
Future Generation Computer Systems 25 (2009) 541–551
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scientific workflow design for mere mortals
Timothy McPhillips, Shawn Bowers, Daniel Zinn ∗, Bertram Ludäscher
University of California at Davis, One Shields Avenue, Davis, CA 95616, USA

a r t i c l e i n f o

Article history:
Received 13 November 2007
Received in revised form
6 May 2008
Accepted 24 June 2008
Available online 10 July 2008

Keywords:
Workflow
Collection
COMAD
Resilience
Desiderata
Provenance
Automatic optimization

a b s t r a c t

Recent years have seen a dramatic increase in research and development of scientific workflow systems.
These systems promise to make scientists more productive by automating data-driven and compute-
intensive analyses. Despite many early achievements, the long-term success of scientific workflow
technology critically depends on making these systems useable by ‘‘mere mortals’’, i.e., scientists who
have a very good idea of the analysis methods they wish to assemble, but who are neither software
developers nor scripting-language experts. With these users in mind, we identify a set of desiderata
for scientific workflow systems crucial for enabling scientists to model and design the workflows they
wish to automate themselves. As a first step towards meeting these requirements, we also show how the
collection-oriented modeling and design (comad) approach for scientific workflows, implemented within
the Kepler system, can help provide these critical, design-oriented capabilities to scientists.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Scientific workflow technology has emerged over the last few
years as a challenger to long-established approaches to automating
computational tasks. Due to the wide range of analyses performed
by scientists, however, and the diverse requirements associated
with their automation, scientific workflow systems are forced to
address an enormous variety of complex issues. This situation has
led to specialized approaches and systems that focus on particu-
lar aspects of workflow automation, such as workflow deployment
within high-performance computing and Grid environments [41,
15,34,16], fault-tolerance and recovery [39,1,22], workflow com-
position languages [18,37,5], workflow specification management
[14,42], and workflow and data provenance [20,3,44,38]. A far
smaller number of systems have been developed explicitly to pro-
vide generic and comprehensive support for the various challenges
associated with scientific workflow automation (e.g., [27,29,33]).
The intended users of many of these systems (particularly the

latter, more comprehensive ones) are scientists who are expected
to interact directly with the systems to design, configure, and
execute scientific workflows. Consequently, the long-term success
of such scientific workflow systems critically depends on making
these systems not only useful to scientists, but also directly useable

∗ Corresponding author.
E-mail addresses: tmcphillips@ucdavis.edu (T. McPhillips),

sbowers@ucdavis.edu (S. Bowers), dzinn@ucdavis.edu (D. Zinn),
ludaesch@ucdavis.edu (B. Ludäscher).

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.06.013
by them. As such, these systems must provide scientists with
explicit and effective support for workflow modeling and design.
Regardless of how a workflow is ultimately deployed – within
a local desktop computer, web server, or distributed computing
environment – scientistsmust havemodels and tools for designing
scientific workflows that correctly and efficiently capture their
desired analyses. In this paperwe identify important requirements
for scientific workflow systems and present comad, a workflow
modeling and design framework that aims to address these needs.
Scripting languages for tool integration. Many scientists today
make extensive use of batch files, shell scripts, and programs
written in general-purpose scripting languages (e.g., Perl, Python)
to automate their tool-integration tasks. Such programs typically
combine and chain together sequences of heterogeneous appli-
cations for processing, manipulating, managing, and visualizing
data. These generic scripting languages are often distinguished
from more specialized languages, computing platforms, and data
analysis environments (e.g., R, SAS, Matlab), which target scientific
users with more sophisticated needs (e.g. data analysts, algorithm
developers, and researchers developing new computational meth-
ods for particular domains). Many of these more specialized sci-
entific computing platforms now provide support for interacting
with and automating external applications, and domain-specific li-
braries are increasingly being developed for use via scripting lan-
guages (e.g., BioPerl1). Thus, for scientific workflow systems to

1 http://www.bioperl.org.

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:tmcphillips@ucdavis.edu
mailto:sbowers@ucdavis.edu
mailto:dzinn@ucdavis.edu
mailto:ludaesch@ucdavis.edu
http://www.bioperl.org
http://dx.doi.org/10.1016/j.future.2008.06.013


542 T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551
Fig. 1. A phylogenetics workflow implemented in the Kepler system. Kepler workflows are built from actors (boxes) that perform computational tasks. Users can select
actors from component libraries (panel on the left) and connect them on the canvas to form a workflow graph (center/right). Connections specify dataflow between actors.
Configuration parameters can also be provided (top center), e.g., the location of input data and the initial jumble seed value are given. A director (top left corner on the canvas)
is a special component, specifying a model of computation and controlling its execution.
become broadly adopted as a technology for assembling and au-
tomating analyses, these systems must provide scientists concrete
and demonstrable advantages, both over general-purpose script-
ing languages and more focused scientific computing environ-
ments currently occupying the tool-integration niche.
Scientificworkflowsystems. Existing scientificworkflow systems
generally share a number of common goals and characteristics [17]
that differentiate them from tool-integration approaches based
on scripting languages and other platforms with tool-automation
features. One of the most significant differences is that whereas
scripting approaches are largely based on imperative languages,
scientific workflow systems are typically based on dataflow
languages [23,17] in which workflows are represented as directed
graphs, with nodes denoting computational steps (or actors),
and connections representing data dependencies (and data flow)
between steps. Many systems (e.g., [3,27,29,33]) allow workflows
to be created and edited using graphical interfaces (see Fig. 1
for an example in Kepler). The dataflow paradigm is well-suited
for supporting modular workflow design and facilitating reuse of
components [23,25,27,5]. Many workflow systems (e.g., [33,27])
further allow workflows to be used as actors in other workflows,
thus providing workflow authors an abstraction mechanism for
hiding implementation details and facilitating even more reuse.
One advantage of workflow systems that derives from this

dataflow-orientation is the ease with which data produced by one
actor can be routed tomultiple downstream actors. While the flow
of data to multiple receivers is often difficult to describe clearly
in plain text, the dataflow approach makes explicit this detailed
routing of data. For instance, in Fig. 1 it is clear that data can
flow directly from Refine alignment only to Iterate over seeds.
The result is that scientific workflows can be more declarative
about the interactions between actors than scripts, where the
flow of data between components is typically hidden within
(often complex) code. The downside of this approach is that if
taken too far, specifications of complex scientific workflows can
become a confusing tangle of actors andwires unless theworkflow
specification language provides additional, more sophisticated
means for declaring how data is to be routed (as comad does—see
below as well as [30,6]).
Other notable advantages of scientific workflow systems

over traditional approaches are their potential for transparently
optimizing workflow performance and automatically recording
data and process provenance. Unlike most scripting language
implementations, scientific workflow systems often provide
capabilities for executing workflow tasks concurrently where data
dependencies between tasks allow, either in an ‘‘assembly-line’’
fashion with actors connected in a linear pipeline performing their
tasks simultaneously, or in parallel with multiple such pipelines
operating at the same time (e.g., overmultiple input data sets or via
explicit branches in the workflow specification) [43,34,30]. Many
scientific workflow systems also can record, store, and query data
and process dependencies that result during one ormoreworkflow
runs, enabling scientists to later investigate the data and processes
used to derive results and to examine intermediate data products
[38,31].
While these and other advantages of systems designed

specifically to automate scientific workflows help to position these
technologies as viable alternatives to traditional approaches based
on scripting languages and the like, much is yet required to achieve
the vision of putting workflow automation fully into the hands of
‘‘meremortals’’ [17]. Much remains to be done to realize the vision
of scientists untrained in programming and relatively ignorant
of the details of information technology rapidly composing,
deploying, executing, monitoring, and reviewing the results
of scientific workflows without assistance from information-
technology experts.

