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a b s t r a c t

Scientific workflow systems have become a necessary tool for many applications, enabling the
composition and execution of complex analysis on distributed resources. Today there aremanyworkflow
systems, often with overlapping functionality. A key issue for potential users of workflow systems is the
need to be able to compare the capabilities of the various available tools. There can be confusion about
system functionality and the tools are often selected without a proper functional analysis. In this paper
we extract a taxonomy of features from the way scientists make use of existing workflow systems and
we illustrate this feature set by providing some examples taken from existing workflow systems. The
taxonomy provides end users with a mechanism by which they can assess the suitability of workflow in
general and how theymight use these features tomake an informed choice aboutwhichworkflow system
would be a good choice for their particular application.
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1. Introduction

Over the past two decades,we have seen a revolution in theway
science and engineering are conducted. Computation has become
an established ‘‘third branch’’ of science alongside theory and
experiment. Supercomputers simulate large, physically complex
systems modelled by partial differential equations. Computational
tools are adopted in applications that involve complex data
analysis and visualization steps. A typical experimental scenario is
a repetitive cycle of moving data to a supercomputer for analysis
or simulation, launching the computations and managing the
storage of the output results. Scientific workflow systems aim at
automating this cycle in a way to make it easier for scientists
to focus on their research and not computation management.
At the same time, the business community also addressed the
automation of their business logic and tools and commercial
computer companies soon followed to support this process. What
emerged was a primitive science of workflow design. Workflow
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Orchestration refers to the activity of defining the sequence of
tasks needed to manage a business or computational science
or engineering process. A Workflow is a template for such an
orchestration. A Workflow Instance is a specific instantiation of
a workflow for a particular problem and includes the definition
of input data. Within the scientific and engineering community
these terms have a slightly broader meaning and here in this
paper, we focus on the classification of such by considering four
broad areas that describe the various aspects of the workflow life
cycle (composition, mapping, execution and provenance). These
four areas are then further subdivided to attempt to build a
classification scheme for workflow systems through the use of
a rich feature set that outlines a taxonomy to provide the basis
for a categorisation axis for various workflow systems within the
scientific workflow community.
There have been other publications that have compared a

subset of workflow systems for scientific applications [1] but such
classifications potentially suffer from the ever-changing world
of distributed computing and the evolution of new workflow
solutions that are appearing at a rather frequent rate. Other
workflow taxonomy papers [2] promote specific aspects desired
for workflow systems, such as the need for adaptive workflow
management. Therefore, rather than focusing on a specific aspect
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Fig. 1. The workflow lifecycle: composition, mapping, execution, and provenance capture.
or comparing every workflow solution that exists today, we
focus here on the scientist’s or distributed-application developer’s
view and attempt to extract a feature set that encapsulates
the functionality exposed by various workflow systems in an
attempt to create a generalised taxonomy for the field as a whole
rather than comparing specific solutions. Therefore, the systems
we include in this paper only constitute a subset of the many
workflow systems that exist within the research and commercial
communities and provide an illustrativemeans for the justification
of our feature set.
It is hoped that such a taxonomy of features will be useful

not only to scientists or application-developers when considering
which features might be important for their problem domain but
also to the workflow community as a whole in order to provide
some basis for classification of systems in the future and possible
interoperability. It is as inconceivable at this stage to see a one-
size-fits-all workflow system that encompasses all of the desirable
features in one solution as it is to ask for one programming
language to be best for all problems. Therefore any decision about
the choice of one workflow system or systems used must be
informed in order to reduce the development time of applications
as a whole in this area.

2. Workflow capabilities and the workflow lifecycle

At one level a workflow is a high-level specification of a set of
tasks and the dependencies between them that must be satisfied
in order to accomplish a specific goal. For example, a data analysis
protocol consisting of a sequence of pre-processing, analysis,
simulation and post-processing steps is a typical workflow
scenario in e-Science applications. At the level of representation
and execution, a workflow is a computer program and it can be
expressed in any modern programming language. However, the
task of writing a computer program in Perl or Java or Python
to orchestrate a set of tasks on a wide-area distributed system
goes well beyond the programming skills or patience of most
scientific users. The goal of e-Science workflow systems [3] is
to provide a specialized programming environment to simplify
the programming effort required by scientists to orchestrate a
computational science experiment.
In general we can classify four different phases of the workflow

lifecycle (as seen in Fig. 1):
1. Composition, Representation and Data Model: the composi-
tion of the workflow (abstract or executable) through a number
of different means e.g. text, graphical, semantic.

2. Mapping: Involves the mapping from the (abstract) workflow
to the underlying resources.

3. Execution: Enactment of the mapped workflow on the
underlying resources.

4. Metadata and Provenance: The recording of metadata and
provenance information during the various stages of the
workflow lifecycle.

During workflow composition the user creates a workflow
either from scratch or by modifying a previously designed
workflow. The user can rely on workflow component and data
catalogs. The workflow composition process can be iterative,
where portions of the workflow need to be executed before
subsequent parts of theworkflow are designed. Once theworkflow
is defined, all, or portions of the workflow can be sent for mapping
and then execution. During that phase various optimizations
and scheduling decisions can be made. Finally, the data and all
associatedmetadata and provenance information are recorded and
placed in a variety of registries which can then be accessed to
design a new workflow. Even though we delineate data recording
as a separate phase of the workflow lifecycle, this activity can and
often is part of the workflow execution.
In the following four sections, we examine these four areas in

detail by extracting a feature set within each category to define the
common aspects of functionality that are inherent acrossworkflow
systems in general.

3. Composition, representation and execution models

3.1. Workflow composition

The composition of workflows is an important step in the
workflow process. It allows a workflow user or programmer
to specify the steps and dependencies in either a concrete
or abstract fashion that represent the desired overall analysis.
There are a number of mechanisms for specifying such flows
or dependencies and the resulting graph can be stored in a



530 E. Deelman et al. / Future Generation Computer Systems 25 (2009) 528–540
number of different formats, described in the next section. In
some cases theworkflows are described directly by indicating both
computational steps and the data that flows through them. In
other cases, the workflow composition goes through two phases,
where first a workflow template (high-level workflow description,
usually without specific data) is formed and then the template is
instantiated with actual data. Examples of the latter approach are
present in Wings [8] and in VLAM-G [94]. Templates can also be
used to support workflow sharing and reuse. In this subsection,
we outline existing methods for editing or composing workflows
that exist in a number of workflow systems today. We categorise
the composition methods into three broad categories: textual,
graphical and mechanism-based semantic models.

