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Co-Design Will Enable Predictive Simulation and 
Modeling of Combustion with 21st Century Fuels

Motivation:
Aggressive federal mandates to reduce greenhouse gas emissions by 80 
percent by 2050 and petroleum consumption by 25 percent by 2020

Goals:
Develop an exascale combustion modeling capability that combines 
high-fidelity direct numerical simulation, in situ analytics and embedded 
uncertainty quantification
Develop the necessary computer science tools and applied math 
methodology to facilitate the design and implementation of these 
applications
Quantify hardware constraints for an effective system

Impact:
Simulations that differentiate alternative fuel effects on turbulence-
chemistry interactions in high pressure regimes of practical combustors
Simulations will provide fundamental insight and validation data to guide 
development of predictive models used by industry to shorten the design 
cycle, promote economic competetiveness, reduce foreign oil 
dependence, and promote environmental stewardship
Insights will enable co-design of 21st Century fuels and fuel-flexible, 
efficient, low emissions combustion systems for transportation, power 
generation, and industrial processes



Performance Analysis

Data Management and Analytics

Hardware Evaluation

Programming Models

Math

PDE
In Situ

Analytics UQ
Skeletal Apps
•Model overall 

data flow
•Evaluate global 

network topology

Compact Apps
Node level issues
•Nonuniform memory 

access
•Data movement
•Heterogeneous cores

Compute Kernels
Core level issues
•Map algorithms to 
•architectures
•Combine performance 

modeling, autotuning
& hardware simulation

Vertically-Integrated Co-Design Teams
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Co-Design Strategy

Presenter
Presentation Notes
3 Vertically integrated co-design teams for each key theme – include core elements of math, programming models, performance analysis and hardware evaluation

In each area we address requirements at 3 levels of granularity.  Loosely speaking,
Skeletal app’s to model overall data flow and evaluate global network topology
Compact app’s to address node-level issues
Nonuniform memory access
Data movement
Heterogeneous cores
Computational kernels to address core-level issues
Investigate how different algorithms interact with different core architecture characteristics
Combine performance modeling, autotuning, and hardware simulation 




Requirements, Research, and Collaboration

Requirements:
PDE methodology for direct numerical simulation

Require AMR to meet spatial resolution requirements
Must support both low Mach number and fully compressible formulations

In situ data analytics
Data rates too high for deferred analysis – emphasis on data reduction and 
steering
Support for data layout, volume and particle visualization, topological feature 
tracking, pathlines, local flame coordinates, feature-base statistics

Embedded uncertainty quantification (UQ)
Impact of uncertainty of chemical parameters on predictive capability 
Quantitative comparisons with experimental data

Research issues and opportunities for collaboration
How can programming models be used to: exploit fine-grained parallelism in 
PDE algorithms, express data movement vs. floating point operations in 
designing numerical algorithms, expose issues of fault tolerance and energy 
use?
What is the most effective strategy for in situ data analysis?  Shared work on 
nodes or staging? Use scratchpad memory for analysis?  How do we balance 
simulation with analysis? What is the optimal data structure?
How can we best formulate UQ problems for complex multiphysics problems 
with “chaotic” dynamics such as turbulent combustion? Hardware support?

Presenter
Presentation Notes
PDE algorithms have potential for significant fine-grained parallelisms – How do we develop programming models to exploit this characteristic?  “Pseudo-functional” language constructs?  
Numerical algorithms are implemented by expressing floating point operations but data movement is more important for performance – Should we explore programming models that enable us to express data movement?
What is the most effective strategy for in situ data analysis?  Shared work on nodes or staging? Can we effectively use scratchpad memory for analysis?  How do we balance simulation with analysis? How do we determine optimal data structure (simulation  code, analytics, UQ)?
How can we best formulate UQ problems for complex multiphysics problems with “chaotic” dynamics such as turbulent combustion?
What is needed at the applications level beyond good software practice to address issues of fault tolerance?
Advances in applied math and computer science are potentially “game-changing”  Need to engage the broader applied math and computer science communities






Starting from Petascale Combustion Codes: 
LMC

Adaptive Mesh Refinement code
John Bell’s group at LBNL
~750,000 lines of code
C++/F90
• Runs on Crays, IBM Powers, clusters – failed on BG/L

MPI, OpenMP (mostly for performance)
• MPI is hidden, OpenMP is not

Use (mostly) their own libraries (BoxLib, AmrLib)
Used up to 50,000 cores (could go higher)
• Strategy: Problem size -> Memory -> # of nodes

