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Abstract—Geo-sciences involve large-scale parallel models,
high resolution real time data from highly asynchronous and
heterogeneous sensor networks and instruments, and complex
analysis and visualization tools. Scientific workflows are an
accepted approach to executing sequences of tasks on scien-
tists’ behalf during scientific investigation. Many geo-science
workflows have the need to interact with sensors that produce
large continuous streams of data, but programming models
provided by scientific workflows are not equipped to handle
continuous data streams.
This paper proposes a framework that utilizes scientific

workflow infrastructure and the benefits of complex event
processing to compensate for the impedance mismatch between
scientific workflows and continuous data streams. Further we
propose and formalize new workflow semantics that would
allow the users to not only incorporate stream in scientific
workflow, but also make use of the functionalities provided
by the complex event processing systems effective within the
scientific workflows.

Keywords-Scientific Workflow, Data Stream, Programming
Model

I. INTRODUCTION

Geo sciences over the years have adopted scientific
workflows [28] as a viable means for capturing scientific
experiments because of the simple programming abstraction
it provides, easy repeatability of experiments and ability to
share experiments among peers [25]. Scientific workflows
are designed to handle static input data and most scientific
experiments have the nature of being reused with different
input datasets. The reusability of a given scientific work-
flow is sometimes influenced by the repeatable nature of
the input datasets in the particular scientific domain. The
scientific workflow systems in many science gateways [27]
like LEAD (Linked Environment for Atmospheric Discov-
ery) [7], ACES (Asia-Pacific Cooperation for Earthquake
Simulation) [10], Astroportal [22], etc, primarily deal with
the sensor data produced by scientific sensors and workflows
are rerun with different data sets produced by sensors.
In this paper we present a framework that addresses we

identify the need for a scientific experiment to interact with
event streams because most scientific sensors like weather
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radars, telescopes, etc tend to produce events of periodic
nature which can be modeled as data streams [4]. Identifying
these periodic events as streams has advantages of its own
because stream processing and complex event processing
systems have matured over the years and the advancements
in these fields can be leveraged to enhance the processing of
the data events generated by scientific sensors. Further the
Streams would allow triggered experiments to be setup in a
manner so it is possible to monitor streams for particular
events and act as reactive systems that would react to
environmental changes that are observed by sensors which
would be useful for mining of large event streams. Further
extending the scientific workflow model to reactive systems
is useful because it preserves the investment by applications
in geosciences that use scientific workflow systems.
The integration of Streams into the workflow system is

addressed using a programming model approach by intro-
ducing new workflow semantics that would enable scientific
workflow designers to incorporate data streams into the
experiment without major changes to the infrastructure. The
graphical workflow composition has been very successful
as a programming model across geo sciences and has had
success among the community as the means for represent-
ing scientific experiments [19]. In the framework towards
extending a workflow composition programming model to
accommodate stream processing, special consideration is
given not to alter the existing workflow programming model
[26] because most scientist are comfortable with concept of
scientific workflows [12].
The contribution of this paper is a model that extends

a workflow construction paradigm with support for tasks
on time sequenced data which would be referred to as
Streamflow from here forth. The model preserves the di-
rected control flow execution graphs that users are familiar
with. We demonstrate experimentally that the operators we
introduce produce more efficient overall workflow execution
times than an alternate approach that does not introduce the
new operators.
The remainder of the paper is organized as follows.

Section 2 provides a background of a workflow composition
tool and identifies the motivating requirements. Section 3
presents the formal model and defines the semantics that
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we introduced in the framework and notation that adds to
the discussion. In Section 4 we present the architecture of
the Streamflow framework and describe the systems that are
used to realize the programming constructs defined in sec-
tion 3. Section 5 provides an overview of the programming
model and how the constructs can be used in a scientific
computing environment and how the different components
in the framework would participate to realize the semantics
that would be used by the scientific workflow user. Section 6
provides an evaluation of the framework with measurements
of the overheads and the gains that may offset the overheads
introduced by the system. Section 7 concludes and discusses
future work.