3.1.1. Textual workflow editing
Many workflow systems use a particular workflow language or

representation (BPEL [4], SCUFL [5], DAGMan [6], DAX [7]), which
has a specification that can be composed by hand using a plain text
editor. While this has worked well for users of some systems, such
as DAGMan, there are many examples where the task of writing
the textual workflow program by hand can be extremely difficult
or error-prone. This is particularly true if the workflow language
has poor support for standard programming control constructs. For
example, workflows for parameter sweeps can be pretty simple
before parallelization but then become extremely complex after
the parallelization has taken place, where the same algorithm is
applied to multiple data sets and each data set is represented by
one branch of the overall workflow graph. For these purposes, a
scientist typically uses a script in a high-level language like Python
or Ruby which is designed for expressing complex control and
using it to generate the lower-level workflow primitives.
For example, Pegasus [7] takes aworkflow description in a form

of a Directed Acyclic Graph in XML format (DAX). The DAX can be
generated using a Java API, any type of scripting language, or with
the use of semantic technologies such as Wings [8]. In some cases,
scientific applications want to provide users with an interface,
which is only in the form of a metadata query. For example, in
astronomy, users often do not want to know the details of the
underlying system, instead they want to retrieve images of an area
of the sky of interest to them. In such cases Pegasus is usually
integrated into a portal environment where the user is presented
with a Web form to fill in the desired metadata attributes. Inside
the portal, theworkflow instance is generated automatically based
on the user’s input and is given to Pegasus for mapping and
then to DAGMan for execution. Examples of this approach can be
seen in the Montage project [9,10] (an astronomy application),
the Telescience portal [11] (a neuroscience application), and the
Earthworks portal [12] (an earthquake science application). In all
these applications, Pegasus and DAGMan are being used to run the
applicationworkflowson anational scale infrastructure such as the
TeraGrid.

3.1.2. Graphical workflow editing
To simplify the life of scientific users, most e-Science workflow

systems provide a graphical tool for composing workflows. While
graphical programming has been a subject of experiment for many
years, it has not proven to be a substitute for traditional text based
programming for general purpose use. However it has achieved
considerable success in the domains where the primary task is one
of composition and orchestration. For example, systems such as
AVS [13] and SciRun [14] allow users to design complex graphics
applications by composing graphical filers and renderingmodules.
e-Science workflow systems such as Kepler [15], Triana [16], and
Vistrails [17] have sophisticated graphical composition tools for
buildingworkflow around the idea of composing graphswhere the
nodes represent tasks and edges represent dependencies.
BPEL (Business Process Execution Language) [4] is the de
facto standard for Web-service-based workflows with a number
of implementations from Microsoft, IBM, BEA and Oracle as
well as open source organizations. BPEL is a Turing complete
programming language expressed in XML. Very few people write
BPEL code by hand and a host of graphical tools exist to allow
users to compose BPEL workflows. Several such tools exist for
e-Science applications. For example, XBaya [18] is used in the
LEAD project [19] and in some bioinformatics applications. XBaya
includes a compiler that translates a graphical representation
into several different textual forms. For example, in addition to
BPEL, it can compile a graphical workflow representation into
a Python program. Eclipse BPEL Designer [20] uses primarily
visual modelling. Composition of invocations of service partner
operations and control-flow expressions are specified through
various BPEL primitives. The BPEL knowledge editors are mainly
GUIs but there is some preliminary developments on Web-based
modelling environments.
Graphical renderings of a workflow are easy for small work-

flows with fewer than a few dozen tasks. However many e-Science
workflows are far more complex. Consequently most graphical
tools allow some form of graphical nesting based on sub-workflow
hierarchies. Another source of graphical complexity involves ex-
pressing ‘‘for-each’’ concurrency in a workflow. However, this
problem can be addressed by providing specialized control prim-
itives in the graphical vocabulary. We return to this topic in the
following section.
Workflow systems can be generally classified into two broad

categories: Task-based or service-based. Task-based systems
(e.g. Pegasus) generally focus on the mapping and execution
capabilities and leave the higher-level composition tasks to other
tools, even employing the use of semantics, as described in
Section 3.1.4. On-going work with both Kepler and Triana is also
being undertaken with Pegasus to provide graphical choreography
interfaces to the system. However, whereas task-level workflow
systems focus on the resource-level functionality and fault-
tolerance, service-level systems generally provide interfaces to
certain classes of services for management and composition. One
important factor therefore to their take up is the availability of
current tools and services that scientists can build on in order to
create their applications. Such service availability forms part of the
composition process since it represents the available tools that can
be composed within a system.

3.1.3. Worfklow components
One of Taverna’s key values for example is the availability of

services to the core system, current figures estimate this to be
around 3500 mainly concentrated in the bioinformatics problem
domain. Taverna has also began to share workflows through the
myExperiment project [21] in order to make such workflows
available to the community as a whole. Taverna has a GUI-based
desktop application that uses semantic annotations associated
with services. It employs the use of semantic-enabled helper
functions which will be made available in the next public release
of the software. Developers can incorporate new services through
simple means and can load a pre-existing workflow as a service
definition within the service palette, which can then be used as
a service instance within the current workflow (i.e. to support
grouping). Services within the pre-existing workflow can also
be instantiated individually within the current workflow and a
developer can create user-defined perspectives that allow a panel
of pre-existing components to be specified. Within Taverna, there
is also support for the configuration of the appearance of the
graphical representation of the current workflow, so that, for
example, a workflow can be suppressed to give higher level views
(e.g. to remove the data translation (shim) services).
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One of the most powerful aspects of Triana on the other hand is
its graphical user interface. It has evolved in its Java form for over
10 years and contains a number of powerful editing capabilities,
wizards for on-the-fly creation of tools and GUI builders for cre-
ating user interfaces. Triana’s editing capabilities include: multi-
level grouping for simplifyingworkflows, cut/copy/paste/undo, the
ability to edit input/output nodes (to make copies of data and add
parameter dependencies, remote controls or plug-ins), zoom func-
tions, various cabling types, optional inputs, type checking and so
on. Since Triana came from the gravitational wave field [22] the
system contains a wide ranging palette of tools (around 400) for
the analysis and manipulation of one-dimensional data, which are
mostly written in Java (with some in C). Recently, other extensive
toolkits have been added for audio analysis [23], image process-
ing, text editing, for creating retinopathyworkflows1 and evendata
mining based on configurable Web Services [24,25] to aid in the
composition process.
The CoG Kit’s Karajan [26] includes mechanisms for the

