
Towards Hybrid Workflow Execution in Environmental Research:
Application to Vortex2

Beth Plale, Chathura Herath, and Eran Chinthaka
School of Informatics and Computing

Data To Insight Center of Pervasive Technology Institute
Indiana University Bloomington

Workflow systems embody a programming
model whose strength is in reducing the
complexity of non-uniform, computationally
rich scientific investigation. The class of
workflows that we study, which are fairly
characteristic of model driven analysis in the
geosciences, are fairly squat in length and
mapspan, but are computationally intense
and generate and consume large amounts
of data (Ramakrishnan and Plale 2010). A
pattern of one such workflow is shown in
Fig. 1, where megabyte (MB) inputs at the
beginning of the workflow turn into gigabyte
inputs and outputs then are followed by MB
outputs as the workflow progresses. CPU
consumption starts at 64 cores, ramps to
512 cores at its most computationally
intense phase, then drops down to a low
computation phase as analysis products are
produced. This is accomplished by a
workflow containing 7-10 tasks, no loops,
and localized (within node) parallelization.

Fig 1. Pattern of atmospheric forecast

workflow.

Workflow systems usually assume a
particular platform for execution, often
TeraGrid or a dedicated cluster. The Trident
Scientific Workflow Workbench (Barga et al.
2008) was developed to work with Windows
Workflow Foundation on Windows servers,
while Pegasus (Deelman et al. 2005) and
Swift (Wilde et al. 2009) execute on HPC

resources. Swift’s back-end load balancer,
Falkon, and custom OS, ZeptoOS, for
instance work together to launch new
applications on a BlueGene supercomputer.
The LEAD workflow system has used a
BPEL-based workflow engine, GFAC
(Kandaswamy et al. 2006) and Globus Gram
(Globus 2010) to submit workflow tasks to
schedulers on HPC resources. With the
introduction of solid performing Windows
cluster operating system, Windows HPC
Server 2008, we undertook a study to
execute parts of a Linux-based workflow on
an HPC Server 16-core (duo core, quad
processor) machine. There are several
ways to run Linux applications on Windows:
port the application, invoke the Linux
application executable through a Linux
emulator such as Cygwin, and finally, invoke
Linux applications from logic on the
Windows side that implements what we call
hybrid workflow execution.

At Supercomputing 2009 we
demonstrated workflow execution of the
Weather Research Forecast model (WRF),
version 3.1 through the Trident Scientific
Workflow Workbench, a Windows desktop
workflow tool. WRF results were passed to a
set of NCAR NCL scripts that were executed
through Cygwin. LEAD II takes this one
step further in its spring support for the NSF-
funded Vortex2 field experiment to study
tornadoes. Over the six weeks in late
Spring 2010, the LEAD II system generated
252 short-term forecasts and created 9000+
visualization products. In support of this
effort we added the feature of delegating a
sub workflow that can be passed to and
invoked by a Linux workflow orchestrator,
Apache ODE, which executes the
subworkflow on TeraGrid. Using the Trident
scientific workflow workbench as our driving
workflow platform, we are developing an
approach to scheduling and resource
management across cloud and non-cloud

Microsoft Environmental Research
Workshop, July 2010

resources to demonstrate the feasibility of
a hybrid (hybrid) workflow execution
model that seamlessly utilizes cloud
resources including computation,
application-specific data sets, and data
storage.

The specific question we examine is one
of: How do we build a hybrid workflow model
using an existing workflow system as the
entry point? There are two approaches: the
subworkflow approach, and the component-
as-workflow approach. The subworkflow
approach to the hybrid workflow model has
the primary workflow tool handing off a
subworkflow to a subordinate workflow
orchestration tool. Using this approach
eases the integration of existing system
functionality with the Trident workflow
system. A benefit of this approach is that
there are a limited number of extensive
workflow systems, and if you solve for one,
chances are such solution may be
applicable for many gateways that may use
that workflow system. That means we can
capitalize on the domain specific issues that
were already solved in the existing gateway
infrastructure. There are also certain
scientific workflow systems that might be
hard to capture using Windows workflow
systems. For example the parametric
sweeps for millions of parameters required
for earthquake simulation requires managing
millions of small jobs and could overwhelm a
system like Trident. For such cases a
system like Pegasus that hands over the
parametric sweep to a Condor system would
be very efficient.