II. PROBLEM MOTIVATION

Our research builds upon the conventional workflow
systems used in scientific computing and extends it with
support for data streams. This decision is not only a natural
evolution of scientific workflow, but also we argue that
it allows the use of the existing programming model of
scientific workflow composition without major changes and
alienations of users.
A typical workflow system provides a means to compose,

orchestrate and monitor workflows and in this framework we
use WS-BPEL [10] based generic scientific workflow system
developed for the LEAD workflow system [11]. We describe
a graphical workflow composition tool XBaya [23] and
WS-BPEL [10] based workflow execution engine Apache
ODE [11] and how these components interact to facilitate
a comprehensive workflow system. The interaction between
these components and how they fit in a larger workflow
system is described in [20].
A workflow composition tool allows a scientist to com-

pose a workflow from existing software and service com-
ponents without having to be familiar with the workflow
languages. Further, workflow composition tools allow for
optimizations that can occur when compiling a workflow
graph into an executable workflow language [24]. We briefly
introduce the XBaya workflow composer which we use as
the workflow composition tool for this research.
Figure 1 shows the workbench GUI of the XBaya work-

flow composition and monitoring tool. The programming
model proposed in this paper is based on the programming
abstractions it offers. XBaya workflow composer provides
a high level workflow description language [23] called
Abstract DAG model that is independent of conventional
workflow execution languages. This independent represen-
tation allows the decoupling of workflow composition and
workflow execution and allows the internal representation
to be transformed to multiple execution languages. XBaya
currently supports BPEL 1.1, BPEL 2.0, SCUFL [16], and
Python scripts. The different workflow enactment environ-
ments have their merits and demerits, and depending on the

Figure 1. XBaya Graphical workflow composer

domain science the optimal workflow enactment environ-
ment should be chosen to capitalize on the merits. For the
purpose of this paper we focus only on the BPEL execution
environment.
The work presented in this paper builds upon the func-

tionalities and the programmingmodel presented in scientific
workflow systems and provides a programming abstraction
for processing data streams.

A. Requirements
Our goal is to extend the existing support for workflow

execution such as is accomplished through XBaya in a way
that satisfies the following requirements:

• Preserve the workflow programming model for the
user. Users are familiar with DAG execution. Stream
processing is a different paradigm that when put side
by side in an interface to the user during workflow
composition it tends to confuse the scientists [13].
In this research we strive to integrate continuous
events processing into the familiar DAG model
while preserving the familiar DAG control flow.
Other research directions have proposed pure workflow
approach which has made the programming model
somewhat complicated or provide a complete disjoint
of workflow and stream processing [16].

• Make the changes transparent to the workflow exe-
cution engine so the approach works with an out-of-
the-box engine. Not making changes to the workflow
execution model means using existing functionalities
provided by workflows as they are and using an external
system that reduces the burden on the workflow system
in terms of available functionality. This external system
we identify as a Complex Event Processing system.

• Keep the simple, simple. If users do not need support
for streams, the system should act and feel the same as
it always has.

• Define workflow patterns for use as new workflow
semantics that provide a computational model where
Complex Event Processing is a first class entity in the
workflow.

III. FORMAL MODEL
The Streamflow programming model is defined as a

programming abstraction that is achieved using patterns that
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enable the workflow programmers to program with data
streams. Workflows are modeled as Directed Acyclic Graphs
(DAG) where the vertices represent the service components
and the edges represent dataflow. During the execution of the
workflow a given edge delivers a single data token from the
source vertex of the Edge to the target vertex. In this paper
we discuss programming paradigm that consist of DAG
edges with time series of data than single data dependency.
A given workflow component may be viewed as a function

with or without side effects that is invoked upon receiv-
ing the data events from the stream. The workflow takes
the input and a global state and produces an output and
depending on whether the workflow is side effect free or
not it may not or may change the global state, respectively.
The static nature of the workflow inputs can be observed
in this notation because of the workflow execution begins
only when all the inputs are available. Once the workflow
starts executing the inputs cannot be changed nor is lazy
evaluation [15] of inputs allowed.
The edges in the workflow graph are denoted as:
Workflow-Edge = ((Service1, outputPort1) −→ (Service2,

inputPort1))
where Service1 has outputPort1 which is connected to the

inputPort1 of Service 2. This represents a single data event
over the lifetime of the workflow passed from Service1 to
Service2.
The Streamflows supports the Workflow-Edge and also in-

