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Workflow systems embody a programming 
model whose strength is in reducing the 
complexity of non-uniform, computationally 
rich scientific investigation. The class of 
workflows that we study, which are fairly 
characteristic of model driven analysis in the 
geosciences, are fairly squat in length and 
mapspan, but are computationally intense 
and generate and consume large amounts 
of data (Ramakrishnan and Plale 2010).  A 
pattern of one such workflow is shown in 
Fig. 1, where megabyte (MB) inputs at the 
beginning of the workflow turn into gigabyte 
inputs and outputs then are followed by MB 
outputs as the workflow progresses.  CPU 
consumption starts at 64 cores, ramps to 
512 cores at its most computationally 
intense phase, then drops down to a low 
computation phase as analysis products are 
produced.  This is accomplished by a 
workflow containing 7-10 tasks, no loops, 
and localized (within node) parallelization. 

 
Fig 1. Pattern of atmospheric forecast 

workflow. 

Workflow systems usually assume a 
particular platform for execution, often 
TeraGrid or a dedicated cluster.  The Trident 
Scientific Workflow Workbench (Barga et al. 
2008) was developed to work with Windows 
Workflow Foundation on Windows servers, 
while Pegasus (Deelman et al. 2005) and 
Swift (Wilde et al. 2009) execute on HPC 

resources.  Swift’s back-end load balancer, 
Falkon, and custom OS, ZeptoOS, for 
instance work together to launch new 
applications on a BlueGene supercomputer.  
The LEAD workflow system has used a 
BPEL-based workflow engine, GFAC 
(Kandaswamy et al. 2006) and Globus Gram 
(Globus 2010) to submit workflow tasks to 
schedulers on HPC resources.  With the 
introduction of solid performing Windows 
cluster operating system, Windows HPC 
Server 2008, we undertook a study to 
execute parts of a Linux-based workflow on 
an HPC Server 16-core (duo core, quad 
processor) machine.  There are several 
ways to run Linux applications on Windows: 
port the application, invoke the Linux 
application executable through a Linux 
emulator such as Cygwin, and finally, invoke 
Linux applications from logic on the 
Windows side that implements what we call 
hybrid workflow execution. 

At Supercomputing 2009 we 
demonstrated workflow execution of the 
Weather Research Forecast model (WRF), 
version 3.1 through the Trident Scientific 
Workflow Workbench, a Windows desktop 
workflow tool. WRF results were passed to a 
set of NCAR NCL scripts that were executed 
through Cygwin.  LEAD II takes this one 
step further in its spring support for the NSF-
funded Vortex2 field experiment to study 
tornadoes.  Over the six weeks in late 
Spring 2010, the LEAD II system generated 
252 short-term forecasts and created 9000+ 
visualization products. In support of this 
effort we added the feature of delegating a 
sub workflow that can be passed to and 
invoked by a Linux workflow orchestrator, 
Apache ODE, which executes the 
subworkflow on TeraGrid. Using the Trident 
scientific workflow workbench as our driving 
workflow platform, we are developing an 
approach to scheduling and resource 
management across cloud and non-cloud  
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resources to demonstrate the feasibility of 
a hybrid (hybrid) workflow execution 
model that seamlessly utilizes cloud 
resources including computation, 
application-specific data sets, and data 
storage.  

The specific question we examine is one 
of: How do we build a hybrid workflow model 
using an existing workflow system as the 
entry point?  There are two approaches:  the 
subworkflow approach, and the component-
as-workflow approach. The subworkflow 
approach to the hybrid workflow model has 
the primary workflow tool handing off a 
subworkflow to a subordinate workflow 
orchestration tool.  Using this approach 
eases the integration of existing system 
functionality with the Trident workflow 
system. A benefit of this approach is that 
there are a limited number of extensive 
workflow systems, and if you solve for one, 
chances are such solution may be 
applicable for many gateways that may use 
that workflow system. That means we can 
capitalize on the domain specific issues that 
were already solved in the existing gateway 
infrastructure. There are also certain 
scientific workflow systems that might be 
hard to capture using Windows workflow 
systems. For example the parametric 
sweeps for millions of parameters required 
for earthquake simulation requires managing 
millions of small jobs and could overwhelm a 
system like Trident. For such cases a 
system like Pegasus that hands over the 
parametric sweep to a Condor system would 
be very efficient. 

The component-as-workflow approach, 
treats each task or subset of tasks as 
schedulable entities, and looks for 
computational resources on which the task 
can be executed.  This approach offers fine-
grained control over resource selection so in 
some senses the user facing workflow 
system is a resource selection proxy. This 
has features in common with the actor 
model of Kepler in a certain sense where 
specialized activities may select the 
underlying resources and build the 
contexual information necessary to launch 
the job. The component approach requires 
different activities for each unique 
computational resource (e.g., TeraGrid, 
cloud) and service components (e.g., web 
service, cloud components). Alternatively, 

we might have one big hybrid activity that is 
configurable and captures all these 
scenarios. In ongoing work we are 
evaluating the options of each approach.  

A key component in support of the 
component-as-workflow approach in 
particular is Sigiri (Chinthaka et al. 2009), a 
resource management tool for deploying 
jobs (i.e., tasks or subworkflows) to 
heterogeneous platforms.  It is designed to 
extend to new job descriptions languages 
and currently supports JSDL (Job 
Submission Description Language) 
(Anijomshoaa et al., 2004) and RSL 
(Resource Specification Language) (Globus 
URL). A Trident activity designed to interact 
with Sigiri enables scientists to submit jobs 
to different computational resources within a 
Trident workflow. Once the required 
computational resource is selected (either 
by the user or by a quality of service 
optimization algorithm) this activity will pass 
this information, together with job 
descriptions and credentials, to Sigiri which 
will use appropriate daemon to submit this 
job to the computational resource selected. 
This activity can also be used to 
continuously monitor the progress of the 
submitted job, using the Sigiri Web services 
API, and report the state transitions. 

Scientific workflow systems provide a 
means to execute a complex sequence of 
activities without intensive user intervention 
and in ways that support flexible reordering 
or reconfiguration of the workflow.  Often 
these workflows encapsulate one or more 
compute intensive jobs and require, large-
scale systems to execute in an efficient and 
timely manner. As large-scale compute 
resources become more abundant (e.g., 
Amazon Web Services, Azure, TeraGrid, 
Open Science Grid), workflow systems 
should be capable of working with all 
possible and available resources. These 
multiple options maximize turnaround time 
but throw challenges at workflow adoption 
by presenting multiple non-interoperable 
access interfaces. Even though providing a 
higher-level abstraction to cover all possible 
options will be an ideal solution, it will be 
quite a challenge and a time consuming task 
as the underlying technologies are still 
emerging. 
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