Contributions and paper outline. In this paper we describe key
aspects of scientific workflow systems that can help broader-scale
adoption of workflow technology by scientists, and demonstrate
how these properties can be realized by a novel and generic work-
flow modeling paradigm that extends existing dataflow computa-
tion models. In Section 2, we present what we see as important
desiderata for scientific workflow systems from a workflow mod-
eling and design perspective. In Section 3, we describe our main
contribution, the collection oriented modeling and design (comad)
framework, for delivering on the expectations described in Sec-
tion 2. Our framework is especially suited for cases where data
is nested in structure and computational steps can be pipelined
(which is often true, e.g., in bioinformatics). The comad frame-
work provides an assembly-line style computation approach that



T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551 543
Fig. 2. Desiderata for scientific workflow systems (from the perspective of a scientist wishing to automate and share their scientific analyses) and the comad features
addressing these desiderata.
closely follows the spirit of flow-based programming [32]. The co-
mad framework has been implemented as part of the Kepler sys-
tem [27] and has been successfully used to implement a range of
scientific workflows. Finally, we discuss related work in Section 4
and conclusions in Section 5.
The goal of this paper is not to show that our approach

is the best way to implement all scientific workflows, but
rather to demonstrate that the ambitious-sounding requirements
commonly attached to scientific workflows and spelled out
explicitly in Section 2 can largely be satisfied by an approach
applicable to a range of scientific domains. We hope in this way to
inspire others to further identify and tackle head-on the challenges
to wide-scale adoption of scientific workflow systems by the
scientific community.

2. Desiderata for scientific workflow systems

The following desirable characteristics of scientific workflow
systems are targeted at a specific set of users, namely, researchers
in the natural sciences developing their own scientific workflows
to automate and share their analyses. For these users to benefit
from scientific workflows, we believe workflow systems should
distinguish themselves from scripting languages and other general
purpose tools in three principal ways: (1) they should help
scientists design and implement workflows; (2) they should
provide first-class support for modeling and managing scientific
data, not just analytical processes; and (3) they should take
responsibility for optimizing performance. Within these three
categories we argue for eight specific desiderata for scientific
workflow systems.
The desiderata presented below are based on our own

experiences working with scientists through various projects
aimed at implementing scientific workflows and developing
supporting workflow technology. These desiderata largely arise
from issues concerning workflow modeling and design, and in
the following section we describe how these requirements can
be satisfied using the comad approach (see Fig. 2). While existing
scientificworkflow systems support some or all of these desiderata
in a variety of ways (see [43] and Section 4), we focus below on
the capabilities and limitations of the Kepler scientific workflow
system, which provides the framework and context formost of our
work.

2.1. Assist in the design and implementation of workflows

Scientific workflow systems such as Kepler expect the user
to compose workflows incrementally, selecting modules from
a library of installed components and wiring the components
together. Kepler currently helps the user during the workflow
design process in a number of ways. For example, Kepler enables
powerful keyword searches over actor metadata and ontology
annotations to quickly find relevant actors in local or distributed
libraries [5]. Similarly, subworkflows can be encapsulated as
composite actors within Kepler workflows, and output data types
of one actor can be checked against the expected input types of
another actor. However, workflow systems are ideally placed to do
much more to make it easy to design workflows.

Well-formedness:Workflow systems should make it easy to design
well-formed and valid workflows. (WFV)

Workflow systems should be able to detect when workflows
do not make sense overall, or when parts of the workflow
will not contribute to the result of a run. Similarly, workflow
systems should enable users to declare the types of the expected
inputs and outputs of a workflow, and ensure well-formedness by
verifying that all workflow actors and input data items will indeed
contribute to the production of the expected workflow products.
The reason for this is that scientific workflows are much more

like recipes used in the kitchen, or protocols carried out in a lab,
than is the average computer program. Workflows are meant to
producewell-defined results fromwell-defined inputs, usingwell-
defined procedures. Few scientists would commit to carrying out
an experimental protocol that does notmake clearwhat the overall
process will entail, what products (and how much of each) the
protocol is meant to yield, and how precisely that product will be
obtained (see clarity below). Scientists would be justified in being



544 T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551
equally dubious about a ‘‘scientific’’ workflow that is not as clear
and predictable as the protocols they carry out in the lab. They
should be particularly worried when the workflows they design
are so obscure as to be not predictable in thisway (see predictability
below).

Clarity: Workflow systems should make it easy to create self-
explanatory workflows. (CLR)

Any scientist composing a new workflow will have a fairly
good idea of what the workflow should do when it executes.
Ideally the system would confirm or contradict this expectation
and thus provide immediate feedback to the scientist. In current
systems, however, expectations about what will happen during
a run often can only be checked by running a workflow on
real data and checking if the results look reasonable. Because
an actual run may be impractical to execute while developing
a workflow, either because the run would take too long or
because the required computational resources cannot be spared,
understanding the behavior of a workflow without running it
would facilitate workflow design immensely.
One solution to this problem would be to make the language

for specifying workflows so clear and declarative that a scientist
could tell at a glance what a workflow will do when executed.
This in turn requires that systems provide scientistswithworkflow
abstractions relevant to their domain. Instead of enmeshing users
in low-level details that obscure the scientific meaning of the
workflow, systems should provide abstractions that hide these
technical details, especially those details that havemore to dowith
information technology than the particular scientific domain.

Predictability:Workflow systems should make it easy to understand
what a workflow will do before running it. (PRE)

Unfortunately, the complexities of data management and the
need for iteration and conditional control-flow often make it
difficult to foresee the complete behavior of aworkflow evenwhen
theworkflow is defined in terms familiar to the user. In these cases
where the function of a workflow cannot be read directly from
the workflow graph, systems need to be able to predict, in some
way that is meaningful to a scientist, what will happen when a
workflow is run.
Workflow systems should also make it easy for collaborators

to understand the purpose and expected products of a workflow.
Many scientific projects involvemultiple collaborators that rely on
each other’s data products. Understanding data in such projects
often requires understanding the analyses involved in producing
the data. Thus, scientific workflow designs should also make it
possible to quickly and easily understand the steps involved in an
analysis by someone other than the creator of the workflow.

Recordability:Workflow systems should make it easy to see what a
workflow did do when it ran. (REC)

Understanding workflow behavior after it occurs is often
more important to scientists than predicting workflow behavior
in advance. There is no point in carrying out a ‘‘scientific’’
analysis if one cannot later determine how results were obtained.
Unfortunately, for various reasons, recording what happened
within a workflow run is not as easy as it sounds. For instance,
due to parallel and concurrent optimizations, the ‘‘raw’’ record
of workflow execution will likely be as difficult to interpret as,
e.g., a single log-file written to by multiple Java threads. There also
are numerous types of events that can be recorded by a system,
ranging from where and when a workflow was run, to the amount
of time taken and memory used by each invocation (execution)
of an actor, all the way down to the low-level details of what
hardware and software configurations were used during workflow
execution. The latter details are useful primarily to engineers
deploying workflow systems and troubleshooting performance
problems. For scientists what is most needed are approaches for
accurately recording actor invocation events and associating these
with the data objects consumed and produced during each such
that the scientific aspects of workflow runs can be reviewed later.

