] abstraction to reduce the communication overhead. This
was also learned by GraphX [20].

The third model is DAG, which abstracts computation flow
as a directed acyclic graph. Each vertex in the graph is a
process, and each edge is a communication channel between
two processes. DAG model is helpful to those applications
which have complicated parallel workflows. Dryad [21] is an
example of a parallel engine using DAG. Tools employing this
model are often used for query and stream data processing.

Some attempts have been made to blend select features of
these models. For example, Spark’s RDD data abstraction and
transformation operations are very similar to MapReduce
model. But it organizes computation tasks as DAGs.
Stratosphere [22] and REEF [23] also try to support several
different models in one framework. “Broadcast” operation
from MPI is added in Hadoop by using distributed cache
through a simple algorithm (one-by-one sending). And it is
optimized by using BitTorrent technology in Spark [24] or
using a pipeline-based chain algorithm in Twister [12] [13].

For all these tools, communication is still hidden and
coupled with the computation flow. Though these programs
[12] [13] [24] [25] try to add or improve collective
communication operations, they are still limited in type and
constrained by the computation flow. As a result, it is

Fig. 2. Parallelism and Architecture of Harp

necessary to build a separated communication layer
abstraction. With this we can build a computation model that
provides a rich set of communication operations and grants
users flexibility in choosing operations suitable to their
applications.

A common question is why we don’t use MPI directly since
it already offers collective communication abstraction. There
are many reasons. Firstly the collective communication in MPI
is still limited in abstraction. It provides a low level data
abstraction on arrays and objects so that many collective
communication operations used in other big data tools are not
provided directly in MPI. Besides, MPI doesn’t provide
computation abstraction, such that writing MPI applications is
difficult compared with other big data tools. Thirdly, MPI is
commonly deployed on HPC or supercomputers. Despite
projects like [16], it is not as well integrated with cloud
environments as Hadoop ecosystems.

III. COLLECTIVE COMMUNICATION ABSTRACTION
We have taken several steps to achieve high efficiency. To

support different types of communication patterns in big data
tools, we abstract data types in a hierarchy. Then we define
collective communication operations on top of the data
abstractions. Lastly to improve the efficiency of
communication, we add memory a management module in
implementation for data caching and reuse.

A. Hierarchical Data Abstraction
In Fig. 3, we abstract data horizontally as arrays, key-values

or vertices, edges and messages in graphs. Vertically we build
abstractions from basic types to partitions and tables.

Firstly, any data which can be sent or received is an
implementation of interface Commutable. At the lowest level,
there are two basic types under this interface: arrays and
objects. Based on the component type of an array, currently we
have byte array, int array, long array and double array. For
object type, to describe graph data there is vertex object, edge
object and message object; to describe key-value pairs, we use
key object and value object.

Next, at the middle level, basic types are wrapped as array
partitions, key-value partitions and graph partitions (edge
partition, vertex partition and message partition). Notice that
we follow the design of Giraph; edge partition and message
partition are built from byte arrays but not from edge objects or
message objects directly. When reading, bytes are converted to
an edge object or a message object. When writing, either the
edge object or the message object is serialized and written back
to byte arrays.

At the top level are tables containing several partitions each
with a unique partition ID. If two partitions with the same ID
are added to the table it will solve the ID conflict by either
combining or merging them into one. Tables on different
workers are associated with each other through table IDs.
Tables sharing the same table ID are considered as one dataset
and “collective communication” is defined as redistribution or
consolidation of partitions in this dataset. For example, in Fig.
4, a set of tables associated with ID 0 is defined on workers
from 0 to N. Partitions from 0 to M are distributed among these
tables. A collective communication operation on Table 0 is to
move the partitions between these tables. We will talk more in
detail about the behavior of partition movement in collective
communication operations.

B. Collective Communication Operations
Collective communication operations are defined on top of

the data abstractions. Currently three categories of collective
communication operations are supported:

1) Collective communication inherited from MPI
collective communication operations, such as “broadcast”,
“allgather”, and “allreduce”.

2) Collective communication inherited from MapReduce
“shuffle-reduce” operation, e.g. “regroup” operation with
“combine or reduce” support.

3) Collective communications abstracted from graph
communication, such as “regroup vertices or edges”, “move
edges to vertices” and “send messages to vertices”.