troduces the Stream-Edge denoted by: Stream-Edge= ((Ser-
vice1, outputPort1) =⇒ (Service2, inputPort1))
where Stream-Edge represent a stream of data that may

pass through the edge over the lifetime of the workflow. In
other words Service1 would produce a data stream and that
stream is channeled to Service2 via the Stream-Edge.
For the purpose of completion we would allow Input

nodes and Output nodes be connected to services input ports
and output ports respectively and as a convention they will
be names Input-Nodei or Output-Nodei. These will only be
mentioned when necessary and it is assumed the workflows
always have Input nodes and Output nodes connected to the
remainder of the data ports when not specified.
Some services have one output port and one input port in

such cases we would adopt the notion where Service1 −→
Service2 represents the edge and when there is no ambiguity
we would use this notation in a sequence such as S1 −→
S2 −→ S3.
Sometimes the number of events that may be channeled

via a different Streamflow edges may vary and where
possible we try to quantify the events that may pass through
an edge. We define Weight of a Streamflow edge as follows
to capture this information.
Weight(E) = 1 if Workflow-Edge
Weight(E) ≥ 1 if it s a Stream Edge and would be a

number of events or a time in units depending on how the
stream is bounded or simply unbounded if the Stream in

indefinite.
To enable the user to incorporate real time, data streams

into workflows, XBaya introduces a general workflow ab-
straction type we call Streamflow node type. The signifi-
cance of this type is all the nodes that belong to this general
category show one of the Streamflow patterns listed below
and shown in Figure 2. When these Streamflow patterns
are used during a workflow composition, we would refer
to the resulting control-flow and data-flow structure as a
Streamflow.
We make use of a quantifier defined as the stream car-

dinality to identify the relationship between the number of
events that are flowing into the Streamflow node and the
number of events that flow out. For example n-m stream
cardinality represent that over the lifetime of the workflow
the Streamflow nodes take n input events and produce m
output events. Figure 2 shows the classification of these
different node types based on their stream cardinality.

• Active node - Take time series of data as input and
output a time series with one to one mapping.(n-n)

• Filter node - Take a time series of data with a degree n
and produce another time series with a degree m where
n ≥ m. (n-m; n ≥ m)

Besides the above two patterns we define two more
patterns which are distinct node types.

• Stream sink - Take a time series of data as a input and
produce a single output. (n-1)

• Stream generator - Take a single input of data and
produce a time series. (1-n)

These node types in fact occur at the Streamflow workflow
boundaries of the graph where Stream generator nodes turns
downstream nodes into Streamflow nodes and the Stream
sink nodes have as upstream node as a Streamflow node
but has all its downstream nodes as conventional workflow
nodes. For example in the following workflow S3 is a Stream
Generator, S6 is a Stream sink and S4and S5 are could be
either Active nodes or Filter node.
S1 −→ S2 −→ S3 =⇒ S4 =⇒ S5 =⇒ S6 −→ S7 −→

S8
According to above definitions the conventional work-

flows may be viewed as graphs consisting of Streamflow
nodes with stream cardinality 1-1.
The Active nodes are the only nodes that preserve the

weight of the input and the output edge, thus are proper
mathematical functions where each inputs corresponding
output can be enumerated as a list of pairs. Because of
this conventional web service nodes can be used as Active
node implementations and in the scope of this discussion
the only implementation of active nodes that is discussed
is in fact conventional web service nodes. Implementation
of Filter node, Stream sink and Stream generator is only
possible within the context of the stream engine because
they rely upon the functionality provided by Complex Event
Processing [8] (CEP) system which is discussed as below.
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Figure 2. Streamflow patterns

Active Node:
The active node, V2 in the Figure 3, takes a data stream

{e1, e2, e6} as input and produces a data stream as output
subject to the following rules:

• The active node executes over each event in the data
stream.

• Simplifying assumption: an active node has only 1
stream input and may have one or more static inputs.

• The input Stream Edge weight of the active node is
same as the output Stream Edge Weight. In other words
active node has a 1-to-1 mapping that equates the
number of inputs on the time series to the number of
outputs. Each input event in the stream of the node
has exactly one corresponding output. Or it exhibits
the properties of a mathematical function, being single
valued and total. In workflow context the function could
be defined as a web services.