Reportability: Workflow systems should make it easy to see if a
workflow result makes sense scientifically. (REP)

Scientists not only need to understand what data processing
events occurred in a workflow run, but also how the products
of the workflow were derived, from a scientific point of view,
from workflow inputs. It is critical that this kind of data ‘‘lineage’’
information not distract the scientist with technical details having
to do with how the workflow was executed. For example, it is
not helpful to see that a particular sub-analysis was carried out at
11:39 PM on a particular node in the departmental Linux cluster
when one is curious what DNA sequences were used to infer
a particular phylogenetic tree. Instead, one would hope that a
scientist reviewing the results of a run of the workflow in Fig. 1,
e.g., could immediately see that the final phylogenetic tree was
computed directly from five other trees via an invocation of the
Compute consensus actor; that each of these trees were in turn
computed from a sequence alignment via invocations of the Find
MP trees actor; and so on. Such depictions of data dependencies
often are referred to as data lineage graphs [31] and can be more
effective asmeans for communicating the scientific justification for
a computed result than the workflow specification itself.

Reusability: Workflow systems should make it easy to design new
workflows from existing workflows. (REU)

Workflow development often means starting from an existing
workflow. Workflow systems should minimize the work needed
to reuse and repurpose existing workflows as well as help prevent
and reveal the errors that can arise when doing so. Note that with
many programming tools it is often easier and less error-prone
to start afresh, rather than to refactor existing code. We can do
better than this if we provide scientists with the design assistance
features described here.
In a similar way, it is important to make it easy for scientists to

develop workflows in a manner compatible with and supportive
of their actual research processes. In particular, scientific projects
are often exploratory in nature and the specific analyses of a
project hard to predict a priori. Workflows must be easy to modify
(e.g., by allowing new parameterizations, new input data, and
new methods to be incorporated), chain together and compose,
and track (i.e., to see in what context they were used, with what
data, etc). Furthermore, support should be provided for designing
workflows spanning a broad range of complexity, from those
that are small and comprising only a few atomic tasks, to large
workflows with many tasks and subworkflows.

2.2. Provide first-class support for modeling data

Scientists tend to have a data-centric view of their analyses.
While the computational steps in an analysis certainly are
important to scientists, they are not nearly as important as the
data scientists gather, analyze, and create via their analyses. In
contrast, current scientific workflow systems, including Kepler,
tend to emphasize the process of carrying out an analysis.
Although workflow systems enable scientists to perform powerful
operations on data, they often provide only crude and low-level
constructs for explicitly modeling data.
One consequence of this emphasis on process specifications

(frequently at the expense of data modeling constructs) is that
many useful opportunities for abstraction aremissed. For example,
if workflow systems require users to model their DNA sequences,



T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551 545
alignments, and phylogenetic trees as strings, arrays, and other
basic data types, thenmany opportunities for helping users design,
understand, and repurpose workflows are lost.

Scientific Data Modeling: Workflow systems should provide data
modeling andmanagement schemes that let users represent their data
in terms meaningful to them. (SDM)

One solution is to enable actor developers to declare entirely
new data types specific to their domains, thus making it easier
to represent complex data types, to hide their internal structure,
and to provide intuitive abstractions of these types to the scientist
composing workflows.
Another approach often used in workflow systems is to

model data according to the corresponding file formats used
for representation and storage (thus, file formats serve as data
types). An actor in this case might take as input a reference
to a file containing DNA sequences in FASTA format,2 align
these sequences, and then output the alignment in the ClustalW
format [40]. The biggest problem with this approach is that many
file formats do not map cleanly onto individual data entities or
simple collections of such entities. For example, a single file in
Nexus format [28] can contain phylogenetic character descriptions,
datamatrices, phylogenetic trees, and awide variety of specialized
information. It is very difficult to guess the function of a workflow
module that takes one Nexus file as input and produces another
Nexus file as output, or to verify automatically the meaningfulness
of a workflow employing such an actor. It would be far better if
workflow systems enabled modules to operate on scientifically
meaningful types (as described above), and transparently provided
application-specific files to the programs and services they wrap.
Doing so would both help preserve the clarity of workflows
and greatly enhance the interoperability of modules wrapping
applications that employ different data formats.
Many application-specific file formats in science are meant

primarily to maintain associations across collections of related
data. A FASTA file can define a set of biological sequences. A Nexus
file can store and declare the relationships between phylogenetic
datamatrices and trees inferred from them.Workflow systems also
must provide ways of declaring and maintaining such associations
without requiring module authors to design new, complex data
types each time they run into a new combination of data items that
must be operated on or produced together during a workflow. For
example, a domain-specific data type representing aDNA sequence
is useful to have, but it would be onerous to require that there be
another custom data type representing a set of DNA sequences.
Thus, workflow systems should provide generic constructs for
managing collections of data.
Workflow systems that lack explicit constructs for managing

collections of data often lead to ‘‘messy’’ workflows containing
either many connections between actors to communicate the
size of lists produced by one actor to actors consuming these
lists; or many data assembly and disassembly actors; or both.
The consequence of such ad hoc approaches for maintaining
data associations during workflow runs is that the modeling
of workflows and the modeling of data become inextricably
intertwined. This leads to situations in which the structure of the
data processed by a workflow is itself encoded implicitly in the
workflow specification—and nowhere else.
Workflow systems should clearly separate the modeling and

design of data flowing through workflows from the modeling and
design of the workflow itself. Ideally, the workflow definition
would specify the scientifically meaningful steps one wants to

2 http://www.ncbi.nlm.nih.gov/blast/fasta.shtml.
carry out; the data model would specify how the data is structured
and organized, as well as how different parts of data structures are
related to each other; and the workflow system would figure out
how to carry out the workflow on data structured according to the
given data model. While this may sound difficult to achieve, the
closer we can get to achieving this separation the better it will be
for scientists employing workflow systems.

2.3. Take responsibility for optimizing performance

Muchof the impetus for developing scientificworkflow systems
derives from the need to carry out expensive computational
tasks efficiently using available and often distributed resources.
Workflow systems are used to distribute jobs, move data, manage
multiple processes, and recover from failures. Existing workflow
systems provide support for carrying out some or all of these tasks
either explicitly, as part of workflow deployment, or implicitly,
by including these tasks within the workflow itself. The latter
approach is often used today in Kepler, resulting in specifications
that are cluttered with job-distribution constructs that hide the
scientific intent of the workflow. Workflows that confuse systems
management with scientific computation are difficult to design in
the first place and extremely difficult to re-deploy on a different
set of resources. Even worse, requiring users to describe such
technical details in their workflows excludes many scientists who
have neither the experience nor interest in playing the role of a
distributed operating system.

Automatic optimization: Workflow systems should take responsi-
bility for optimizing workflow performance. (OPT)

Even when workflows are to be carried out on the scientist’s
desktop computer, performance optimizations frequently are pos-
sible. However, systems should not require scientists to under-
stand and avoid concurrency pitfalls – deadlock, data corruption
due to concurrent access, race conditions, etc. – to take full ad-
vantage of such opportunities. Rather, workflow systems should
safely exploit asmany concurrent computing opportunities as pos-
sible, without requiring users to understand them. Ideally, work-
flow specifications would be abstract and employ metaphors ap-
propriate to the domain rather than including explicit descriptions
of data routings, flow control, and pipeline and task parallelism.