Up to ~60TB output right now



Combustion: LMC

AMR code with:
Structured Grids
Adaptive Multigrid
Sparse linear algebra (iterative methods)
Local ODEs ((mostly serial) 
• Solve for Chemistry
• Highly variable load depending on physical conditions

— load balancing issue 



Combustion: LMC

Dynamic list of structured grids of various sizes
• Limited by architectures and math requirements
• Physical locality is not necessarily preserved between 

different sub-grids
• Potential data affinity and communication issue 

Data layouts with space filling curves
AMR has inherent, dynamic load-balancing 
problem
• Thinking about multi-level strategies to match future 

architectures – inter-node and intra-node.



Combustion: S3D

Cartesian structure mesh compressible N-S solver for reacting flows (high 
order 9 pt stencils, explicit time integration)

Jackie Chen’s group at SNL
~250,000 lines of code
F90/F77

• Runs on CrayXT5, CrayXE6, IBM BG/L, clusters 
MPI code scales to 250,000 cores,
MPI+OpenMP and MPI+CUDA (OLCF-3 CAAR program, hybrid 2012) 
Use (mostly) their own libraries (ACML)
Used up to 250,000 cores (could go higher), production runs on 
144,000 cores

• Strategy: Problem size -> Memory -> # of nodes
Up to ~3/4 petabyte output/run 50M cpu-hr on Jaguar
No out of core (100 MB), small memory usage
No global synchronization needed (monitoring and async I/O)
In-situ visualization and topological feature extraction
MPI-IO and ADIOS for I/O and data staging
Want to explore DSLs for hiding low level constructs for parallelism



Math

AMR grids (each with 323 - 643 cells) 
dynamically resolve “interesting” solution 

features
Multi-level hierarchy of 
block-structured state 
data

•Examine basic PDE discretization approaches from the 
perspective of minimizing memory requirements and data 
movement (managing power)  instead of optimizing floating 
point efficiency

•Explore algorithms and hardware support for structured linear 
solvers

•Explore algorithms for verification and UQ including hardware 
acceleration (adjoints in transient problems, PC expansions)

•Investigate hierarchical scalable approaches to AMR that 
minimize global communication and data movement

•Investigate alternative programming models that facilitate 
expressing parallelism and controlling data layout in structured 
grid discretizations

•Explore the effect of architecture variation on performance of 
stencil operation kernels using a combination of modeling, 
autotuning and hardware simulations



Programming Models

Develop set of combustion-centric abstractions to unify 
simulation, in situ UQ  and analytics/viz

Multi-level APIs for different levels of use: proof-of-concept, 
performance-focused development, and DSL-compiler 
driven optimizations

Evaluate programming models and develop extensions to PM to 
map key algorithms to exascale hardware –

initial efforts support PM that address both distributed and 
local memory architectures (MPI + OpenMP + GPU) for 
encapsulating combustion domain
later extensions to PM for restricted forms of cache 
coherency  (i.e. support  forms of parallelism requiring data 
sharing)

Design domain specific languages (DSL’s) and compiler support 
tailored to combustion needs along with technologies required 
for DSL’s to be developed - embedded DSL compilers and run 
time systems that support scheduling and interoperability



Data Management and Analytics

Goals: Develop resilient algorithms and middleware to 
suport in situ data management, minimize data movement 
and storage requirments and to reduce power and 
manage the volume of data for future exascale
combustion simulations
ADIOS middleware: streaming middleware for in-transit 
processing; adaptive and dynamic approachs for in-transit 
processing to deal with variable data volumes AMR; 
accelerator support on compute or staging nodes via a 
PM
Extreme distributed graphs (merge trees, MS complexes)
Exploit intra-node parallelism for parallel image 
compositing
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Simulation with in-situ analysis and visualization workflow 

Presenter
Presentation Notes
Designing and building scalable analysis and visualization tools is a necessary step to achieve exascale computation. We will develop a comprehensive suite of algorithms that will be deployed in situ and as a post process. 

In situ processing will occur either on the same nodes as the simulation or on tightly coupled co-process nodes with fast, efficient access to the simulation data. These algorithms will enable drastic data reduction and produce feedback to steer the simulation. For example, hotspots detected by the segmentation code can be used to inject Lagrangian particles for tracking. 