Active node is a defined in BPEL as a loop activity that
contains a receive activity followed by a invoke activity.
The receive activity receives an event from the time series
and invokes some service with the incoming event as the
argument.
Filter Node:
The filter node, V3 has the effect of reducing the stream

frequency by discarding events. A stream of events with 1
second inter-arrival rate and a filter that filters every other
event would output a stream with a 2 second inter-arrival
rate to a downstream node. Filter Nodes do not exhibit a 1-
to-1 mapping between input events and output events, that
is it exhibits properties of a mathematical partial function
being single valued but need not be total.
In workflow context the partial function behavior is a side

effect of publishing all the events in the event stream to a
CEP system and running a CEP query against them. Some
events in the event stream would satisfy the CEP query and

others don’t thus giving the behavior of a filter or a partial
function.
The filtering logic for filter node needs to be specified

using CEP language, EPL [1] (Event Processing Language).
An example filtering configuration used in context of a Filter
node could look like the following declarative query. It main-
tains an event window of five events of type RadarDataS-
tream and this event type has a property called reflectivity.
Events are selected that have reflectivity higher than 3.2.
The query produces a combined data event containing five
RadarDataStream events. So the stream cardinality of the
Filter node with the following filter declaration is 5n-n.
Select * From RadarDataStream(reflectivity =

3.2).win:lengthbatch(5).
Most complex event processing languages provide a

means for selection, projection, joins, event windows
and event window operators, grouping, reordering, pattern
matching and other useful declarative semantics.
Stream sink:
Stream sink may be viewed at as an extreme case of the

filter node where all events except one are filtered. But in
reality Stream sinks are more like aggregators of time series
and could evaluate an entire time series and produce a single
summarizing event. Fact that its out Edge weight is always
one makes it possible for it to have downstream nodes that
exhibit the conventional workflow node characteristics. A
variation of the stream sink produced by publishing the data
stream back to the stream engine and this would terminate
all the data flow in the Streamflow.
Stream generator:
Stream generator is a special service call that initiates a

time series of data as its output so output of the Stream
generator always need to be connected to a Streamflow type
node, i.e. active node or a filter node and have the viral effect
on the downstream. The sensors that produce data streams
would be abstracted using Stream generators.
The Streamflow framework deals with other intricacies

like promoting Edge Weight of a Workflow-Edge to match
the edge weight of a Stream-Edge. For example the V2
active node in Figure 3 has two inputs one is a Stream-Edge
and the other is a static workflow input. During the execution
the Streamflow framework ensures the input set to V2 takes
the form of {{e1,d}, {e2,d} ...{e6,d}}thus the Edge Weight
the static input may appear to have been replaced by a
data stream of repeating elements that would match the data
stream of the Stream-Edge. So if data Stream is modeled
as time series I1, I2, In , it would produce a sequence of
outputs O1, O2, On.

IV. STREAMFLOW FRAMEWORK
Our research facilitates data streams to be programmable

with scientific workflows. The static nature of workflow
inputs makes it challenging to integrate the data streams
directly into the workflows thus we use a complex event
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Figure 3. Streamflow

Figure 4. Streamflow Architecture

processing [13] system to make this integration more flex-
ible. Streamflow framework uses Esper [14] complex event
processing system to manage high volumes of data events
coming in from the Data streams. The workflow sub system
is purely SOA based thus the complex event processing
system is wrapped in web services with extra functionality
to manage the different streams and this service is referred
to as the stream Engine.
The Stream Engine is built on the reasoning argued in

[21] that data streams have increased value when centralized
decision logic can exist, and not just be limited to localized
decision logic. It is a global repository for the data streams
system wide and all the data streams would be channeled
through the Stream Engine which would make it a single
stream repository against which all the stream queries could
be run against. On the other hand Stream Engine sits
in between workflows and data streams and thus allows
the flexibility of letting data streams be pre-processed and
filtered before they reach the workflows.
Many Scientific sensors produce large continuously gen-

erated observations and in some cases much of the data is
not very interesting. For example a weather radar produces