Some collective communication operations tie to certain
data abstractions. For example, graph collective
communication operations have to be done on graph data. But
for other operations, the boundary is blurred. “allgather”
operation can be used on array tables, key-value tables, and
vertex tables. But currently we only implement it on array
tables and vertex tables. The following is a table which
summarizes all the operations identified from applications and
related data abstractions (see Table I). We will continue adding
other collective communication operations not shown on this
table in the future.

If we take another look at Fig. 4 and use “regroup” as an
example, for N + 1 workers, workers are ranked from 0 to N.
Here Worker 0 is selected as the master worker which collects
the partition distribution information on all others. Each worker
reports the current table ID and the partition IDs it owns. Table
ID is used to identify if the collective communication is on the
same dataset. Once all the partition IDs are received, the master
worker decides the destination worker IDs of each partition.
Usually the decision is done through modulo operation. Once
the master’s decision is made, the result is broadcasted to all

Fig. 3. Hierarchical Data Abstraction and Collective Communication

Operations

workers, after which each worker starts to send out and receive
partitions from one another (see Fig. 5).

Each collective communication can be implemented in
many different algorithms. For example, we have two
implementations of “allreduce”. One is “bidirectional-exchange
algorithm” [14] and another is “regroup-allgather algorithm”.
When the data size is large and each table has many partitions,
“regroup-allgather” is more suitable because it has less data
sending and more balanced workload on each worker. But if
the table on each worker only has one or a few partitions,
“bidirectional-exchange” is more effective. Currently different
algorithms are provided in different operation calls, but we
intend to provide automatic algorithm selection in the future.

In addition, we also optimize the “decision making” stages
of several collective communication operations when the
partition distribution is known in the application context.
Normally just like in Fig. 5, the master worker has to collect
the partition distribution on each worker and broadcast the
“regroup” decision to let them know which partition to send
and which to receive. But when the partition distribution is
known, this step can be skipped. In general, we enrich Harp
collective communication library by providing different
implementations for each operation so that users can choose
the proper one based on the application requirement.

C. Implementation
To make the collective communication abstraction work,

we design and implement several components on each worker
to send and receive data. These components are resource pool,
receiver and data queue. Resource pool is crucial in
computation and collective communication of iterative
algorithms. In these algorithms, the collective communication
operations are called repeatedly and the intermediate data
between iterations is similar in size, just with different content.
Resource pool caches the data used in the last iteration to
enable it to reuse them in the next. Therefore the application
can avoid repeat allocation of memory and lower the time used
on garbage collection.

The process of sending proceeds as follows: the worker
first serializes the data to a byte array fetched from the resource
pool and then sends it through the socket. Receiving is
managed by the receiver component. It starts a thread to listen
to the socket requests. For each request, the receiver spawns a

handler thread to process it. We use “producer-consumer”
model to process the data received. For efficiency, data is
identified by its related metadata information. Handler threads
add the data received to the data queue. The main thread of the
worker fetches data from the queue and examines if it belongs
to this round of communication. If yes, the data is removed
from the queue; otherwise it will be put back into the queue
again.

IV. MAP-COLLECTIVE MODEL
The collective communication abstraction we proposed is

designed to run in a general environment with a set of parallel
Java processes. Each worker only needs a list of all workers’
locations to start the communication. Therefore this work can
be used to improve collective communication operations in any
existing big data tool. But since communication is hidden in
these tools, the applications still cannot benefit from the
expressiveness of collective communication abstraction. As a
solution we deploy Map-Collective model to enable using
collective communications in map tasks. In this section, we are
going to talk about several features of Map-Collective model.

A. Hadoop Plugin and Harp Installation
Harp is designed as a plugin to Hadoop. Currently it

supports Hadoop-1.2.1 and Hadoop-2.2.0. To install Harp

Fig. 4. Abstraction of Tables and Partitions

Fig. 5. The Process of Regrouping Array Tables

TABLE I. Collective Communication Operations and the Data
Abstractions Supported (“√” means “supported” and “implemented” and
“○” means “supported” but “not implemented)

Operation Name Array
Table

Key-Value
Table

Graph
Table

Broadcast √ ○ √ (Vertex)

Allgather √ ○ √ (Vertex)

Allreduce √ ○ ○ (Vertex)

Regroup √ √ √ (Edge)

Send all messages to
vertices √

Send all edges to
vertices √

library, users only need to put the Harp jar package into the
Hadoop library directory. For Hadoop 1, users need to
configure the job scheduler to the scheduler designed for Map-
collective jobs. But in Hadoop 2.0, since YARN resource
management layer and MapReduce framework are separated,
users are not required to change the scheduler. Instead, they
just need to set "mapreduce.framework.name" to "map-
collective" in client job configuration. Harp will launch a
specialized application master to request resources and
schedule Map tasks.