orchestration of tasks, parallel blocks, futures (a place holder for
a data product that has not been generated yet), loops, functional
programming language, hierarchical graphs and parallel control
structures, which are a particular focus of the system. It uses either
a scripting language, GridAnt, a simple graphical editor to create
the workflows.
Kepler inherits a GUI for workflow composition and editing

called Vergil from Ptolemy II with some modifications and exten-
sions to make it more appropriate for scientific workflow com-
position. In this workflow editor, users can discover components
called actors; computational controllers called directors; and data
sets, discoverable through remote catalogs; then drag them to the
canvass and connect them via ports. Complex sub-workflows can
be aggregated into so-called composite actors. Like atomic actors,
they have well-defined input and output ports as well as parame-
ters. Parameters can be seen as special input ports that are usually,
but not always, kept fixed during a workflow execution. Like Tri-
ana and Taverna, Kepler supports the standard composition fea-
tures such as copy, paste, etc. Kepler has greater flexibility when
it comes to representing ports for streaming data from a database
type source, each column in a table can be exposed as a different
port, enabling a tuple or record to be broken up into individual
fields; alternatively the whole tuple can be sent as a single data
object, typically what happens in Triana; or thirdly a set of records
can be sent as an array object. This functionality can be reproduced
in other systems but normally requires specific components rather
than the system itself to perform it.

3.1.4. Semantic composition
Scientific workflows may consist of a number of execution

components, where each component may run parameter sweep
applications or similarly complex computations that involve
dividing the data sets into smaller ones in order to support
concurrent processing. Within such scenarios, the entire workflow
can quickly run into several thousands of jobs for execution,
especially in systems which do not support abstract workflow
definitions. In order to generate such workflows scientists can
create ad hoc scripts that convert the iterative nature of sets of jobs
into workflow variants but this can get rather complex since data
needs to be moved to the correct location, executables need to be
placed and so on. Such an ad hoc approach therefore can run into
problems when scaling to larger problem domains or translating
to different problems.
Some scientists [27] have conducted research into providing

fully automated workflow generation using artificial intelligence

1 UK STFC TRIACS project ST/F002033/1.
planning techniques for assisted workflow composition [28,29].
This is achieved through combining semantic representations
of workflow components with formal properties of correct
workflows. The work has been motivated through working
with two application domains: physics-based seismic hazard
analysis [30] and data-intensive natural language processing [31].
Wings [8] uses rich semantic descriptions of components and

workflow templates expressed in terms of domain ontologies and
constraints. Wings has a workflow template editor to compose
components and their data flow and that assists the user by
enforcing the constraints specified for the workflow components.
It also assists the user with data selection, to ensure the data sets
selected conform to the requirements of the workflow template.
With this information, Wings generates a workflow instance that
specifies the computations (but notwhere theywill take place) and
the new data products. For all the new data products, it generates
metadata attributes by propagating metadata from the input data
through the descriptions and constraints specified for each of the
components.
Other projects have used similar techniques in different

domains to support workflow composition through planning and
automated reasoning [32–34] and semantic representations [35].
As workflow representations become more declarative and
expressive, they enable significant improvements in automation
and assistance for workflow composition and in general for
managing and automating complex scientific processes.

3.2. Workflow representation

Workflow representation can take a number of forms, at its
most abstract level all workflows are merely a series of functional
units, whether they are components, tasks, jobs or services,
and the dependencies between them which define the order
in which the units must be executed. There are a number of
models from mathematics and computer science upon which
the various workflow representation languages are based. The
models include the ubiquitous directed graph variants, Petri
nets [36], UnifiedModelling Language (UML) [37], Business Process
Modelling Notation (BPMN) [38] as well as several lesser known
process modelling tools. The group of workflow languages based
on thesemodels changes very rapidly as new projects start and old
ones become redundant so here we only provide a snapshot of the
current state. The actual representation used should usuallymatter
little to the average user of an individual workflow system until it
comes to thematter of interoperability betweenworkflow systems
discussed in Section 7.

3.3. Directed graphs

The most common representation is the directed graph,
either acyclic (DAG) or the less used cyclic (DCG), which allow
loops. Although many workflow systems use graphs, the actual
representation of the graph in a language or format that can
be used by the workflow tool varies, most systems use an XML
based representation. In some cases, BPEL, the business domain
workflow language for Web services, is being used directly for
scientific workflows, examples include OMII-BPEL [39], the e-
HTPX project for high throughput protein crystallography [40] and
GPEL [41] used in LEAD. Condor’s DAGMan is another commonly
used DAG format for specifying workflows of dependent jobs, it
is used by many users directly and is the underlying execution
workflow representation for Pegasus. Pegasus uses a different
representation, the DAX (DAG in XML), for its abstract workflow
definition, which is the input to the Pegasus’ mapping process.
The Tavernaworkflow environment concentrates on theworkflow
composition of Web services and uses an XML-based DAG format
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called SCUFLE. Triana uses a DCG format of its own although it
is able to import and export from different formats including
DAGMan and the Virtual Data Language [42]. Sedna/Eclipse BPEL
Designer uses anXML-based representation of BPELworkflows and
syntactic aspects are defined via XML Schemas. However, since
BPEL is an event-driven workflow language based on messages,
developers can use simple statemachine representation to capture
state at any point in time: messages received, sent, waiting for
and BPEL process activity. Therefore, a snapshot can be made of
the state of BPEL process. Kepler uses yet another directed graph
representation MOML (MOdel Markup Language), as with Kepler’s
GUI, MOML is inherited from Ptolemy II. MOML is flexible but
was not designed with scientific workflow applications in mind so
Kepler has developed a new workflow format called KAR (Kepler
Archives) that uses MOML but also incorporates JAR/TAR archive
ideas to make workflows more self-contained and easier to share.
The idea of self contained workflow archives is currently being
addressed by both the Taverna and Triana projects, particularly in
response to the myExperiment project and the ability to be able to
share workflows in a portal environment.

3.4. Petri nets

Petri nets are a specialised class of directed graph and
models based on these have been used by several workflow
systems. Petri Nets are a formalism for describing distributed
processes by extending state machines with concurrency, they
graphically depict the structure of a distributed system as a
directed bipartite graph with annotations. As such, a Petri Net
has place nodes, transition nodes, and directed arcs connecting
places with transitions. They are the basis for the Grid Workflow
Description Language (GWorkflowDL) [43] the workflow language
for K-Wf Grid project [44], and the Grid FlowDescription Language
(GFDL) [45] from the Grid-Flow project [46].