events occurring regardless of weather condition. But once
in a while an event occurs that needs urgent attention and
evaluation. For example a tornado may start forming in the
atmosphere which requires urgent forecasts to determine the
strength and path of the weather system. In such a situation
it is necessary to trigger much larger experiments to evaluate
the event. The pattern matching and other declarative pro-
gramming constructs supported by complex event processing
systems provide a sufficient programming model to capture
such scenarios. A rule based system is another possible way
of detecting such trigger scenarios.
Besides being used for filtering, the Stream engine pro-

vides a means to facilitate data binding of streams to work-
flows. Assume that there exists a data stream S and there
exists a type T that every event in the data stream conforms
to. If this data stream needs to be processed using a workflow
it is necessary that workflow would process inputs of type
T. There is a necessity for this disconnect to be resolved
and typed checked during the process of deployment which
would be explained in the following section.

V. PROGRAMMING MODEL
We took a top down approach to defining the program-

ming model. Our first focus was to identify the best approach
to integrate stream processing into workflows without dis-
turbing the existing workflow paradigm. This lead to the
formalization of several patterns that are presented in the
formal model.
The integration of the Streams into the workflow system

is addressed as a programming model in workflow compo-
sition. The graphical workflow composition has been very
successful as a programming model in geo sciences and has
had enormous success among the community as the means
for representing scientific experiments. In the framework of
extending this programming model to accommodate stream
processing special consideration is given to not alter the ex-
isting workflow programming model because most scientist
are comfortable with the concept of scientific workflows.
From the perspective of the workflow composition, when

dealing with live observational data feeds or some such event
stream, a researcher continues to use a workflow composer.
If the experiment involves a data stream of particular data
type, the scientist would focus on setting up the workflow
as if this workflow is going to process a single event of the
data stream. XBaya builds a mechanism to remove the static
workflow inputs and connect a data stream of the same type
to be connected to that workflow node. At the time of the
execution of the workflow it is necessary to understand that
this workflow has different execution semantics because of
the stream nature of the inputs and XBaya workflow system
manages all that execution complexity transparent to the
user.
To accomplish this we introduce new workflow semantics

to the workflow system in the form of a streaming data
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Figure 5. Streamflow Deployment

source. From the perspective of the experimenter the stream
data source is an abstract concept representing a continuous
data stream. From an architectural standpoint it represents a
service that ingests events posted by the data stream service
to a workflow that is waiting for a external event to occur for
its execution to continue. This new node type is configured
through setting a query, an EPR and a time range. The
query represents the events within the data stream that are
of interest to the researcher. Since a workflow executes once
from beginning to end in a linear fashion, yet the data stream
is continuous, the time range defines the period of time for
which the data stream should be monitored. Finally the EPR
indicates to the event processing service where to send data
events matching the given query.
Composition: The programming model is to compose the

workflow as a normal static input workflow and then add
a streaming data source to the workflow. It is necessary
to identify the different static inputs to the workflow that
need to be streamed and drag and drop those static input
to the streaming data source node. This represents that
once this workflow is deployed those inputs that are in the
streaming data source node would come from the complex
event processing system. This simple programming model
extension makes it easy for the scientist to adopt because it is
very similar to composing conventional scientific workflow.
When the user deploys the stream-enabled workflow, the

framework compiles the workflow, generates two workflows
as follows:

• Control Streamflow that initiates the execution and
receipts of messages from a CEP system and dispatch
to the child workflow as needed.

Figure 6. Simple Streamflow

• Child workflow representing the actual scientific work-
flow without any streaming in it. This is the same as
the static data set workflow.

Once these two workflows are deployed the system can exist
in a runnable state. The dataflow of a conventional workflow
is normally represented by an edge from one workflow node
to another and represents a single message or event flowing
from data out-port to an data in-port. It is important to
note that when a streaming data source is introduced to a
workflow the cardinality of the dataflow edge changes and
edges connected to stream data sources and all subsequent
data dependencies represent data streams instead of a single
data event. These changes are reflected in the workflow
system using the thick blue edges in the control Streamflow
3 and can be clearly seen in Figure 6. These workflows are
then compiled to WS-BPEL [2] scripts and be deployed to
the workflow engine used by the framework, Apache ODE
[3].
Execution: The execution of the composed and deployed

workflow begins by invoking the control Streamflow and as
shown in Figure 5 the first activity of the control Streamflow
is to contact the complex event processing system to register
a query that was specified by the users about the type of
events that this workflow is interested in and the duration that
the continuous query should be valid. This is shown as step
4 in Figure 5. The workflow then waits for the first message
to arrive from the stream engine and when the stream engine
finds an event that satisfies the query, it sends a message to
the waiting workflow process. Once the workflow receives
the message and invokes the child workflow that it starts
executing. Meanwhile the control Streamflow’s Active node
would loops back and waits for another observational event
and the process continues.