B. MAP-COLLECTIVE INTERFACE
In Map-Collective model, user-defined mapper classes are

extended from the class CollectiveMapper which is extended
from the class Mapper in the original MapReduce framework.
In CollectiveMapper, users need to override a method
“mapCollective” with application code. While similar to
“mapCollective” method differs from Class Mapper in that it
employs KeyValReader to provide flexibility to users;
therefore they can either read all key-values into the memory
and cache them or read them part by part to fit the memory
constraint (see Table II).

Here is an example of how to do “allgather” in
“mapCollective” method (see TABLE III). Firstly we generate
several array partitions with arrays fetched from the resource
pool and add these partitions into an array list. The total
number of partitions on all the workers is specified by
numPartitions. Each worker has numPartition/numMappers
partition (we assume numPartitions % numMappers = 0). Then
we add these partitions in an array table and invoke “allgather”.
DoubleArrPlus is the combiner class used in these array tables
to solve partition ID conflict in partition receiving. The
“allgather” method used here is called “allgatherTotalKnown”.
Because the total number of partitions is provided as a
parameter in this version of “allgather”, workers don’t need to
negotiate the number of partitions to receive from each worker,
but send out all the partitions they own to their neighbor
directly with the bucket algorithm.

C. BSP Style Parallelism
To enable in-memory collective communication between

workers, we need to make every worker alive simultaneously.
As a result, instead of dynamic scheduling, we use static
scheduling. Workers are separated into different nodes and do
collective communication iteratively. The whole parallelism
follows the BSP pattern.

Here we use our Harp implementation in Hadoop-2.2.0 to
talk about the scheduling mechanism and initialization of the
environment. The whole process is similar launching
MapReduce applications in Hadoop-2.2.0. In job configuration
at client side, users need to set "mapreduce.framework.name"

to "map-collective". Then the system chooses
MapCollectiveRunner as job client instead of default
YARNRunner for MapReduce jobs. MapCollectiveRunner
launches MapCollectiveAppMaster to the cluster. When
MapCollectiveAppMaster requests resources, it schedules the
tasks to different nodes. This can maximize memory sharing
and multi-threading on each node and save the intermediate
data size in collective communication.

In the launching stage, MapCollectiveAppMaster records
the location of each task and generates two lists. One contains
the locations of all the workers and another contains the
mapping between map task IDs and worker IDs. These files
currently are stored on HDFS and shared among all the
workers. To ensure every worker has started, we use a
“handshake”-like mechanism to synchronize them. In the first
step, the master worker tries to ping its subordinates by sending
a message. In the second step, slave workers who received the
ping message will send a response back to acknowledge they
are alive. In the third step, once the master gets all the
responses, it broadcasts a small message to all workers to
notify them of the initialization’s success.

When the initialization is done, each worker invokes
“mapCollective” method to do computation and
communication. We design the interface “doTasks” to enable
users to launch multithread tasks. Given an input partition list
and a Task object with user-defined “run” method, the
“doTasks” method can automatically do multi-threading
parallelization and return the outputs.

TABLE II. “mapCollective” interface

protected void mapCollective(
 KeyValReader reader,
 Context context) throws IOException,
 InterruptedException {
 // Put user code here…
}

TABLE III. “Allgather” code example

// Generate array partitions
List<ArrPartition<DoubleArray>>

arrParList = new ArrayList<
 ArrPartition<DoubleArray>>();
for (int i = workerID;
 i < numPartitions; i += numMappers){
 DoubleArray array = new DoubleArray();
 double[] doubles =
 pool.getDoubleArrayPool().
 getArray(arrSize);
 array.setArray(doubles);
 array.setSize(arrSize);
 for (int j = 0; j < arrSize; j++) {
 doubles[j] = j;
 }
 arrParList.add(
 new ArrPartition<DoubleArray>(
 array, i));
}
// Define array table
ArrTable<DoubleArray, DoubleArrPlus>
 arrTable =
 new ArrTable<
 DoubleArray, DoubleArrPlus>(
 0, DoubleArray.class,
 DoubleArrPlus.class);
// Add partitions to the table
for (ArrPartition<DoubleArray> arrPar :
 arrParList) {
 arrTable.addPartition(arrPar);
}
// Allgather
allgatherTotalKnown(
 arrTable, numPartitions);

D. Fault Tolerance
When it comes to fault tolerance, detection and recovery

are crucial system features. Currently our effort is to ensure
every worker can report exceptions or faults correctly without
getting hung up. With careful implementation and based on the
results of testing, this issue is solved.