3. Addressing the desiderata with COMAD

In this section, we describe how the collection-orientedmodeling
and design (comad) framework promises to make it easier for
scientists to design workflows, to clearly show how workflow
products were derived, to automatically optimize the performance
of workflow execution, and otherwise make scientific workflow
automation both accessible and practical for scientists. We also
detail specific technical features of comad to show how it
realizes the desiderata explicated above. Fig. 2 summarizes the
comad features described here and how they relate to the
desiderata of Section 2.

3.1. An introduction to comad

As mentioned in Section 1, the majority of scientific workflow
systems represent workflows using dataflow languages. The
specific dataflow semantics used, however, varies from system
to system [43]. Not only do the meaning of nodes, and of
connections between nodes, differ, but the assumptions about how
an overall workflow is to be executed given a specification can vary
dramatically. Kepler makes explicit this distinction between the
workflow graph, on the one hand, and the model of computation
used to interpret and enact theworkflow on the other, by requiring

http://www.ncbi.nlm.nih.gov/blast/fasta.shtml


546 T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551
Fig. 3. An intermediate snapshot of a run of the comad phylogenetics workflow of Fig. 1: (a) the logical organization of data at an instant of time during the run; and (b) the
tokenized version of the tree structure showing three modules (i.e., actors) being invoked concurrently on different parts of the data stream. In comad, nested collections are
used to organize and relate data objects that instantiate domain-specific types (e.g., denoting DNA sequences S, alignments A, and phylogenetic trees T). A Proj collection
containing two Trial sub-collections is used here to pipeline multiple sets of input sequences, and data products derived from them, through the workflow. In comad,
provenance events for data and collection insertions, insertion dependencies, and deletions (from the stream) are added directly as metadata tokens to the stream (b), and
can be used to induce provenance data-dependency graphs (a).
workflow authors to specify a director for each workflow (see
Fig. 1). It is the director that specifies whether the workflow is to
be interpreted and executed according to a process network (PN),
synchronous dataflow (SDF), or other model of computation [26].
Most Kepler actors in PN or SDF workflows are data transform-

ers. Such actors consume data tokens and produce new data tokens
on each invocation; these actors operate like functions in tradi-
tional programming languages. Other actors in a PN workflow can
operate as filters, distributors, multiplexors, or otherwise control
the flow of tokens between other actors; however, the bulk of the
computing is performed by data transformers.
Virtual assembly-lines. In comad, the meanings of actors and
connections between actors are different from those in PN or SDF.
Instead of assuming that actors consume one set of tokens and
produce another set on each invocation, comad is based on an
assembly-line metaphor: comad actors (coactors or simply actors
below) can be thought of as workers on a virtual assembly-line,
each contributing to the construction of the workflow product(s).
In a physical assembly line, workers perform specialized tasks
on products that pass by on a conveyor belt. Workers only
‘‘pick’’ relevant products, objects, or parts thereof, and let all
irrelevant parts pass by. Coactors work analogously, recognizing
and operating on data relevant to them, adding new data products
to the data stream, and allowing irrelevant data to pass through
undisturbed (see Fig. 3). Thus, unlike actors in PN and SDF
workflows, actors are data preserving in comad. Data flows through
serially connected coactors rather than being consumed and
produced at each stage.
Streaming nested data collections. A number of advantages can
be gained by adopting an assembly-line approach to scientific
workflows. Possibly the biggest advantage is that one can put
information into the data stream that could be represented only
with great difficulty in plain PN or SDF workflows. For example,
comad embeds special tokens within the data stream to delimit
collections of related data tokens. Because these delimiter tokens
are paired,much like the opening and closing tags of XML elements
(as shown in Fig. 3), collections can be nested to arbitrary depths,
and this generic collection-management scheme allows actors to
operate on collections of elements as easily as on single data
tokens. Combined with an extensible type system, this feature
satisfies many of the data modeling needs described in Section 2.
Similarly, annotation tokens can be used to represent metadata for
collections or individual data tokens, or for storing within the data
stream the provenance of items inserted by coactors (see Fig. 3).
The result is that coactors effectively operate not on isolated sets
of input tokens, but on well-defined, information-rich collections
of data organized in a manner similar to the tree-like structure of
XML documents.

3.2. A closer look at COMAD

Here we take a technical look at some features of comad,
illustrating how this approach makes significant progress towards
satisfying the desiderata described above.
Actor configurations and scopes. Assume we want to place an
actor A in a workflow where the step before A produces instances
of type τ and the subsequent step requires data of type τ ′:

τ
−→ A : α→ ω

τ ′

−→

In the notation above, A : α → ω is the signature of actor A such
that A consumes instances of typeα and produces instances of type
ω. Conventional approaches require that the type τ be a subtype of
α and thatω be a subtype of the type τ ′, denoted τ ≺ α andω ≺ τ ′.
Often these type constraints will not be satisfied when designing a
workflow, and adapters or shims must be added to the workflow
as explained below.
In comad, we would instead model A as a coactor:

τ
−→ ∆A : τα → τω

τ ′

−→

where an actor configuration ∆A : τα → τω describes the scope of
work of A. More specifically,∆A is used (i) to identify the read-scope
τα of A, i.e., the type fragments relevant for A, and (ii) to indicate
the write-scope τω of A, i.e. the type of the new output fragments
(if any). In addition, the configuration ∆A needs to prescribe (iii)
whether the type fragments matching τα are consumed (removed
from the input stream) or kept, and (iv) where the τω results are
located within τ ′.
These ideas are depicted in Fig. 4, where the relevant fragments

matching τα are shown as black subtrees. These are consumed by
actor A and replaced by A’s outputs (of type τω).
Clarity (CLR) and Reusability (REU). In Fig. 5 we illustrate a
number of issues associated with designing declarative (clear) and



T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551 547
Fig. 4. The scope of actor (stream processor) A is given by a configuration∆A with
read-scope τα (selecting relevant input fragments for A) and write-scope τω (for A’s
outputs). Outputs replace inputs ‘‘in context’’.

reusable workflows, two of the desiderata discussed in Section 2.
Conventional workflows tend to clutter a scientist’s conceptual
design (Fig. 5a) with lower-level glue actors, thus making it hard
to comprehend and predict a workflow’s behavior (Fig. 5b–d).
Similarly, workflow reuse is made more difficult: when viewed in
the context of workflow evolution, conventional workflows tend
to be more ‘‘brittle’’, i.e., break easily as new actors are added or
existing ones are replaced. As mentioned above, a conventional
actor A can be seen as a data transformer, i.e. a function A : α→ ω.
In Fig. 5a, each actor maps an input type αi to an output type ωi.
The connection from Ai to Ai+1must satisfy the subtyping constraint
ωi ≺ αi+1. This rigid typing approach leads to the introduction of
adapters [5], shims [21,35], and to complex data- and control-flow
constructs to send the exact data fragments to the correct actor
ports, while ensuring type safety.
For example, suppose we want to add to the end of the