VI. EVALUATION

Evaluation presented in this section focuses on the over-
heads, latencies and gains of the Streamflow programming
model and the measurements try to quantify them when
used for interfacing existing scientific workflows with event
streams. All the measurements in this evaluation are micro
benchmark based and the services involved in the evaluation
was deliberately made not to consume time so the measure-
ments would not be affected by the application execution
times which depend on the scientific domain. The server
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Figure 7. Deployment overhead

components were run in a 8 CPU machine running Duel-
core AMD Opteron processors at 1000MHz, 32 GB memory
and a client machine where the workflow composer was run
had a configuration of 2 CPUs with Intel Pentium 4 CPU
3.20GHz, 2GB memory.
Deployment
One of the basic measurements associated with the frame-

work is the deployment cost associated with deploying
conventional scientific workflow as a Streamflow as shown
in Figure 5, i.e. conventional workflow and a control Stream-
flow that would handle Streaming. Theoretically the extra
cost associated with the Streamflow framework is invariant
of the complexity of the scientific workflow.
The scientific workflow that is used to measure deploy-

ment time is defined as following, which would be referred
to as WF1.
S1 −→ S2 −→ ... Sn-1 −→ Sn
The Services are arranged as a sequential workflow and

the number of nodes n in the workflow is taken to be a
measurement of workflow complexity. When this workflow
is deployed as a Streamflow it would generate a control
Streamflow (shown in Figure 5 c) with a Stream Generator
SG and an Active node Active-WF1 which would dispatch
events to the scientific workflow WF1. Finally the resulting
output event stream from the Active node is sent to a Stream-
Sink. The control Streamflow would look like what is shown
in Figure 6. There will be extra deployment overhead for
generating and deploying this Control Streamflow that could
be defined as follows.
SG =⇒ Active-WF1
Active-WF1 =⇒ Stream-Sink
Figure 7 compares the median total cost of deploying the

scientific workflow and the control Streamflow (step 2 and 3
in Figure 5) against the median overhead associated with de-
ployment of a control Streamflow (step 2 Figure 5). The total
deployment time of the workflow increases linearly as the
sequential workflow grows but the overhead associated with
the Streamflow remains relatively constant as anticipated. So
it can be argued that the linear increase in total deployment
time is solely attributed to the growth of complexity in the
scientific workflow rather than the Streamflow framework. It

Figure 8. Event Latency

can be concluded that the deployment overhead introduced
by the Streamflow workflow generation remains constant at
less than one second and invariant of the complexity of the
scientific workflow.
Latency
The control Streamflow that manages the data stream for

the scientific workflow acts as an intermediary between the
stream engine and the scientific workflow and this introduces
some latency to the event stream. In Figure 8, the experiment
measures how the event latency from the Stream Engine to
the scientific workflow behaves under different event rates.
Effectively this is the cumulative time that a given event may
spend in the Stream Engine and being transferred to control
Streamflow (Figure 5 step 7) and eventually arriving at the
scientific workflow (Figure 5 Step 8). This Latency would
be later referred to as Active-Node-Latency. Figure 8 shows
how the median latency changes with the event rate; the
measurements were taken in steady state where the output
event rate matches the input event rate thus allowing us to
conclude that there is no event buildup in the system that
could lead to eventual system crash.
Performance
In Figure 3 we showed a mixture of Streamflow nodes

along with a workflow node. For example V1 is a workflow
node that does not do streaming whereas V2 is a Streamflow
node. If the same problem was solved using a pure workflow,
the way to run the experiment would be to compose a
workflow with all the nodes in it and for each incoming
event launch that workflow. In such a case the V1 node will
be invoked multiple times unnecessarily. But in a Streamflow
setup V1 would only be invoked once. If a given Streamflow
has nodes such as V1 the compute cycles saved by the
Streamflow would not only offset its overhead but also will
be efficient.
For the purpose of the remainder of the discussion we