Fault recovery poses a challenge because the execution
flow in each worker is very flexible. Currently we do job level
fault recovery. Based on the execution time length of scale,
jobs with a large number of iterations can be separated into a
small number of jobs, each of which contains several iterations.
This naturally forms checkpointing between iterations. Because
Map-Collective jobs are very efficient on performance, this
method is feasible without generating large overhead. At the
same time, we are also investigating task-level recovery by re-
synchronizing new launched tasks with other old live tasks.

E. Layered Architecture
Fig. 6 shows how different layers interface with each other

in the Map-collective model. At the bottom level is the
MapReduce framework. The modified MapReduce framework
exposes the network location of tasks in the cluster to Harp in
the upper level. Harp builds collective communication
abstraction and provides collective communication operators,
hierarchical data types of tables and partitions, and the memory
allocation management pool. All these 3 components interface
with the Map-Collective programming model. After wrapping,
Map-Collective model provides 3 components to the
applications: a method interface called mapCollective, a set of
collective communication APIs which can be invoked in the
mapCollective interface, and the data abstraction of array data,
Key-Value data and graph data.

V. APPLICATIONS
 We've implemented three applications using Harp: K-

Means clustering, Force-directed Graph Drawing Algorithm,
and Weighted Deterministic Annealing SMACOF. The first
two algorithms are very simple. Both of them use a single
collective communication operation per iteration. But the third
is much more complicated. It has nested iterations, and two
different collective communication operations are used

alternately. In data abstraction, the first and third algorithms
use array abstraction, while the second one utilizes graph
abstraction. For key-value abstraction, we only implemented
Word Count. We don’t introduce it here because it is very
simple, with only one “regroup” operation and no iterations.

A. K-Means Clustering
K-Means Clustering is an algorithm to cluster large

numbers of data points to a predefined set of clusters. We use
Lloyd's algorithm [10] to implement K-Means Clustering in
Map-Collective model.

In Hadoop-Harp, each worker loads a part of the data points
and caches them into memory as array partitions. The master
worker loads the initial centroids file and broadcasts it to all the
workers. Later, for every iteration a worker calculates its own
local centroids and then uses “allreduce” operation at the end to
produce the global centroids of this iteration on each worker.
After several iterations, the master worker will write the final
version of centroids to HDFS.

We use a pipeline-based method to do broadcasting for
initial centroids distribution [12]. For “allreduce” in each
iteration, due to the large size of intermediate data, we use
“regroup-allgather”. Each local intermediate data is chunked to
partitions. We firstly “regroup” them based on partition IDs.
Next, on each worker we reduce the partitions with the same
ID to obtain one partition of the new centroids. Finally, we do
“allgather” on new generated data to let every worker have all
the new centroids.

B. Force-directed Graph Drawing Algoritm
We implement a Hadoop-Harp version of the Fruchterman-

Reingold algorithm which produces aesthetically-pleasing,
two-dimensional pictures of graphs by doing simplified
simulations of physical systems [26].

Vertices of the graph are considered as atomic particles. At
the beginning, vertices are randomly placed in a 2D space. The
displacement of each vertex is generated based on the
calculation of attractive and repulsive forces. In each iteration,
the algorithm calculates the effect of repulsive forces to push
them away from each other, then calculates attractive forces to
pull them close, limiting the total displacement by temperature.
Both attractive and repulsive forces are defined as functions of
distances between vertices following Hook’s law.

In Hadoop-Harp implementation, graph data is stored as
partitions of adjacency lists in files and then loaded into edge
tables to be partitioned based on the hash values of source
vertex ID. We use “regroupEdges” operation to move edge
partitions with the same partition ID to the same worker. We
create vertex partitions based on edge partitions, which are then
used to store displacement of vertices calculated in one
iteration.