conceptual pipeline in Fig. 5a, the new actor A4 : α4 → ω4. If ω3
is a complex type, and A4 only works on a part of the output ω3,
then an additional actor Fmust be added to the workflow (Fig. 5b)
to filter the output of A3 and so obtain the parts needed by A4.
Similarly, in Fig. 5c, suppose wewish to add actor A21 between two
existing actors. A21 works only on specific parts of the output of
A2, and only produces a portion of the desired subsequent input
type α3. Here, we must add two new shim actors to satisfy the
type constraints: (i) the split actor S separates the output of A2
into the parts required by A21 and the remaining, ‘‘to-be-bypassed’’
parts; and (ii) the merge actor M combines the output of A21 with
the remaining output of A2, before passing on the aggregate to A3.
Finally, in Fig. 5d, a scientist might have discovered that she can
optimize the workflow manually by replacing the actor A2 with
two specialized actors A21 and A22, each working in parallel on
distinct portions of the output of A1. Similar to the previous case,
this replacement requires the addition of two new shim actors
to appropriately split and merge the stream. We note that it is
often the case that a single workflow will require many of these
‘‘workarounds’’, not only making the workflow specification hard
to comprehend, but also making it extremely difficult to construct
in the first place.
In contrast, no shims are necessary to handle Fig. 5b–d in

comad. In cases (b) and (c), actor configurations select relevant
data items, passing everything else downstream. Similarly, (d)
is implicitly and automatically achieved in comad simply by
connecting A21 and A22 in series. Additionally in comad, the
system can still optimize this to run A21 and A22 as task-parallel
steps (described further below). In short, the use of this part-of
subtyping in comad, based on configurations and scopes, enables
more modular and change-resilient workflow designs than those
developed using approaches based on strict (i.e., is-a) subtyping,
since changes in irrelevant parts (e.g., outside the read-scope τα)
will not affect the validity of the workflow design.
Due to the linear topology of assembly lines, comadworkflows

are also relatively easy to compose and understand. They resemble
procedures such as recipes and lab protocols where the most
important design criterion is that the specified sub-tasks be
ordered to satisfy the dependencies of later tasks. For this reason,
Fig. 5. Conventional workflows are rarely the simple analysis pipelines that
scientists desire (a), but often require ‘‘glue’’ steps (adapters, shims), cluttering and
obfuscating the scientists’ conceptual design, leading toworkflows that are difficult
to predict (PRE) and reuse (REU): filter adapter F (b); split-merge adaptersS,M (c,d).

the meaning of a comad workflow often can be read directly
from the workflow specification as in Fig. 1. Moreover, because
most of the data manipulation and control flow constructs that
typically clutter other workflows are not required in comad (the
collection-management framework handles most of these tasks
transparently), what is read off the workflow graph is the scientific
meaning of the workflow.
Well-Formedness (WFV) via type propagation. A further benefit
of requiring actors to declare read and write scopes is that we
can employ type inference to determine various properties of
comadworkflows. The type inference problem for comad, denoted
as

τ
∆A
; τ ′,

is to infer the modified schema τ ′ = ∆A(τ ) given an input type
τ and an actor configuration ∆A. We can restate the problem of
finding τ ′ as

τ ′ = (τ (	τα)⊕ τω︸ ︷︷ ︸
=∆A

),

which indicates that an actor configuration ∆A : τα → τω
can recognize parts τα of the input τ and add additional parts
τω (denoted by ⊕). It is also possible for the actor to remove the
original τα parts from the stream (denoted in the formula by 	).
If τα is not removed, we say that the actor is in ‘‘add-only’’ mode.
Using type inference, we can propagate inferred types downstream
along any path

τ
∆A1
; τ1

∆A2
; τ2

∆A3
; · · ·

once the initial input schema τ is known. Type propagation
makes it possible to statically type-check (and thus validate) a
comadworkflow design. For example, if an actor’s input constraint
is violated, we say the actor A will starve (or is extraneous) for
inputs of type τ . There can be different reasons why A can
starve. In particular, either A’s read-scope never matches anything
in τ ; or else, potential matches are not acceptable subtypes of
τα . In both cases, the workflow can still be executed since the
comad framework ensures that unmatched data simply flows
through A unchanged. comad workflows are thus robust with
respect to superfluous actors in a way that systems based on strict
subtyping are not.
Predictability (PRE) via type propagation. Using static type
inference, comad can help predict what a workflow will do when
executed. Given an input schema and aworkflow, we can compute



548 T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551
the output schema of the workflow by propagating the schema
information through the actors. Intermediate data products also
can be inferred, together with information about which actors are
used to create each product. Given an input schema (or collection
structure), we can statically compute a schema lineage graph, which
explains which actors (or analysis steps) refine and transform the
input to finally produce the output. The read and write scopes
of actors in comad workflows also can be used to reveal inter-
actor dependencies. In an assembly-line environment it is not a
given that eachworker uses the products introduced by theworker
immediately upstream and no others. Similarly, an actor in a
comadworkflowmight notwork on the output of the immediately
preceding coactor. Displaying to a workflow designer the actual
dependencies would reveal accidently misconfigured actors that
should be dependent on each other but are not due to scope mis-
configurations, for example. Furthermore, we can statically infer
the minimal data structure that must be supplied to a workflow
such that all actors will find some datawithin their scope and so be
invoked at least once during a run. comad thus allows us to provide
scientists composing or examining workflows with a variety of
predictions about the expected behavior of a workflow.
Optimization (OPT) via pipeline parallelism. In a manner
similar to other dataflow process networks [25], actors in a
comad workflow operate concurrently over items in the data
stream. In comad, rather than supplying the entire tree-like
structure of the data stream to each actor in turn, a sequence
of tokens representing this tree is streamed through actors. For
example, Fig. 3 illustrates the state of a comad run for the example
workflow of Fig. 1 at a particular point in time, and contrasts the
logical organization of the data flowing through the workflow in
Fig. 3a with its tokenized realization at the same point in time
in Fig. 3b. This figure further illustrates the pipelining capabilities
of comad by including two independent sets of sequences in a
single run. This degree of pipeline parallelism is achieved in part
by representing nested data collections at runtime as ‘‘flat’’ token
streams that contain paired opening and closing delimiters to
denote collection membership.
Optimization (OPT) via dataflow analysis. Type propagation can
also be used in comad workflows to minimize data shippings and
maximize task parallelism. Consider the process pipeline

x
τ
→ A −→ B −→ C

τ ′

→ y

denoted as (A → B → C) for short, with input type τ and
output type τ ′. Type propagation starts with type τ and then
applies actor configurations∆A,∆B, and∆C to determine, e.g., the
parts of A’s output (if any) that are needed as input to B and C .
If, e.g., one or more data or collection items of A’s output are not
relevant for B and C (based on propagated type information), these
items are automatically bypassed around actors B and C to y (or
beyond, depending on the actors downstream of C). Thus, what
looks like an otherwise linear workflow (A → B → C) can
be optimized using static type propagation and analysis. In this
example, by ‘‘compiling’’ the linear workflow we might obtain
one of the following process networks, based on the actual data
dependencies of the workflow:

(A q B q C), (A→(B q C)), ((A q B)→C)

where (X q Y ) denotes a task-parallel network with two branches,
one for X and one for Y , respectively.
A simple example from physical assembly lines can further

illustrate these optimizations. Consider a worker A who is
operating on the front bumper (τA) of a car (τ ). Other parts of
the car (included in τ 	 τα) which are ‘‘behind’’ the bumper (in
the stream) cannot move past A, despite the fact that they are
irrelevant to A. In comad it is possible to optimize such a situation
by ‘‘cutting up’’ the input stream and immediately bypassing
irrelevant parts downstream (e.g., to B or C). This minimizes
data shipping costs and increases concurrency. In this case, we
introduce into the network downstream merge actors that receive
various parts from upstream distribution actors. Pairing of the
correct data and collection items is done by creating so-called
‘‘holes’’ – empty nodes with specially assigned identifiers – and
corresponding ‘‘filler’’ nodes [45].