assume that there exist a scientific workflow WF0 shown in
Figure 9 defined as follows where SVSi and Si are all web
services.
Input-Node1 −→ SVS1
Input-Node2 −→ (S1, input-port2)
SVS1 −→ SVS2 −→ ... SVSm-1 −→ SVSm
SVSm −→ (S1, input-port1)
S1 −→ S2 −→ ... Sn-1 −→ Sn
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Figure 9. WF0 -Composite workflow

Assume that the Input-Node1 has a static input I1 and the
SVSi are side effect free web services. Further assume that
the values for Input-Node2 is expected to come from a sensor
event thus this entire workflow needs to be launched at
every occurrence of the sensor event. Let’s assume that event
stream in concern is E1, E2, ... Ek and thus the workflow
input event stream would be (I1,E1), (I1,E2), ... (I1,Ek).
When this workflow is analyzed it can be observed that
computation represented by sub workflow [ SVS1 −→ SVS2
−→ ... SVSm-1 −→ SVSm ] is repeated for every event Ei
but always produces the same output because Input-Node1
is static and SVSi services are side effect free. It would
make sense to calculate it only once thus saving compute
resources. If we define running time for a given workflow
W for k events as Tk(W) then the running time for the WF0
could be defined as follows where T(Si) and T(SVSi) are
time taken by services Si and SVSi respectively.

Tk(WF0) =
k∑

j=1

[ m∑
i=1

T (SV Si) +

n∑
i=1

T (Si)

]

It should be noted that this measurement of time removes
the inter-arrival time between events from the calculation.
This is deliberate because time taken from one event to
another is a subjective measurement and further taking that
time into consideration will not add value to this part
of the discussion. Now we make use of the Streamflow
semantics to optimize the above workflow. We do this by
breaking down the workflow into two parts, a workflow and
a Streamflow as shown in Figure 10.
We define scientific workflow WF1 as follows where Si

is a web service and we select S1 to have two input ports
and one output port and rest of the services to have single
input port and single output port.
S1 −→ S2 −→ ... Sn-1 −→ Sn
Input-Node1−→ (S1, input-port1)
Input-Node2 −→ (S1, input-port2)
We define the Streamflow WF2 as shown in Figure 10

where SG is the Stream Generator, Active-WF1 is a Active
node dispatching events to WF1, SVSi are again pure web
services with single input port and single output port. Notice
since S1 had two input ports the WF1 service would have
two input ports and thus the Active node Active-WF1 has
two input ports.
SVS1 −→ SVS2 −→ ... SVSm-1 −→ SVSm
SVSm =⇒ (Active-WF1, port2)

Figure 10. Optimized workflow and Streamflow

SG =⇒ (Active-WF1, port1)
Active-WF1 =⇒ Stream-Sink
Under this setup the WF2’s service components SVSi

s would only be executed once during the entire event
stream thus saving computation. But this would introduce
extra overhead for setting up SG - Stream generator and
as calculated in the earlier performance analysis Streamflow
introduces latency for event dispatching, the Active-Node-
Latency which would be referred to as ANL. Under the
assumptions since WF0 can be functionally replaced by
WF1 and WF2, we can use this setup to compare the time
taken by the Streamflow approach against the WF0 approach
for the same event stream E1, E2, ... Ek. The time taken by
the new approach to compute this event stream is as follows.

Tk(WF1 + WF2) = T (SG) +

m∑
i=1

T (SV Si)

+
k∑

j=1

[ n∑
i=1

[T (Si) + ANL]

]

It should be noted that the
m∑

i=1

T (SV Si) is independent

of the event stream now, which is a clear performance gain
and it would undoubtedly improve the performance of the
Streamflow based solution. But there is a constant time ANL
which occurs for every event and finally a constant setup
time of T(SG). The critical question would be what is be
the minimum number of m required to offset the overhead
added by the ANL and the following performance analysis
shows that at m=1 the Streamflow solution offsets the initial
setup cost T(SG) and ANL just after four events.
Figure 11 shows the realization of above experiment with

m=1 and n=1 so it gives a lower bound on the system
performance. The higher the value of m, the faster the
Streamflow would outperform WF0. Higher the value of n,
T(SG) cost becomes less significant.
As can be seen initially the Streamflow lags due to