The initial vertex positions are generated randomly. We
store them in another set of tables and broadcast them to all
workers before starting iterations. Then in each iteration, once
displacement of vertices is calculated, new vertex positions are
generated. Because the algorithm requires calculation of the
repulsive forces between every two vertices, we use “allgather”
to redistribute the current positions of the vertices to all the

Fig. 6. Layers in Map-Collective Model

workers. By combining multiple collective communication
operations from different categories, we show the flexibility of
Hadoop-Harp in implementing different applications.

C. Weighted Deterministic Annealing SMACOF
Generally, Scaling by MAjorizing a COmplicated Function

(SMACOF) is a gradient descent-type of algorithm which is
widely used for large-scale Multi-dimensional Scaling (MDS)
problems [27]. The main purpose of this algorithm is to project
points from high dimensional space to 2D or 3D space for
visualization by providing pair-wise distances of the points in
original space. Through iterative stress majorization, the
algorithm tries to minimize the difference between distances of
points in original space and their distances in the new space.

Weighted Deterministic Annealing SMACOF (WDA-
MSACOF) is an algorithm that improves the original
SMACOF. SMACOF avoided a computationally intense
matrix inversion step, as for unweighted terms the (pseudo)-
inverse of solution can be determined analytically. WDA-
SMACOF uses deterministic annealing techniques to avoid
local optima during stress majorization, and it employs
conjugate gradient for the equation solving with a non-trivial
matrix in order to keep the time complexity of the algorithm in
O(N2). For example practical cases with around a million
unknowns use from 5 to 200 conjugate gradient iterations [28].
Originally the algorithm is commonly used in a data clustering
and visualization pipeline called DACIDR [29]. In the past, the
workflow used both Hadoop and Twister in order to achieve
maximum performance [30]. With the help of Harp, this
pipeline can be directly implemented instead of using the
hybrid MapReduce model.

WDA-SMACOF has nested iterations. In every outer
iteration, we firstly do an update on an order N matrix, then
perform a matrix multiplication; we calculate the coordination
values of points on the target dimension space through
conjugate gradient process. The stress value of this iteration is
determined as the final step. Inner iterations are the conjugate
gradient process, which is used to solve the equation similar to
Ax=b in iterations of matrix multiplications.

In the original Twister implementation of the algorithm, the
three different computations in outer iterations are separated
into three MapReduce jobs and run alternatively. There are two
flaws in this method. One is that the static data cached cannot
be shared between jobs. As such there is duplication in caching
which causes high memory usage. Another issue is that the
results from the last job have to be collected back to the client
and broadcast to the next job. This process is inefficient and
can be replaced by optimized collective communication calls.

In Hadoop-Harp, we improve the parallel implementation
using “allgather” and “allreduce”, two collective
communication operations. Conjugate gradient process uses
“allgather” to collect the results from matrix multiplication and
“allreduce” for those from inner product calculations. In outer
iterations, “allreduce” is used to sum the result of stress value
calculations. We use bucket algorithm in “allgather” and bi-
directional exchange algorithm in “allreduce”.

VI. EXPERIMENTS
The experiments include three applications as described in

section V. We evaluate the performance of Hadoop-Harp on
Big Red II supercomputer [31].

A. Test Environment
The applications use the nodes in “cpu” queue on Big Red

II. Each node has 32 processors and 64 GB memory. The nodes
are connected with Cray Gemini interconnect.

Hadoop-2.2.0 and JDK 1.7.0_45 are installed on Big Red
II. Hadoop is not naturally adopted by supercomputers like Big
Red II, so we need to make some adjustments. Firstly, we have
to submit a job in Cluster Compatibility Mode (CCM) but not
Extreme Scalability Mode (ESM). In addition, because there is
no local disk on each node and /tmp directory is mapped to part
of the memory (about 32GB), we cannot hold large data on
local disks in HDFS. For small input data, we still use HDFS,
but for greater amounts, we choose to use Data Capacitor II
(DC2), the file system connected to compute nodes. We create
partition files in Hadoop job client, each of which contains
several file paths on DC2. The number of partition files is
matched with the number of map tasks. Each map task reads all
file paths in a partition file as key-value pairs and then reads
the real file contents from DC2. In addition, the
implementation of communication in Harp is based on Java
socket; we did no optimization aimed at Cray Gemini
interconnect.

In all the tests, we deploy one worker on each node and
utilize 32 processors to do multi-threading inside. Generally we
test on 8 nodes, 16 nodes, 32 nodes, 64 nodes and 128 nodes
(which is the maximum number of nodes allowed for job
submission on Big Red II). This means 256 processors, 512
processors, 1024 processors, 2048 processors and 4096
processors. To reflect the scalability and the communication
overhead, we calculate efficiency based on the number of
nodes but not the number of processors.