3.5. UML

The Unified Modelling Language (UML) is a standardised
language for the modelling of object-oriented software. One of
its aspects is an activity diagram which can be used to model
dependencies between different activities and hence can be used
as a model for workflow. Askalon [47] uses UML activity diagrams
for the graphical representation of itsworkflow applications. These
are then translated into the Abstract Grid Workflow Language
(AGWL) [48] an XML representation for execution and storage.

3.6. Workflow execution control models

Most, if not all, workflow models fall into one of two classes:
control or data flows. The two classes are similar in that they
specify the interaction between individual activities within the
group that comprise theworkflow, but they differ in theirmethods
of implementing that interaction.
In control-driven workflows, or control flows, the connections

between the activities in aworkflow represent a transfer of control
from the preceding task to the one that follows. This includes
control structures such as sequences, conditionals, and iterations.
Data-driven workflows, or data flows, are designed to support
data-driven applications. The dependencies represent the flow
of data between workflow activities from data producer to data
consumer.
There is also a growing set of hybrid workflow representations

based on a combination of control and data flows. These hybrids
use both types of dependencies as appropriate but are normally
biased toward either data flow or control flow, using the other
to better handle certain conditions. For instance, in a data-flow
system such as Triana, there are situations where a downstream
task needs to be activated but the upstream task produces no
output. In this case, a trigger is used to switch the flow of control.
In other hybrid control-flow systems, such as the CoG Kit’s Karajan
workflow, data dependencies can be represented by a future, the
concept of data that has not yet been produced, which can block
the control flow with a data-flow dependency.
A different, more flexible approach is taken in Kepler, where

the semantics of the workflow computation is a pluggable
component. The user designs theworkflowusing variousworkflow
components, known as actors and indicating the dependencies
between them. However the semantics of the computation model
are then indicated by the user based on the director, a specific
model of computation, that a user chooses. In that way, Kepler
supports a variety of semantics such as data flow, control flow,
continuous time where the dependencies represent the the value
of a continuous time signal at some point in time, and discrete
event, where the workflow components communicate through
a queue of events in time. Kepler can also nest the models,
for example at the top-level workflow there may be a process
network (PN) director for loosely coupled, independent processes
(possibly on differentmachines) or independent threads (proxying
for processes on different machines), while at deeper levels inside
of composite actors, more fine-grained, local computations might
be described using an SDF director, which executes in a single
thread.

3.7. Control flow model

Most control flow languages provide support not only for
simple flows of control between components or services in the
workflow but also for more complex control interactions such as
loops and conditionals. Sometimes this support is implicit, as is the
case with Petri Nets, and sometimes explicit, as in Karajan.
Users of workflow systems will often want more than the

simple control constructs available to them. The ability to branch
workflow based on conditions and loop over subsections of the
workflow repeatedly is important for all but the simplest of
applications. The argument is not whether these facilities should
exist but how to represent them in the workflow language and
to what degree the language should support them. For instance,
is a single simple loop construct enough, or should the language
support all loop types? (i.e. while, for . . . next, repeat . . . until.) In the
case of conditional behaviour, the problem is determiningwhether
the incoming value and the conditional value are equivalent. XBaya
supports a set of control primitives including for-each, conditional,
while and exception. These control constructs are overlays on
the dataflow graph to simplify the expression of the workflow.
For example, a for-each construct can be used to encode a fan-
out of a data flow graph where the degree of fan-out is not
known until runtime. An exception construct is required when the
workflow designer needs to express a sub-workflow alternative
path when a part of the flow may be subject to potential,
known runtime failures. BPEL has control structures including
branching and looping built into the language but only for pre-
defined fairly simple data types. For simple cases where we are
comparing integers or simple strings, checking the condition is
straightforward and unambiguous. The problem appears when
we have to compare complex, structured scientific data in
scientific workflows. This type of data often needs domain-specific
knowledge in order to perform comparisons. Consequently, the
evaluation of the comparisonmust be accomplished by an external
service or agent, or a separate component, as part of the workflow
execution.
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3.8. Data-flow models

Most data flow representations are very simple in nature, and
unlike their control flow counterparts, contain nothing apart from
component or service descriptions and the data dependencies
between them; control constructs such as loops are generally
not included. In Triana’s workflow language, there are no control
constructs at all; the dependencies between tasks are data
dependencies, ensuring the data producer has finished before
the consumer may start. Looping and conditional behaviour is
performed through the use of specific components; a branch
component with two or more output connections will output data
on different connections, depending upon some condition. Loops
are handled by making a circular connection in the workflow and
having a conditional component break the loop upon a finishing
condition, outputting to continue normal workflow execution. The
benefit of both of these solutions to control behaviour in data flows
is that the language representations remain simple. The downside
is that the potential for running the workflow on different systems
is reduced since the other system must have access not only to
the workflow but to the components or services that perform the
control operations.

3.8.1. Support for data collections
Although most data flow systems support the notion of

single data object, some systems also introduce the notion
of data collections as first-class entities in the workflow. The
computational units in the workflow then operate not on single
files for example, but on entire file collections. Examples of such
systems are Askalon [49] and Wings [8], which also supports
the notion of nested collections and collections of processing
components. Askalon supports mapping a portion of a data set
to an activity, independently distributing multiple data sets, not
necessarily with the same number of data elements, onto loop
iterations. COMAD [50], Collection Oriented Modelling and Design
extensions to Kepler support both nested data collections and
collection token streams, where data streams can be nested using
a technique similar to SAX-based parsing of XML documents using
paired open and closing tokens to delineate the streams. At the user
level there is essentially only one input and one output port per
actor; but actors can be configured to pick up only relevant parts
of the ‘‘fat data stream’’.
It is clear that both control and data flow techniques are needed

for scientific workflow languages. Limiting the language to one
or the other, limits the usefulness of the tools built to use the
language. It is also clear that constantly extending the language
to include every programming construct will bloat the language
and increase the complexity of the engines needed to execute it.
Simple hybrid models with limited control constructs and support
for data flowappear to stand the best chance of being interoperable
with the most tools and frameworks but still contain enough
functionality to be able to represent real scientific applications.
However, inevitably there will not be a single model suitable for
all situations.