The component-as-workflow approach,
treats each task or subset of tasks as
schedulable entities, and looks for
computational resources on which the task
can be executed. This approach offers fine-
grained control over resource selection so in
some senses the user facing workflow
system is a resource selection proxy. This
has features in common with the actor
model of Kepler in a certain sense where
specialized activities may select the
underlying resources and build the
contexual information necessary to launch
the job. The component approach requires
different activities for each unique
computational resource (e.g., TeraGrid,
cloud) and service components (e.g., web
service, cloud components). Alternatively,

we might have one big hybrid activity that is
configurable and captures all these
scenarios. In ongoing work we are
evaluating the options of each approach.

A key component in support of the
component-as-workflow approach in
particular is Sigiri (Chinthaka et al. 2009), a
resource management tool for deploying
jobs (i.e., tasks or subworkflows) to
heterogeneous platforms. It is designed to
extend to new job descriptions languages
and currently supports JSDL (Job
Submission Description Language)
(Anijomshoaa et al., 2004) and RSL
(Resource Specification Language) (Globus
URL). A Trident activity designed to interact
with Sigiri enables scientists to submit jobs
to different computational resources within a
Trident workflow. Once the required
computational resource is selected (either
by the user or by a quality of service
optimization algorithm) this activity will pass
this information, together with job
descriptions and credentials, to Sigiri which
will use appropriate daemon to submit this
job to the computational resource selected.
This activity can also be used to
continuously monitor the progress of the
submitted job, using the Sigiri Web services
API, and report the state transitions.

Scientific workflow systems provide a
means to execute a complex sequence of
activities without intensive user intervention
and in ways that support flexible reordering
or reconfiguration of the workflow. Often
these workflows encapsulate one or more
compute intensive jobs and require, large-
scale systems to execute in an efficient and
timely manner. As large-scale compute
resources become more abundant (e.g.,
Amazon Web Services, Azure, TeraGrid,
Open Science Grid), workflow systems
should be capable of working with all
possible and available resources. These
multiple options maximize turnaround time
but throw challenges at workflow adoption
by presenting multiple non-interoperable
access interfaces. Even though providing a
higher-level abstraction to cover all possible
options will be an ideal solution, it will be
quite a challenge and a time consuming task
as the underlying technologies are still
emerging.

References
Altintas, I., Chad Berkley, Efrat Jaeger, Matthew

Jones, Bertram Ludäscher and Steve Mock
2004: Kepler: An Extensible System for
Design and Execution of Scientific
Workflows, SSDBM, pp. 21-23.

Anjomshoaa, A., F et al. 2004: Job Submission
Description Language (JSDL) Specification
v0.3, Global Grid Forum.

Barga, R. Jackson, J. Araujo, N. Guo, D.
Gautam, N. Simmhan, Y. 2008: Trident
Scientific Workflow Workbench, IEEE Fourth
International Conference on eScience, IEEE
Computer Society Press, pp. 317-318

Chinthaka, Eran, Suresh Marru, and Beth Plale
2009: Sigiri: Towards A Light-Weight Job
Management System for Large Scale
Systems, Indiana University Computer
Science Technical Report TR681, Aug 2009.

Deelman, E. et al. 2005. Pegasus: a Framework
for Mapping Complex Scientific Workflows
onto Distributed Systems, Scientific
Programming Journal, Vol 13(3), pp 219-237

Globus, The Globus Resource Specification
Language (RSL), Globus v3.2 Specification,
http://www.globus.org/toolkit/docs/3.2/gram/
ws/developer/mjs rsl schema.html.

Globus Toolkit, http://www.globus/org/toolkit

Kandaswamy, G., L. Fang, Y. Huang, S.
Shirasuna, S. Marru, and D. Gannon 2006:
Building Web Services for Scientific Grid
Applications. IBM Journal of Research and
Development, 50(2/3) pp. 249-260

Ramakrishnan, Lavanya and Beth Plale 2010:
Multidimensional Classification Model for
Scientific Workflow Characteristics 2010: 1st
Int’l Workshop on Workflow Approaches for
New Data-Centric Science, co-located with
ACM SIGMOD Int’l Conference on
Management of Data, Jun 2010.

Wilde, M. et al. 2009. Parallel scripting for
Applications at the Petascale and Beyond,
Computer, IEEE Computer Society Press,
Nov.