In JVM execution command of each worker, we set both
“Xmx” and “Xms” to 54000M, “NewRatio” to 1 and
“SurvivorRatio” to 98. Because most memory allocation is
cached and reused, it is not necessary to keep large survivor
spaces. We increase SurvivorRatio and lower down survivor
spaces to a minimum so we can leave most of the young
generation to Eden space.

B. Results on K-Means Clustering
We run K-Means clustering with two different generated

random data sets. One is clustering 500 million 3D points into
ten thousand clusters, while another is clustering 5 million 3D
points into 1 million clusters. In the former, the input data is
about 12 GB and the ratio of points to clusters is 50000:1. In
the larger case, the input data size is only about 120 MB but the
ratio is 5:1. Such a ratio is commonly high in clustering but the
low ratio is used in a different scenario where the algorithm
tries to do fine-grained clustering as classification [32] [33].
Because each point is required to calculate distance with all the
cluster centers, total workload of the two tests are similar.

The baseline test uses 8 nodes then it scales up to 16, 32, 64
and 128 nodes. The execution time and speedup are shown in

Fig. 7. Due to the cache effect, we see “5 million points and 1
million centroids” is slower than “500 million points and 10
thousand centroids” when the number of nodes is small. But as
the number of nodes increases, they draw closer to one another.
For speedup, we assume we have the linear speedup on the
smallest number of nodes we test. So we consider the speedup
on 8 nodes is 8. The experiments show the speedup comparison
in both test cases is close to linear.

C. Results on Force-directed Graph Drawing Algorithm
This algorithm runs with a graph of 477,111 vertices and

665,599 undirected edges. The graph represents a retweet
network about the presidential election in 2012 from Twitter
[34].

Although the size of input data is fairly small, the algorithm
is computation intensive. We load vertex ID as ‘int’ and initial
random coordination values as ‘float’. The total size is about
16M. We test the algorithm on 1 node as the base case and then
scale to 8, 16, 32, 64 and 128 nodes. Execution time of 20
iterations and speedup are shown in Fig. 8. From 1 node to 16
nodes, we observe almost linear speedup. It drops smoothly
after 32 nodes. On 128 nodes, because the computation time
per iteration slows to around 3 seconds, the speedup drops
sharply.

D. Results on WDA-SMACOF
The WDA-SMACOF algorithm runs with different

problem sizes including 100K points, 200K points, 300K
points and 400K points. Each point represents a gene sequence
in a dataset of representative 454 pyrosequence from spores of
known AM fungal species [28]. Because the input data is the
distance matrix of points and related weight matrix and V
matrix, the total size of input data is in quadratic growth. We
cache distance matrix in short arrays, weight matrix in double
arrays and V matrix in int arrays. Then the total size of input
data is about 140 GB for 100K problem, about 560 GB for
200K problem, 1.3 TB for 300K problem and 2.2 TB for 400K
problem.

The input data is stored in DC2 and each matrix is split into
4096 files. They are loaded from there to workers. Due to
memory limitations, the minimum number of nodes required to
run the 100K problem is 8. Then we scale 100K problems on 8,
16, 32, 64 and 128 nodes. But for the 200K problem, the
minimum number of nodes required is 32. So we scale the
200K problem on 32, 64 and 128 nodes. With the 300K
problem, the minimum node requirement is 64, so we scale
300K problems from 64 to 128 nodes. Lastly for the 400K
problem, we only run it on 128 nodes because this is the
minimum requirement for that amount.

Here we give the execution time, parallel efficiency and
speedup (see Fig. 9, Fig. 10, Fig. 11). Because we cannot run
each input on a single machine, we choose the minimum
number of nodes to run the job as the base to calculate parallel
efficiency and speedup. In most cases, the efficiency values are
very good. The only point that has low efficiency is 100K
problems on 128 nodes. This is a standard effect in parallel
computing where the small problem size reduces compute time
compared to communication which in this case has an

overhead of about 40% of total execution time, and the overall
efficiency drops.

VII. CONCLUSION
In this paper, we investigate basic architecture issues and

the challenges of data analysis tools for complex scientific
applications. Based on our analysis of different big data tools,
we propose to abstract a collective communication layer from
these computation models. We build Map-Collective as a
unified model to improve the performance and expressiveness
of big data tools.