4. Mapping workflows to resources

Workflow mapping refers to the process of generating an
executable workflow based on a resource-independent workflow
description, frequently called an abstract workflow or worfklow
instance. In some case the user performs the mapping directly by
selecting the appropriate resources. In other cases, the workflow
system performs the mapping. In the latter case, users are allowed
to design workflows at a level of abstraction above that of the
target execution environment, which uses low-level commands
and detailed resource management constructs.
Depending on the underlying execution model that of stan-
dalone applications, or individual services, different approaches
are taken to the mapping process. In the case of service-based
workflows, mapping consists of finding and binding to services ap-
propriate for the execution of a high-level functionality. Service-
based workflows also can consider quality of service issues [51]
when performing themapping. In the case of workflows composed
of stand-alone applications, the mapping issue not only involves
finding the necessary resources to execute the computations and
perform various optimizations but may also include modifications
to the original workflow.

4.1. Resource definition and discovery

Workflow systems have different meanings for the concept of
resource. In many systems, a resource is a service that can perform
one of the tasks in the workflow definition. This service may be
referred to as a REST [52] or WSDL-based Web service [53], or it
may be a refer to a computational agent. A resource may even be a
person. For example, workflowsmay require a human step, such as
verification by a scientist that theworkflow is proceeding correctly
or it may require an administrator’s approval prior to proceeding
to the next step. In other cases a resource may be a computer upon
which a required application is deployed or data archival system
for storing results or containing required data sets.
In the case of Web service resources, most workflow systems

use a registry which contains descriptions of the services. As a
new service is added to the application collection, its description is
added to the registry. Public Web service discovery search engines
also exist and these can be useful in posting collections of Web
services that are important for specific domains. For example
there are a large number of public Web services for bioinformatics
applications that are used by the Taverna system (Section 3.1.3).
When the resources are computers and data systems, the

resource discovery is typically done through a Grid information
systems [54], which can list all the computers available to a virtual
organization [55], their current load and status. As described
below, this can be used by the mapping systems at runtime to
select the best resource.

4.2. User-defined workflow mapping

Among the workflow systems that rely on the user to make
the choice of resources or services are: Kepler, Sedna, Taverna,
and VisTrails [17]. In the case of Taverna, the user can provide
a set of services which match a particular workflow component,
so if errors occur, an alternate service can be automatically
invoked. The newer versions of Taverna will include late service
binding capabilities. Wings is a workflow composition tool which
interfaces to the Pegasus workflow system and relies on its
capabilities to perform the mapping of the Wings-generated
abstract workflow onto the distributed resources.

4.3. Workflowmapping using an internal scheduler or external broker

Today, P-GRADE [56] can support both with task- and service-
based workflows. The original version of the P-GRADE workflow
engine that is based on Condor DAGMan supports only task-
based workflows. The GEMLCA [57] extension of P-GRADE can
support workflows where tasks and services can be applied in
a mixed way within the same workflow. This extension of P-
GRADE still uses DAGMan to control the node dependencies
of the workflow graph but the task submission mechanism is
extended with the services invocation mechanism of GEMLCA.
When designing P-GRADE/GEMLCA workflows, the user is able to
indicate that tasks/services can be scheduled by a broker. P-GRADE



534 E. Deelman et al. / Future Generation Computer Systems 25 (2009) 528–540
interfaces to three different brokers: GTBroker [58] for Globus-
based deployments, the LHC-broker [59] for LHC-based grids, and
the gLite-broker [60] for gLite-based grids. These brokers can be
used in amixedwaywithin the sameworkflow and hence different
nodes of a P-GRADE workflow can simultaneously be executed on
several grids [61]. When the user chooses a broker as a means
of scheduling a job in the workflow, resource requirements for
the job can be provided as well. An experimental enhancement
of P-GRADE is combined with MOTEUR [62] by relying on two
different execution engines. For task-basedworkflows, it interfaces
to DAGMan, for services-based workflows, it uses MOTEUR.
MOTEUR is able to determine during execution the data parallelism
present in workflow and exploit it if the necessary resources are
available.
Triana is able to interface to a variety of execution environments

using the GAT (Grid Application Toolkit) [63] for task-based
workflows and the GAP (Grid Application Prototype) [64] for
service-based workflows. In the case of service-based workflow
a user can provide the information about the services to invoke
(or locate them via a repository) or a user can create a workflow
and then map part of the workflow (using a group) to distributed
services through the use of one of the internal scripts e.g. parallel
or pipeline. In this mode, Triana distributes workflows by using (or
deploying on-the-fly) distributed Triana services that can accept
a Triana taskgraph as input. In the case of task-based workflow,
the user can designate portions of the workflow as compute-
intensive and Triana will send the tasks to the available resources
for execution. It can for example use the GAT interface to the
Gridlab GRMS broker [65] to perform the resource selection at
runtime. Workflows can also be specified using a number of
built-in scripts that can be used to map from a simple workflow
specification (e.g. specifying a loop for example) to multiple
distributed resources in order to simplify the orchestration process
for distributed rendering. Such scripts can map sub-workflows
onto available resources by using any of the service-oriented
bindings available e.g. WS-RF [66], Web and P2P services using
built-in deployment services for each binding.
Karajan [67] supports dynamic binding of tasks to resources.

When defining a workflow, the user can specify the tasks at
an abstract or concrete level, where a single workflow can be
composed of a mix of tasks at different levels of abstraction.
The concrete tasks are executed directly by an engine, whereas
abstract tasks are sent at runtime to a scheduler for mapping onto
a resource. Karajan supports pluggable schedulers and provides
a simple built-in implementation. Karajan also supports user-
defined task clustering, where the cluster is sent to a single
resource for execution.
Similarly to Karajan, workflows specified in DAGMan can be

a mixture of concrete and abstract tasks. When DAGMan is
interfaced to a Condor task execution system [68] the abstract tasks
are matched dynamically to the Condor resources. The selection
is done by the Condor matchmaker [69], which matches the
requirements of an abstract task specified in a classad with the
resource preferences published in their classads.
In the case of workflows based on BPEL, resource selection

can be explicit, i.e. specific service instances are selected prior to
workflow enactment. However, it is often the case that the abstract
workflow is bound to abstract WSDL descriptions. The process of
selecting resources can be left to an external agent which matches
the abstract WSDL documents to concrete instances at runtime. In
the LEADproject, the science applications are deployed on a variety
of remote supercomputers. Each remote application deployment
is managed by a virtual Web service. The resource broker
examines the execution queues on the remote resources and
selects the appropriate resource and realizes the corresponding
virtual Web service and passes the service invocation from the
BPEL engine. As described later, this has an additional advantage
of allowing the broker to monitor execution and to reschedule
the application invocation on a different resource in case of
failure.