Recordability (REC) and Reportability (REP). We also illustrate
in Fig. 3 how provenance information is captured and represented
during a comad workflow run. As comad actors add new data
and collections to the data stream, they also add special metadata
tokens for representing provenance records. For example, the
fact that Alignment2 (denoted A2 in Fig. 3) was computed from
Alignment1 (denoted A1) is stored in the insertion-event metadata
token immediately preceding the A2 data token in Fig. 3b, and
displayed as the dashed arrow fromA2 toA1 in Fig. 3a.When items
are not forwarded by an actor, deletion-event metadata tokens are
inserted into the data stream, marking nodes as deleted so that
they are ignored by downstream actors. From these events, it is
possible to reconstruct and query data, collection, and process
dependencies as well as determine the input and output data used
for each actor invocation [7].

3.3. Implementation of comad

We have implemented many of the features of the co-
mad framework described here and have included a subset of them
in the standard Kepler distribution.3 We also have employed co-
mad as the primary model of computation in a customized distri-
bution of Kepler developed for the systematics community.4 The
comad implementation in Kepler extends the PN (process net-
work) director [25,30,5], and provides a rich set of Java classes
and interfaces for developing comad actors,managing anddefining
data types and collections, recording andmanaging runtimeprove-
nance events, and specifying coactor scopes and configurations.
We have developed numerous coactors as part of the co-

mad framework and have used them to implement a variety of
workflows. We have implemented actors for wrapping specific
external applications, for executing web-based services, and for
supporting generic operations on collections. We include tools
in this framework for recording and managing provenance in-
formation associated with runs of comad workflows, including
a generic provenance browser. To facilitate the reuse of conven-
tional actors developed for use with Kepler, we provide as part
of the framework support for conveniently wrapping SDF sub-
workflows in a manner that allows them to be employed as Kepler
coactors [30].
To demonstrate the potential optimization benefits of comad,

we also have recently developed a prototype implementation of
a stand-alone comad workflow engine. The implementation is
based on the Parallel Virtual Machine (PVM) library for message
passing and job invocation, where each actor is executed as its
own process and can run on a different compute node. Opening
and closing delimiters (including holes and fillers) are sent using
PVM messages; large data sets are managed as files on local
filesystems and sent between nodes using secure copy (scp).
Our experimental results have shown that the optimizations
based on pipeline parallelism and dataflow analysis can lead to

3 See http://www.kepler-project.org.
4 See http://daks.ucdavis.edu/kepler-ppod.

http://www.kepler-project.org
http://daks.ucdavis.edu/kepler-ppod


T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551 549
significant reductions inworkflow execution time due to increased
concurrency and fewer overall data shipments [45]. As futurework,
we are interested in further developing this approach as part of the
Kepler comad framework, allowing comad workflows designed
within Kepler to be efficiently and transparently executed within
distributed and high-performance computing environments.

3.4. Limitations of comad

Our applications of comad have shown that the advantages of
this approach do come at a cost. First, comad workflows are easy
to assemble only after the data associatedwith a particular domain
has been modeled well. Until this is done, it can be unclear how
best to organize collections of data passing through workflows,
and challenging to configure coactor scope expressions (just as
designing an assembly line for constructing an automobile would
be difficult in the absence of blueprints and assembly instructions).
On the other hand, once the data in a domain of research has
beenmodeled well, this step need not be repeated again by others.
comadmakes it easy to take advantage of the data modeling work
done by others, but it does not allow the data modeling step in
workflow design to be skipped altogether.
Second, comad workflows cannot always be composed simply

by stringing together a set of actors in an intuitive order. Often at
least some of the coactorsmust be configured specifically for use in
the context of the workflow being developed, and this requires an
understanding of the assumed organization of data in the data sets
to be provided as input to the workflow.We believe, however, that
the design support tools described above will help make this step
easier. Eventually, one can imagine workflow systems suggesting
coactor configurations based on sample input data sets.
Third, many actors already have been developed for Kepler and

other workflow systems, and these actors are not immediately
useable as actors in COMAD workflows. As described above,
however, we have developed an easy way to encapsulate
conventional Kepler actors and sub-workflows within generic
actors such that they can be employed seamlessly as coactors along
with coactors originally developed as such.
Finally, while the assembly-line approach can make it easier

for scientists to design and understand their workflows, a naïve
implementation of a comadworkflow enactment engine can result
in a greater number of data transfers than would be expected
for a more conventional workflow system. As discussed above,
however, and described more fully in [46], static analysis of the
scope expressions can be used to compile user-friendly, linear
workflows into performance-optimized, non-linear workflows in
which data is directly routed to just those actors that need it. Note
that this optimization would be done at deployment or run time,
leaving the workflow modeled by the scientist unchanged.

4. Related work

The diversity of scientific data analyses requires that workflow
systems address a broad range of complex issues. Numerous,
equally diverse approaches have been proposed and developed to
address each of these needs. The result is that there is no single,
standard conceptual framework for understanding and comparing
all of the contributions to this field, nor is there a common
model for scientific workflow specifications shared across even
a majority of the major tools. This situation is similar to that
faced by the businessworkflow community [36], where comparing
the modeling support provided by systems based on Petri Nets,
Event-Driven Process Chains, UML Activity Diagrams, and BPEL has
proved challenging, and defining conceptual frameworks that are
meaningful across all these approaches equally difficult.
In this paper, we have primarily focused on issues related to
modeling and design of scientific workflows, a key area in which
webelievemuchprogress still remains to bemade before scientists
broadly adopt scientific workflow systems. In this section we
relate this aspect of our work to modeling and design approaches
reported by other groups. For a broad comparison of systems, we
refer the reader to one of the many surveys on scientific workflow
systems, e.g., [43].

comad is, indeed, one of many modeling and design frame-
works for scientific workflows. Unlike other approaches, co-
mad extends the process network (PN) dataflow model [25] by
providing explicit support for nested collections of data, adding
high-level actor scoping and configuration languages, and enabling
implicit iteration of actors over (nested) collections of data. This
paper extends our previous work [30] on comad by (1) describ-
ing a set of general requirements that, if satisfied, would lead to
wider adoption of workflow systems by scientists; (2) presenting
the abstractmodeling framework offered by comad in terms of vir-
tual assembly lines and their advantages for workflow design; and
(3) illustrating how comad satisfies the various design-oriented
desiderata described above.

comad shares a number of characteristics with approaches for
query processing over XML streams, e.g., [11,12,2,24,19,13]. Most
of these approaches consider optimizations of specific XML query
languages or language fragments, sometimes taking into account
additional aspects of streaming data (e.g., sliding windows). co-
mad differs by specifically targeting scientific workflow appli-
cations, by providing explicit support for modeling the flow of
data through graphs of black-box functions (actors), and by en-
abling pipeline and task-parallel concurrency without requiring
the use of advanced techniques for preventing deadlocks and race
conditions.
In common with [16,27,29], comad does not restrict workflow

specifications to directed acyclic graphs (unlike, e.g., [33,15,9,10,3]
which do have this limitation). We have found that supporting ad-
vanced workflow modeling constructs such as loops; conditional
branches; sub-workflows; nested, heterogeneous models of com-
putation (e.g., composite coactors built from SDF sub-worklows);
and so on, leads to specifications of complex scientific analyses that
more clearly capture the scientific intent of the individual compu-
tational steps and of the overall workflow. The comad approach
also can reduce the need for adapters and shims [21,33] through
its virtual assembly-line metaphor, while still providing static typ-
ing support for workflows (e.g., as in [33,27]) via type propaga-
tion through read andwrite scopes. Taverna [33] provides a simple
form of implicit iteration over intermediate collections, but with-
out scope expressions and collection nesting; and the ASKALON
system [16], provides management support for large collections of
intermediate workflow data.
Finally, considerable work within the Grid community has

focused on approaches for optimizing scientific workflows,
with the aim of making it easy for users to specify, deploy,
and monitor workflows, e.g., [16,41,8,4]. Our hope is that
comad can leverage the automatic optimization techniques
employed by these approaches, while providing scientists intuitive
and powerful workflow modeling and design languages and
support tools.