With three applications K-Means Clustering, Force-directed
Graph Drawing and WDA-SMACOF, we demonstrate that the
Map-Collective model can be simply expressed with the
combination of proposed collective communication
abstractions. The experiments show that we can scale these
applications to 128 nodes with 4096 processors on the Big Red
II supercomputer, where the speedup in most tests is close to
linear and we’re looking at running it at much larger scales.

Map-Collective [12][25] communication layer is designed
in a pluggable, infrastructure agnostic way. It can be used in
Hadoop ecosystem and HPC system. Harp has an open source

Fig. 7. Execution Time and Speedup of K-Means Clustering

Fig. 8. Execution Time and Speedup of Force-Directed Graph Drawing

Algorithm

0

20

40

60

80

100

120

140

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140

Speedup

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Nodes
500M points 10K centroids Execution Time
5M points 1M centroids Execution Time
500M points 10K centroids Speedup
5M points 1M centroids Speedup

0

10

20

30

40

50

60

70

80

90

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140

Speedup

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Nodes

Execution Time Speedup

collective communication library that can be plugged into
Hadoop. With this plug-in, Map-Reduce jobs can be
transformed into Map-Collective jobs and users can invoke
efficient in memory message passing operations such as

collective communication (e.g. broadcast and group-by) and
point-to-point communication directly within Map tasks. For
the first time, Map-Collective brings high performance to the
Apache Big Data Stack in a clear communication abstraction,
which did not exist before in the Hadoop ecosystem. We
expect Harp to equal MPI performance with straightforward
optimizations. Note that these ideas will allow simple
modifications of Mahout library that will drastically improve
the typical low parallel performance of Mahout; this
demonstrates value of building new abstractions into Hadoop
rather than developing a totally new infrastructure as we did in
our prototype Twister system.

Future work will also look at including the high
performance dataflow communication libraries being
developed for simulation (exascale) and incorporate them as
implementations in the Map-Collective abstraction. We will
extend the work on fault tolerance to evaluate the current best
practice in MPI, Spark and Hadoop. We are working with
several application groups and will extend the data abstractions
to for example include those needed in pixel and spatial
problems.

ACKNOWLEDGEMENT
We appreciate the system support offered by Big Red II.

We gratefully acknowledge support from National Science
Foundation grant OCI-1149432.

REFERENCES
[1] J. Dean and S. Ghemawat. “Mapreduce: Simplified data processing on

large clusters.” OSDI, 2004.
[2] Apache Hadoop. http://hadoop.apache.org
[3] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H, Bae, J. Qiu, G. Fox.

“Twister: A Runtime for iterative MapReduce.” Workshop on
MapReduce and its Applications, HPDC, 2010.

[4] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. “Haloop: Efficient
Iterative Data Processing on Large Clusters”. VLDB, 2010.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
“Spark: Cluster Computing with Working Sets”. HotCloud, 2010.

[6] Grzegorz Malewicz, et al. “Pregel: A System for Large-scale Graph
Processing”. SIGMOD. 2010.

[7] Apache Giraph. https://giraph.apache.org/
[8] Apache Hama. https://hama.apache.org/
[9] J. MacQueen, “Some Methods for Classification and Analysis of

MultiVariate Observations.” Berkeley Symp. On Mathematical Statistics
and Probability, 1967.

[10] S. Lloyd. “Least Squares Quantization in PCM”. IEEE Transactions on
Information Theory 28 (2): 129–137, 1982.

[11] Apache Mahout. https://mahout.apache.org/
[12] J. Qiu, B. Zhang, “Mammoth Data in the Cloud: Clustering Social

Images.” In Clouds, Grids and Big Data, IOS Press, 2013.
[13] B. Zhang, J. Qiu. “High Performance Clustering of Social Images in a

Map-Collective Programming Model”. Poster in proceedings of ACM
Symposium On Cloud Computing, 2013.

[14] E. Chan, M. Heimlich, A. Purkayastha, and R. Geijn. “Collective
communication: theory, practice, and experience”. Concurrency and
Computation: Practice and Experience (19), 2007.

[15] MPI Forum. “MPI: A Message Passing Interface”. In Proceedings of
Supercomputing, 1993.

[16] MPICH2-YARN. https://github.com/clarkyzl/mpich2-yarn
[17] Y. Low, et al. “GraphLab: A New Parallel Framework for Machine

Learning”. Conference on Uncertainty in Artificial Intelligence, 2010.