4.4. Workflow optimizations

Pegasus performs a mapping of the entire workflow, portions
of the workflow, or individual tasks onto the available resources.
In the simplest case Pegasus chooses the sources of input data (as-
suming that it can be replicated in the environment) and the loca-
tionswhere the tasks are to be executed. Pegasus provides an inter-
face to a user-defined scheduler and includes four basic schedul-
ing algorithms [70]: HEFT [71], min–min, round-robin, and ran-
dom.Aswithmany scheduling algorithms, the quality of the sched-
ule depends on the quality of the information both of the execu-
tion time of the tasks and data access as well as the information
about the resources. In addition to the basic mapping algorithm,
Pegasus can perform the following optimizations: tasks clustering,
data reuse, data cleanup, and partitioning [7]. Before the work-
flow mapping, the original workflow can be partitioned into any
number of sub-workflows. The granularity of the partitioning sets
the mapping horizon for the workflow. For example if we have
only one task per partition, then this is equivalent to just-in-time
scheduling. On the other end of the spectrum, having the entire
workflow in one partitions results in full-ahead planning. Pega-
sus can also reuse intermediate data products if they are available
and thus possibly reduce the amount of computation that needs to
be performed. Pegasus also adds data cleanup nodes to the work-
flow, which remove the data at the execution sites when they are
no longer needed [72]. This often results in a reduced workflow
data storage footprint. Finally, Pegasus can also perform task clus-
tering, treating a set of tasks as one for the purposed of schedul-
ing to a remote location. The execution of the cluster at the re-
mote site can be sequential or parallel (if applicable). Task cluster-
ing can be beneficial for fine granularity computational workflows.
Pegasus has also been used in conjunction with resource provi-
sioning techniques to improve the overall workflow performance
[30,73,74].
The Askalon system, designed to support task-level workflows,

has a rich environment for mapping workflows onto resources.
It not only does the resource assignment but can also automat-
ically provision the resources ahead of the workflow execution.
Askalon contains twomajor components responsible for workflow
scheduling: the scheduler and the resource management system
(GridARM). GridARM serves as a data repository which provides
the scheduler with all the information needed for scheduling, in-
cluding the available resources and the applications deployed on
the Grid. Apart from the basic functionalities, GridARM can also
provide more advanced resource and application discovery tech-
niques based on quality-of-service matching, and it can guarantee
advance reservation of resources. The scheduler uses the informa-
tion obtained from GridARM in order to perform the mapping of
high level tasks specified in AGWL. In order to support the sched-
uler, Askalon has developed a performance analysis and prediction
system which can estimate the runtime of the workflow tasks as
well as data transfer times of data between tasks. The scheduler
makes full-graph scheduling of scientific workflows, using one of
the implemented scheduling algorithms. Currently, these include
theHEFT algorithm, an advance reservation-based algorithmbased
on HEFT [75], and a general-purpose bi-criteria scheduling algo-
rithm. As the Scheduler maps DAGs and the AGWLworkflows may
include loops, parallel loops, and conditional constructs, a prelimi-
nary workflow conversion is performed before the actual schedul-
ing can start. Among the implemented workflow transformations
are techniques employed in parallel compilers and include: branch
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prediction, parallel loop unrolling, and sequential loop elimination.
If the choicesmade during the transformation (such as branch pre-
diction)were erroneous, theworkflow is adjusted and rescheduled
at runtime. Once theDAG is created, it ismapped onto the available
resources based on a scheduling algorithm.

5. Execution

This section examines the execution of a workflow through
the use of an execution engine or enactment subsystem. We
cover three different aspects: the execution model, the fault
tolerance mechanisms and the ability to adapt workflows (or sub-
workflows) based on previous analysis steps in the cycle.

5.1. Execution model

As discussed in Section 3.1, workflow systems generally deal
with services or jobs (or combinations or both). In this section we
outline the models used by some workflow systems to illustrate
the various execution scenarios that are currently available in
systems.
Pegasus can map workflows onto a variety of target resources

such as those managed by PBS [76], LSF [77], Condor [78], and
individual machines. Authentication to remote resources is done
via GSI [79] and Pegasus uses the DAGMan workflow engine
for the execution of jobs. DAGMan interfaces to a local Condor
queue managed by the schedd [80]. DAGMan uses the sched’s
API and logs to submit, query, and manipulate jobs, and does
not directly interact with jobs independently. DAGMan can also
uses Condor’s Grid abilities (Condor-G) to submit to many other
batch and grid systems. DAGMan reads the logs of the underlying
batch system to follow the status of submitted jobs rather than
invoking interactive tools or service APIs. By relying on file-based
I/O DAGMan’s implementation can be simpler, more scalable and
reliable across many platforms, and therefore more robust.
Askalon supports workflow composition and modelling using

the Unified Modelling Language (UML) standard and provides
an XML-based Abstract Grid Workflow Language (AGWL) for
application developers to use. The AGWL is given to aWSRF-based
runtime system for scheduling and execution. Askalon contains
a resource manager (GridARM based on the Globus tools [81])
that provides resource discovery, advanced reservation and virtual
organization-wide authorization alongwith a dynamic registration
framework for activity types and activity deployments.
The Java CoG Kit Karajan workflow framework can support

hierarchical workflows based on DAGs with control structures and
parallel constructs, it makes use of underlying Grid tools such as
Globus GRAM [82] for the actual job submission. Workflows can
be visualized and tracked by an engine and modified at runtime
through interaction with a workflow repository or schedulers for
dynamic allocation of resources to tasks. It has been demonstrated
to scale to hundreds of thousands of jobs due to its efficient
scalability-oriented threading mechanisms.
Triana supports job level execution through integration with

theGridLabGAT,which canmakeuse ofGRMS,GRAMorCondor for
the actual job submission; it also supports service-level execution
through the GAP bindings to Web, WS-RF and P2P Services;
and still contains an internal run-time execution engine for the
local components written in Java or C. Kepler similarly supports
Web services and Grid jobs through specific ‘‘actors’’ and local
components through its own run-time engine.
5.2. Fault tolerance