5. Conclusion

As a first step towards meeting the needs of scientists
with little programming experience, we have identified and



550 T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551
described eight broad areas in which we believe scientific
workflow systems should provide modeling and design support:
well-formedness, clarity, predictability, recordability, reportability,
reusability, scientific data modeling, and automatic optimization,
and have implemented a novel scientific workflow and data
management framework that largely addresses these desiderata.
While the goal of making it easy to develop arbitrary software
applications might remain elusive forever, we believe that for
scientific workflow automation there are good reasons for hope.
We invite and encourage the community to join the quest formore
scientist-friendly workflow modeling and design tools.

Acknowledgements

This work supported in part through NSF grants IIS-0630033,
OCI-0722079, IIS-0612326, DBI-0533368, and DOE grant DE-FC02-
01ER25486.

References

[1] I. Altintas, O. Barney, E. Jaeger-Frank, Provenance collection support in
the Kepler scientific workflow system, in: Intl. Provenance and Annotation
Workshop, IPAW, in: LNCS, vol. 4145, Springer, 2006.

[2] M. Balazinska, H. Balakrishnan, S. Madden, M. Stonebraker, Fault-tolerance in
the borealis distributed stream processing system, in: ACM SIGMOD, 2005.

[3] L. Bavoil, S.P. Callahan, C.E. Scheidegger, H.T. Vo, P. Crossno, C.T. Silva,
J. Freire, VisTrails: Enabling interactive multiple-view visualizations, in: IEEE
Visualization, IEEE Computer Society, 2005, p. 18.

[4] A. Belloum, D.L. Groep, Z.W. Hendrikse, L.O. Hertzberger, V. Korkhov,
C.T.A.M. de Laat, D. Vasunin, VLAM-G: A grid-based virtual laboratory, Future
Generation Comp. Syst. 19 (2) (2003) 209–217.

[5] S. Bowers, B. Ludäscher, Actor-oriented design of scientific workflows, in: Intl.
Conference on Conceptual Modeling (ER), in: LNCS, Springer, 2005.

[6] S. Bowers, B. Ludäscher, A.H. Ngu, T. Critchlow, Enabling scientific workflow
reuse through structured composition of dataflow and control-flow, in: Post-
ICDE Workshop on Workflow and Data Flow for Scientific Applications,
SciFlow, 2006.

[7] S. Bowers, T.M. McPhillips, B. Ludäscher, Provenance in collection-oriented
scientific workflows, Concurrency and Computation: Practice and Experience
20 (5) (2008) 519–529.

[8] M. Bubak, T. Gubala, M. Kasztelnik, M. Malawski, P. Nowakowski, P. Sloot, Col-
laborative virtual laboratory for e-Health, in: P. Cunningham, M. Cunningham
(Eds.), Expanding the Knowledge Economy: Issues, Applications, Case Studies,
IOS Press, 2007.

[9] R. Buyya, S. Venugopal, The Gridbus toolkit for service oriented grid and
utility computing: An overview and status report, in: Intl. Workshop on Grid
Economics and Business Models, GECON, 2004.

[10] J. Cao, S. Jarvis, S. Saini, G. Nudd, GridFlow: Workflow management for grid
computing. In: Intl. Symp. on Cluster Computing and the Grid, CCGrid, 2003.

[11] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M. Shah,
TelegraphCQ: Continuous dataflow processing for an uncertain world, in:
Proceedings of the 1st Biennial Conference on Innovative Data Systems
Research, CIDR’03, 2003.

[12] J. Chen, D. DeWitt, F. Tian, Y. Wang, NiagraCQ: A scalable continuous query
system for internet databases, in: ACM SIGMOD, 2000, pp. 379–390.

[13] Y. Chen, S.B. Davidson, Y. Zheng, An efficient XPath query processor for XML
streams, in: Intl. Conf. on Data Engineering, ICDE, 2006.

[14] D. De Roure, C. Goble, R. Stevens, Designing themyExperiment virtual research
environment for the social sharing of workflows, in: IEEE Intl. Conf. on e-
Science and Grid Computing, 2007, pp. 603–610.

[15] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. Berriman, J. Good, A. Laity, J.C. Jacob, D.S. Katz, Pegasus: A framework
for mapping complex scientific workflows onto distributed systems, Scientific
Programming Journal 13 (3) (2005) 219–237.

[16] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,
H. Truong, A. Villazon, M. Wieczorek, ASKALON: A grid application develop-
ment and computing environment, in: IEEE Grid Computing Workshop, 2005.

[17] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,
M. Livny, L. Moreau, J. Myers, Examining the Challenges of Scientific
Workflows, IEEE Computer 40 (2) (2007) 24–32.

[18] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, J. Kim, Wings for Pegasus:
Creating large-scale scientific applications using semantic representations
of computational workflows, in: Proc. of the AAAI Conference on Artificial
Intelligence, 2007, pp. 1767–1774.
[19] T.J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, Processing XML streams
with deterministic automata and stream indexes, ACM Transactions on
Database Systems, TODS 29 (4) (2004) 752–788.

[20] P. Groth, M. Luck, L. Moreau, A protocol for recording provenance in service-
oriented grids, in: Intl. Conf. on Principles of Distributed Systems, 2004.

[21] D.Hull, R. Stevens, P. Lord, C.Wroe, C. Goble, Treating shimanticweb syndrome
with ontologies, in: First Advanced Knowledge Technologies Workshop on
Semantic Web Services, AKT-SWS04, 2004.

[22] S. Hwang, C. Kesselman, GridWorkflow: A flexible failure handling framework
for the grid, in: IEEE Intl. Symp on High-Performance Distributed Computing,
HPDC, 2003, pp. 126–137.

[23] W.M. Johnston, J.P. Hanna, R.J. Millar, Advances in dataflow programming
languages, ACM Computing Surveys 36 (1) (2004) 1–34.

[24] C. Koch, S. Scherzinger, N. Schweikardt, B. Stegmaier, Schema-based schedul-
ing of event processors and bufferminimization for queries on structured data
streams, in: VLDB Conf., 2004.

[25] E.A. Lee, T. Parks, Dataflow process networks, Proceedings of the IEEE 83 (5)
(1995) 773–799.

[26] E.A. Lee, A.L. Sangiovanni-Vincentelli, A framework for comparing models
of computation, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 17 (12) (1998) 1217–1229.

[27] B. Ludäscher, I. Altintas, C. Berkley, D.Higgins, E. Jaeger,M. Jones, E.A. Lee, J. Tao,
Y. Zhao, Scientific workflowmanagement and the Kepler system, Concurrency
and Computation: Practice & Experience (2006) 1039–1065.