Fig. 9. Execution Time of WDA-SMACOF

Fig. 10. Parallel Efficiency of WDA-SMACOF

Fig. 11. Speedup of WDA-SMACOF

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Nodes

100K points 200K points
300K points 400K points

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100 120 140

Pa
ra

lle
l E

ff
ic

ie
nc

y

Number of Nodes
100K points 200K points 300K points

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Sp
ee

du
p

Number of Nodes

100K points 200K points 300K points

http://hadoop.apache.org/
https://giraph.apache.org/
https://hama.apache.org/
https://mahout.apache.org/
https://github.com/clarkyzl/mpich2-yarn

[18] Y. Low, et al. “Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud”. PVLDB, 2012.

[19] J. Gonzalez, et al. “PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs”. OSDI, 2012.

[20] R. Xin, et al. “GraphX: A Resilient Distributed Graph System on
Spark”. GRADES, SIGMOD workshop, 2013.

[21] M. Isard et al. “Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks”. EuroSys, 2007.

[22] Stratosphere. http://stratosphere.eu/
[23] REEF. http://www.reef-project.org/
[24] M. Chowdhury et al. “Managing Data Transfers in Computer Clusters

with Orchestra”. ACM SIGCOM, 2011.
[25] T. Gunarathne, J. Qiu, D. Gannon, “Towards a Collective Layer in the

Big Data Stack”. The proceedings of the 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing Conference, 2014.

[26] T. Fruchterman, and M. Reingold. “Graph Drawing by Force-Directed
Placement”, Software – Practice & Experience 21 (11): 1129–1164,
1991.

[27] Y. Ruan. “A Robust and Scalable Solution for Interpolative
Multidimensional Scaling With Weighting”. E-Science, 2013.

[28] Y. Ruan, G. House, S. Ekanayake, U. Schütte, J. Bever, H. Tang, G.
Fox. “Integration of Clustering and Multidimensional Scaling to
Determine Phylogenetic Trees as Spherical Phylograms Visualized in 3
Dimensions”. Proceedings of C4Bio of IEEE/ACM CCGrid, 2014.

[29] Y. Ruan, et al. “DACIDR: Deterministic Annealed Clustering with
Interpolative Dimension Reduction using a Large Collection of 16S
rRNA Sequences”. Proceedings of ACM-BCB, 2012.

[30] Y. Ruan, et al. “HyMR: a Hybrid MapReduce Workflow System”.
Proceedings of ECMLS’12 of ACM HPDC, 2012

[31] Big Red II. https://kb.iu.edu/data/bcqt.html
[32] G. Fox. “Robust Scalable Visualized Clustering in Vector and non

Vector Semimetric Spaces”. Parallel Processing Letters 23, 2013.
[33] G. Fox, D. Mani. “Parallel Deterministic Annealing Clustering and Its

Application to LC-MS Data Analysis”. Big Data, 2013.
[34] X. Gao and J. Qiu. “Social Media Data Analysis with IndexedHBase and

Iterative MapReduce,” Proc. Workshop on Many-Task Computing on
Clouds, Grids, and Supercomputers (MTAGS) at Super Computing
2013.

http://stratosphere.eu/
http://www.reef-project.org/
https://kb.iu.edu/data/bcqt.html

	I. Introduction
	II. Related Work
	III. Collective Communication Abstraction
	A. Hierarchical Data Abstraction
	B. Collective Communication Operations
	1) Collective communication inherited from MPI collective communication operations, such as “broadcast”, “allgather”, and “allreduce”.
	2) Collective communication inherited from MapReduce “shuffle-reduce” operation, e.g. “regroup” operation with “combine or reduce” support.
	3) Collective communications abstracted from graph communication, such as “regroup vertices or edges”, “move edges to vertices” and “send messages to vertices”.

	C. Implementation

	IV. Map-Collective Model
	A. Hadoop Plugin and Harp Installation
	B. MAP-COLLECTIVE INTERFACE
	C. BSP Style Parallelism
	D. Fault Tolerance
	E. Layered Architecture

	V. Applications
	A. K-Means Clustering
	B. Force-directed Graph Drawing Algoritm
	C. Weighted Deterministic Annealing SMACOF

	VI. Experiments
	A. Test Environment
	B. Results on K-Means Clustering
	C. Results on Force-directed Graph Drawing Algorithm
	D. Results on WDA-SMACOF

	VII. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