Fault tolerance again can be specific to the types of workflows
being executed. At the job level, a number of mechanisms can
be used at the operating system level for saving the state of
an execution and resuming after a failure. Condor, for example,
takes this approach. Other mechanisms can be employed, such as
application-level check-pointing in order to migrate an execution
to an other machine that may be more adept to executing the
particular code. The Cactus worm [83] is a good illustration of
this approach. For service-based systems, fault tolerance might
involve retrying a service upon a time out or discovering another
equivalent service that may be running elsewhere in order to
continue with the execution. More typically in most of the
current workflow systems fault tolerance, exception handling and
recovery are ad hoc tasks undertaken by individual workflow
designers rather than being part of the systems themselves.
Triana employs a passive approach by informing the user

when a failure has occurred. The workflow can be debugged
through examining the in-built provenance trace implementation
and through a debug screen that produces verbose output during
the execution process. During the execution, Triana will identify
failures for components and provide feedback to the user if a
component fails but it does not contain fail-safe mechanisms
within the system for retrying a service for example. Kepler also
has little or no generic capabilities for fault tolerance, individual
workflow designers usually deal with the problem by encoding
some of the exception handling and recovery mechanisms into
the workflow itself. An extension to Kepler is being developed,
a ‘‘smart re-run’’ feature based on data dependency information
that can avoid unnecessary re-computations, similar to the way
in which Pegasus works. Such a system would have similar
knowledge about the workflow execution state even after an
interruption so should enable the restart of a workflow from a
check point. Kepler can also cope with unreliable data transfer,
specifying a retry or fallback to an alternative transport protocol.
This is a prototype of the ‘‘templates and frames’’ approach [84]
which allows a structured composition of data-flow networks and
control-flow (state-machines/transducers). Yet another approach
is easily handled in COMAD: if an upstream actor creates or detects
a fault, a special error tag/token can be injected into the COMAD
data stream. A downstream ‘‘exception catcher’’ can then specify
what to do with the faulty data; most actors would simply skip
over data tagged as faulty.
Askalon supports fallback, task-level recovery, checkpointing

and workflow-level redundancy. With all of the workflow
systems that use external components or services the level
of checkpointing is limited unless the components themselves
support checkpointing that the systems can access. Generally
checkpointing is done at the workflow application level and
so it is only possible to restart a workflow from between
components and not within a component itself. Askalon provides
an implementation of this ‘‘light weight’’ checkpointing by
providing URLs to intermediate data sets.
DAGMan also supports a number of recovery techniques. If

DAGMan has crashed while submitting jobs to the underlying
batch system, and the batch system continues to run jobs, DAGMan
can recover its state upon restart (by reading logs provided by the
batch system) without loosing information about the executing
workflow. The DAGMan workflow management includes not
only job submission and monitoring but also job preparation,
cleanup, throttling, retry, and other actions necessary to ensure
the successful workflow execution [85]. DAGMan attempts to
overcome or work around as many execution errors as possible,
and in the face of errors it cannot overcome, it provides a rescue
DAG and allows the user to resolve the problemmanually and then
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resume the workflow from the point where it last left off. This can
be thought of as a ‘‘checkpointing’’ of the workflow, just as some
batch systems provide checkpointing of jobs.
Another approach is to use an external monitoring system. For

example, if resource selection is deferred to runtime then the agent
which selects the resource can monitor the part of the workflow
using that resource. If the resource or application fails on that
resource it is possible for the resource selection services to bring
in a substitute. This approach is used in the LEAD project when
running on the TeraGrid distributed computing resources [86]. The
system is also capable of running multiple versions of the same
workflow application component at the same time ondifferent and
continuing the workflow with the first instance that completes.
This can improve throughput in time critical applications.

5.3. Adaptive workflow

Although data-driven systems have been around since the
1980s, the term Dynamic Data Driven Application Systems
(DDDAS) was coined during a National Foundation for Science
(NSF) workshop in 2000 [87]. DDDAS describes the ability for
an application to dynamically incorporate data into an executing
application and also for that data or some analysis of that data to
steer the application process. This allows data being produced in
real time by sensors or various other instruments to be fed into the
computational workflow in order to allow the system to respond
to data changes on-the-fly, which was considered a significant
challenge for Grid computing. DDDAS techniques can take a
number of forms at its simplest this involves following one branch
instead of another in the workflow based upon a decision made
using the input data. At the other end of the scale this may involve
dynamic rewriting of the workflow itself to create an entirely
new workflow, however in traditional programming models self-
modifying code has been considered with some suspicion because
of the possibilities for abuse. DDDAS systems require decision-
making capabilities to be included within the workflow process.
At the very least logic processes (e.g. if. . . then) should be supported
and looping constructs are also often needed to support detection
of certain thresholds or states (e.g. do. . .while loops or similar).
Many of the workflow systems incorporate such features either
at the language level or at the system level through specific
components or constructs that support this type of behaviour.
There are a number of domains in which DDDAS can be ap-

plied including manufacturing process controls, resource man-
agement, weather and climate prediction, traffic management,
disaster control systems, systems engineering, civil engineering,
geo-exploration, social and behavioural modelling, cognitive mea-
surement and bio-sensing. The LEAD [19] project for example is
addressing the fundamental IT research challenges, and associated
development, needed to create an integrated, scalable framework
for identifying, accessing, preparing, assimilating, predicting,man-
aging, analyzing, mining, and visualizing a broad array of meteoro-
logical data and model output independent of format and physical
location. The storm modelling scenario is a good example of how
this new paradigm affects the whole range of infrastructures in-
volved in a system.
One possible use of these techniques is the situation where

a computational solver of some description is used to explore
a parameter space. If the solver is computationally expensive
and the search space large, we could use a workflow with a
course grained set of input parameters that explores the space
at a high level. Areas of interest where the output data is
evaluated to be above a certain threshold can be explored at
a finer grained level by spawning a sub-workflow with a new
input parameter set. This use case has been explored in Triana
using Aspect Oriented Programming (AOP) techniques to perform
the workflow rewriting, effectively creating sub-workflows that
execute and feed back into the main workflow, and using Cactus
as the computational solver. Other workflow tools could use this
or other techniques to modify the workflow during execution.
In principle Kepler workflows can modify themselves during
execution. Ptolmey (on which Kepler is based) has some demos,
e.g. where a variable number of instances of a ‘‘bank counter’’
are created; this is a ‘‘predictable’’ change of the workflow. More
exciting things can be done: Sending a workflow (as if it were
data) from one actor to another, where it is then executed. Nothing
prevents you from changing the workflow in-flight. Users and tool
builders have to be aware of the potential for abuse if open systems
can be sent arbitrary workflows that can modify themselves,
security and trust issues that have not been considered here then
come into play.

6. Provenance

Data Provenance is a record of the history of the creation of
a data object. If the data object was created as the result of a
workflow then there must be a way to record the history of that
creation. Specifically, the chain/graph of processes (including time
stamp, program version number, component or service version
number, execution host, library versions, etc) and intermediate
data products back to the source data used to initialize the
workflow.
The importance of data provenance cannot be underestimated.