[28] D. Maddison, D. Swofford, W. Maddison, NEXUS: An extensible file format for
systematic information, Systematic Biology 46 (4) (1997) 590–621.

[29] S. Majithia, M.S. Shields, I.J. Taylor, I. Wang, Triana: A graphical web service
composition and execution toolkit, in: ICWS, IEEE Computer Society, 2004,
p. 514.

[30] T.McPhillips, S. Bowers, B. Ludäscher, Collection-oriented scientificworkflows
for integrating and analyzing biological data, in: 3rd International Workshop
on Data Integration in the Life Sciences, DILS’06, 2006.

[31] L. Moreau, B. Ludäscher (Eds.), Concurrency and Comptuation: Practice and
Experience, Special Issue on The First Provenance Challenge, vol. 20, Wiley,
2008.

[32] J.P. Morrison, Flow-Based Programming — A New Approach to Application
Development. Van Nostrand Reinhold, 1994.

[33] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.R. Pocock, M. Senger, R. Stevens,
A. Wipat, C. Wroe, Taverna: Lessons in creating a workflow environment for
the life sciences. Concurrency and Computation: Practice & Experience, pp.
1067–1100.

[34] C. Pautasso, G. Alonso, Parallel computing patterns for grid workflows, in:
Workshop on Workflows in Support of Large-Scale Science, WORKS, 2006.

[35] U. Radetzki, U. Leser, S.C. Schulze-Rauschenbach, J. Zimmermann, J. Lüssem,
T. Bode, A.B. Cremers, Adapters, shims, and glue—service interoperability for
in silico experiments, Bioinformatics 22 (9) (2006) 1137–1143.

[36] N. Russell, A. ter Hofstede, D. Edmond, W. van der Aalst, Workflow
data patterns: Identification, representation and tool support, in: Conf. on
Conceptual Modeling (ER), in: LNCS, vol. 3716, 2005, pp. 353–368.

[37] L. Salayandia, P.P. da Silva, A.Q. Gates, F. Salcedo,Workflow-driven ontologies:
An earth sciences case study, in: Intl. Conf. on e-Science andGrid Technologies,
e-Science, 2006, p. 17.

[38] Y. Simmhan, B. Plale, D. Gannon, A survey of data provenance in e-science,
SIGMOD Record 34 (3) (2005) 31–36.

[39] T. Tavares, G. Teodoro, T. Kurc, R. Ferreira, D. Guedes, W. Meira Jr.,
U. Catalyurek, S. Hastings, S. Oster, S. Langella, J. Saltz, An efficient and reliable
scientific workflow system, in: Intl. Symp. on Cluster Computing and the Grid,
CCGrid, 2007.

[40] J. Thompson, D. Higgins, T. Gibson, CLUSTAL W: Improving the sensitivity
of progressive multiple sequence alignments through sequence weighting,
position specific gap penalties and weight matrix choice, Nucleic Acids
Research 22 (1994) 4673–2680.

[41] H. Truong, P. Brunner, T. Fahringer, F. Nerieri, R. Samborski, K-WfGrid
distributedmonitoring andperformance analysis services forworkflows in the
grid, in: IEEE Conf. on e-Science and Grid Computing, e-Science, 2006.

[42] C.Wroe, C.A. Goble, A. Goderis, P.W. Lord, S. Miles, J. Papay, P. Alper, L. Moreau,
Recycling workflows and services through discovery and reuse, Concurrency
and Computation: Practice and Experience 19 (2) (2007) 181–194.

[43] J. Yu, R. Buyya, A taxonomy of scientific workflow systems for grid computing,
SIGMOD Record 34 (3) (2005) 44–49.

[44] Y. Zhao, M. Wilde, I. Foster, Applying the virtual data provenance model,
in: Intl. Provenance and Annotation Workshop (IPAW), in: LNCS, vol. 4145,
Springer, 2006.

[45] D. Zinn, Modeling and optimization of scientific workflows, in: Proc. of the
EDBT Ph.D. Workshop, 2008.

[46] D. Zinn, S. Bowers, B. Ludäscher, Change-resilient design and dataflow
optimization for distributed XML stream processors, Technical Report CSE-
2007-37, UC Davis, 2007.



T. McPhillips et al. / Future Generation Computer Systems 25 (2009) 541–551 551
Timothy McPhillips is a research scientist in the Data and
Knowledge Systems (DAKS) group at theUCDavis Genome
Center. He received his Ph.D. in Chemistry from the Cal-
ifornia Institute of Technology in 1997. Prior to joining
the DAKS group, Tim directed the development and op-
eration of the Collaboratory for Macromolecular Crystal-
lography at the Stanford Synchrotron Radiation Labora-
tory (SSRL). Tim’s interests include scientific workflow au-
tomation, provenance management, and making the re-
sults and processes of scientific research more accessible
to the general public by leveraging advances in these and

related fields.

Shawn Bowers is a computer scientist at the UC Davis
Genome Center, working closely with domain scientists
in ecology, bioinformatics, and other disciplines. He is a
member of the Data and Knowledge Systems Lab where
he conducts research in conceptual datamodeling, data in-
tegration, and scientific workflows. He is an active mem-
ber of theKepler ScientificWorkflowproject,where hehas
contributed to the design and development of Kepler ex-
tensions for managing complex scientific data, capturing
and exploring data provenance, and ontology-based ap-
proaches for organizing and discovering workflow com-

ponents. Shawn holds a Ph.D. and a M.Sc. in Computer Science from the OGI School
of Science and Engineering, and a B.Sc. in Computer and Information Science from
the University of Oregon. Prior to joining the UC Davis, he was a Postdoctoral Re-
searcher at the San Diego Supercomputer Center.
Daniel Zinn is a Ph.D. student at the Department of Com-
puter Science at theUniversity of California, Davis, USA. He
received his Diplom degree in Computer Science at TU Il-
menau, Germany in 2005. His research interests include
scientific workflow design and optimization, distributed
computing, formal models, programming languages and
security.

Bertram Ludäscher is an associate professor in the De-
partment of Computer Science at UC Davis and a faculty
member of the UC Davis Genome Center. His research ar-
eas include scientific workflow design and optimization,
data and workflow provenance, and knowledge represen-
tation and reasoning for scientific data andworkflowman-
agement. He is one of the initiators of the Kepler project
and actively involved in several large-scale, collaborative
scientific data and workflow management projects, in-
cluding the NSF/ITR Science Environment for Ecological
Knowledge (SEEK), the DOE Scientific Data Management

Center (SciDAC/SDM), and two NSF projects on Cyberinfrastructure for Environ-
mental Observatories (CEOP/COMET and CEOP/REAP). He received his MS in Com-
puter Science from the University of Karlsruhe, Germany in 1992 and his Ph.D. from
the University of Freiburg, Germany in 1998. From 1998 to 2004 Dr. Ludäscher
worked as a research scientist at the San Diego Supercomputer Center, UCSD.


	Scientific workflow design for mere mortals
	Introduction
	Desiderata for scientific workflow systems
	Assist in the design and implementation of workflows
	Provide first-class support for modeling data
	Take responsibility for optimizing performance

	Addressing the desiderata with COMAD
	An introduction to comad
	A closer look at COMAD
	Implementation of comad
	Limitations of comad

	Related work
	Conclusion
	Acknowledgements
	References