T(SG), but as the time series progresses the Streamflow
events tend to complete execution quicker than the pure
workflow approach. We define time series number as the
subscript number of a time series of events defined by E1,
E2, E3 ... Ek, where higher the number later in the time
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Figure 11. Performance improvement

the event would occur. In the X-axis we use this time
series number to present the notion of time independent
of the actual time the event was published. So to make
the Streamflow based system work better in such kind of
arrangement, the Streamflow programmer only needs to find
one service that is independent of the event stream. It should
be noted that the services used in this experiment have near
0 second turn around time and the time measured are for the
transport and framework overheads. When considering real
science applications, the initial setup cost is very negligible
taken in context of long running science applications, so the
minimum affects of the Streamflow framework highlighted
here should matter even to a lesser degree. The above
is one aspect of the performance gain achieved using the
Streamflow programming model. Further workflows may not
be launched for every event that arrives at the Stream Engine
because of the selectivity of the EPL query registered at the
Stream Engine. For example the EPL query presented in
section 3 would filter out all the events with reflectivity
less than 3.2, so there will be no cost to the workflow
system from the events that do not satisfy the query. Further
gains may be achieved by bundling events into one big even
which would reduce the event rate downstream, thus saving
computations.

VII. RELATED WORK
Filter networks have been used for processing data

streams and [9] provides a message brokering approach to
handle the stream processing by setting up broker network
paths and routing the message streams through. Stream
Based Functions was computational model proposed in [14]
is a combination of dataflow model [16] and process network
model [17]. Although the capability of broker networks to
provide a robust computational model is evident, the work
doesn’t address a programming model so makes it hard for
use with real science applications.
The idea of stream based functions, which uses function

without side-effect and a controller that calculates which
function may be fired depending on the fulfillment of
dependencies, has been used in dynamic dataflows. Ptolemy
framework [6] designed as a simulation framework supports
the Dynamic Data Flow computational model among others

that would enable the extension of the data flow principles
used in Digital system processing used for data Streaming.
The framework proposed in this paper not only complements
dataflow like approaches it also provides a mechanism to
allow data mining and pattern matching as part of the pro-
gramming model and a feedback events published to Stream
Engine from workflows allow programming with workflows
as components. [18] identifies the specific demands imposed
upon the stream processing by data driven computational
sciences such as heterogeneous data formats, asynchronous
stream, variance in event sizes, etc and proposes a system to
compensate for the domain driven requirements on stream
processing systems. The significant difference between this
research and ours is the programming model extension we
propose to scientific workflows which makes the integration
more coherent and convenient.
Extension of pure workflow semantics to achieve stream

processing is presented in [5]. It presents a workflow seman-
tics that would produce a pipeline effect which can be used
for stream processing. We distinguish the work presented
in this paper by arguing that data streams require stream
processing semantic like pattern matching, aggregation, etc
and it would be hard to program this using pure workflow.
The emphasis is placed upon the programming model rather
than the execution model.

VIII. CONCLUSION AND FUTURE WORK

In this paper we present a programming model using the
existing workflow programming model and show how it can
be extended to allow scientists to do stream processing. We
believe the balanced approach taken by utilizing complex
event processing as well as workflow systems brings the
best of both technologies together and provides flexible
yet simple programming model for Stream processing. Our
evaluations show that even though the framework introduces
overhead to the existing workflow system, the overhead
is minor compared to the execution time of a workflow
and these overheads can be offset by gains offered by the
Streamflow programming model. We envision the Stream-
flow framework used in many different disciplines and are
currently exploring possible application of it in meteorology
and astronomy.
An important issue when dealing with event streams

is event ordering and synchronization based on system
generated timestamps or domain dependent timestamps. The
temporal event ordering is not addressed in this paper and
we plan to work on it as part of the future research. Further
handling and compensation of missing event is another
interesting and important research direction that needs to be
considered in context of the Streamflow framework. Another
area that needs further investigation is provenance collection
of event streams.
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