A complete provenance record for a data object allows us the
possibility to reproduce the result and reproducibility is a critical
component of the scientific method.
Recently, several workflow systems and other provenance-

related research projects participated in a series of Provenance
ChallengeWorkshops [88]. From the challenge it became clear that
the various system capture similar information about workflow
execution although they may present it in different ways.
Some systems use internal structures to manage provenance
information, some rely on external services, which can be quiet
generic.Within Triana, for example, provenance is recorded locally
as an internal format that has various levels of output. It can
show the components executed, their parameters and even record
the data sets in the provenance trace that pass through during
execution. Triana is also integrated with external services such as
those provided by the EU provenance project [89].
The Karma [90] provenance system is one that is largely work-

flow representation independent. Karma provides a searchable
database of data provenance that has extensive capabilities for for-
mulating data provenance queries. It can gather data from work-
flow systems in several different ways, but the simplest is for it to
listen for the the state change events published during the execu-
tion of aworkflow. For example, theWeb services used in the LEAD
project are all instrumented to produce a stream of events each
time they are invoked. These events are published asWS-Eventing
messages that are sent to a notification broker. The Karma system
simply subscribes to the event stream. However, tomake thiswork
the workflow system must include workflow identification infor-
mation along with each remote service invocation. This identifi-
cation information is passed along in the service invocation events
and is used by Karma to piece together theworkflow history. Event
streams are not the only way Karma works. Any workflow system
that generates a detailed history of the actual execution could, in
principle record that information in Karma.
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6.1. Design provenance

In addition to tracking the provenance of data we can track the
provenance of a workflow as it evolves from version to version.
The VisTrails system [91] has an extensive set of capabilities for
managing workflow design provenance, including the ability to
explore variations on the design history or to see if two different
workflows may have common elements or how they evolved from
a common root.
The workflow design in VisTrails is done via a graphical user

interface. When a user creates or modifies the workflow the sys-
tem captures the user-made modifications. These can be addi-
tions/deletions of nodes and dependencies, modifications to pa-
rameter settings, etc. As a result the user is able to trace back ex-
actly how the workflow was created, even including the avenues
explored but not ultimately pursued. This type of provenance can
also be very beneficial for workflow sharing or education, when
collaborators are trying to understand how a particular workflow
was created.

6.2. Provenance for transformed workflow execution

Since workflow systems may significantly modify the user-
generated workflow before it is executed, the user may have
trouble interpreting the results solely based on the execution
provenance. For example, Pegasus is exploring the use of prove-
nance tracking capabilities to record the workflow transforma-
tions performedduring theworkflowmappingprocess. This prove-
nance includes information about which nodes in the workflow
were clustered, which instance of the input data was selected for
the computation, what intermediate data was selected for reuse,
which execution sites where selected and why, and other infor-
mation related to the workflow mapping process. As part of this
work, Pegasus has been integrated with the PASOA provenance
system [92,93].

7. Interoperability

With so many workflow systems out there and this paper
touches only upon some of them, canwemake a case for workflow
interoperability, and if so what would this entail?
Applications today can be composed of very heterogeneous

components, some which involve having the user in the loop,
some which deal with streaming data, some which require high-
performance resources for their execution, etc. Currently, there is
no singleworkflow system that can accommodate all these various
requirements, just as there is no single programming language
used for all applications. Therefore, workflow developers would
like to be able to use a variety of engines for their work. Users
do not necessarily want full interoperability between the various
workflow systems, but they would like to invoke one workflow
from another and to re-use their workflow descriptions.
Recently, there has been effort, particularly in the VLE-WFBus

project [95], where a number of different workflow systems are
made interoperable through a runtime infrastructure. Each of
the workflow systems connected by a workflow bus is wrapped
and treated as a sub-workflow. The role of the workflow bus is
to propagate information about the data objects to the correct
sub-workflows, schedule the sub-workflows, and interface to the
execution environment.
In scientific workflows, defining and refining a workflow to a

pointwhere it can be relied on to produce scientificallymeaningful
results can be extremely time-consuming and can take months
or years of experimentation and validation. Yet if it is encoded
completely in a language for a workflow system that becomes
extinct the capability to execute it is lost. Of course this problem
is a very general software longevity concern that goes well beyond
workflows. However, if there is a standard workflow provenance
model we could use that to encode the nature of the workflow
execution independent from the underling execution engine. if
this representation is precise enough it may allow us to build
‘‘compilers’’ that can translate the provenance record directly back
to a new workflow representation.

8. Conclusion

As e-Science applications have grown in complexity from
simple batch executions of data analysis tasks, workflow has
emerged as an important enabling technology. A host of tools
supporting workflow design and enactment have been developed
and are now in use in the scientific community. Inmany cases these
scientific workflow systems were developed in close collaboration
with the scientists and resulting systems are well designed
to handle the use-cases of that community. Because scientific
research is so diverse in the method used from one discipline to
another, the resulting collection of workflow tools demonstrate a
wide variety of capabilities.
In this paper we attempted to demonstrate this diversity of

capabilities found in e-Science workflow. We have first explored
it from the perspective of modes of expression. The language
for defining a workflow can be as traditional as the textual
representations used in conventional programming. However
scientists have found that a graphical composition model is
convenient for many applications. The most novel approaches
may be those that compile a workflow from the specification of a
scientists high-level queries. This last area is one that is the subject
of current research.
We have also described workflow systems along the dimen-

sions of internal representation and execution. In many cases
graphs are used for the internal model, but several other interest-
ing representations are also described. Execution models also vary
widely from system to system. In many cases a data-driven data-
flow model is used by the enactment engine. In other cases, data
flow is seen as limiting, so it is enhanced with various control con-
structs.
Mapping a distributed scientific workflow to a set of computa-

tional and data resources is a task that may be done prior to execu-
tion, but itmay also be done on-the-fly at runtime. In the later case,
it is possible to be very adaptive in how the resources are selected
and it may also enable better fault handling.
Finally, having goodworkflow tools has enabled us to automate

the process of building data and workflow provenance. Combined
with good data catalogs and data management systems, it is now
possible to provide complete experimental workbenches for entire
communities of scientific users. Data and workflows can be shared
and, through community use and refinement, evolved tomeet new
challenges. Having data provenance allows a scientist to return to
the point of creation of a data object to understand the workflow
that created it and the original source of data that was used.
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