Code that does not scale to keep up with the simulation code will run as a post-process. We will target our code to the best hardware/programming environment to fully exploit state-of-the-art and emerging exascale platforms. 
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Distributed parallel computation of merge tree

The Merge tree is a topological structure that can be used to segment and 
analyze scientific simulation data sets.

Presenter
Presentation Notes
The merge tree is a topological data structure that can be used to analyze scientific data sets, such as combustion simulations. Here we see an application to a 3D temporal jet simulation. We have extracted segments from the scalar dissipation rate field and colored each segment based on the average OH mass fraction inside them. The transparent grey surface is the stoichiometric flame surface and provides context.
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Distributed parallel computation of merge tree

We have developed a distributed parallel algorithm to compute the merge tree of 
massive combustion data.

Tests on S3D data achieve run times < 10 seconds.

6.187    5.441    5.226      4.782

Presenter
Presentation Notes
As a necessary step to providing sophisticated data reduction tools for future simulation codes, we have implemented a distributed parallel merge tree algorithm. This algorithm shows promise for deployment in-situ. On the left, we show  a schematic of the algorithm: the domain is decomposed into equal sized chunks. The merge tree for each chunk is computed in parallel, and the individual trees are then combined in stages to produce the merge tree for the entire data set.
On the right, we show running times for a couple of data sets for varying total processor count. We see run times for the S3D lifted flame data in the 10s of seconds.



In-situ Visualization 

Motivation
Scientists need efficient and effective solutions to 
manage and study their increasing amount of 
data
Traditional data analysis and visualization 
methods suffers from I/O and network bandwidth 
bound
In-situ processing is to transform or reduce the 
data on the same machine as the simulation runs 
to minimize the amount of data need to be stored 
or transferred

Challenges
Integrate visualization code and simulation code 
to share same data structure and optimize 
memory usage
Make visualization as scalable as simulation with 
simulation data partitioning and distribution
Perform visualization with a low cost that is only a 
very small fraction of simulation time



In-situ Visualization 

In-situ visualization for S3D Combustion simulations
Design grid adaptor mechanism to ease the integration

• Simulation only provides data partition and pointer of field and particle data to grid 
adaptor

• Visualization directly takes data regions from grid adaptor

Highly scalable parallel volume rendering, particle rendering, and image compositing

Visualization time is less than 1% of simulation time if visualization is performed every 
10th time step (based on the experimentation results with 15,360 cores, 1620x1280x320 volume 
size, and 1024x1024 image size on JaguarPF at ORNL)

Selected zoomed-in views of mix rendering of volume and particle data (volume variable CH2O and particle variable HO2)



In-situ Visualization 

Future Work
Continue studying in-situ processing for selected applications to understand
the impact on simulations, subsequent visualization tasks, and scientists’
work processes

• In-situ methods to prepare data for portraying time-varying particles and 
how they are clustered into groups with distinct characteristics

• In-situ methods to generate compact data representations of each time 
step at simulation time that can be used for subsequent operations on 
the opacity and color mappings after simulation

• In-situ methods to compute and visualize metrics suitable for 
quantifying variable correlations using statistical analysis techniques



Hierarchy of Application Proxies
(enable hierarchy of understanding for co-design process)
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CG, Elliptic Solve, Stencil, PIC particle 
push vs. particle 

Just the communication (halo 
exchange) per-core compute load 

All Application Kernels, but stripped 
down to essentials

Hydro, radiation transport, etc…

Full Workload

Compact apps

Composite tests

Kernels

Skeleton
s

Full application

Coupled Multiphysics Application
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Architectural Simulation for CoDesign

ROSE Compiler: Enables deep analysis of 
application requirements, semi-automatic 
generation of skeleton applications, and code 
generation for ACE and SST.

ACE Node Emulation: Rapid design synthesis 
and RAMP/FPGA-accelerated emulation for 
rapid prototyping cycle accurate models of 
manycore node designs.

SST System Simulation: Enables system-scale 
simulation through capture of application 
communication traces and simulation of large-
scale interconnects.

– Simulate hardware before it is built!
– Break slow feedback loop for system designs
– Protect vendor IP
– Insert applications and algorithms into the 

tightly coupled HW/SW CoDesign process 

CoDEx



CoDesign Tool Flow
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Dan Quinlan 2011


	Combustion Exascale Co-Design Center�Center Director:  Jacqueline Chen (SNL)�Deputy Director:  John Bell (LBNL)������������Members and Team Leads (bold): Janine Bennett (SNL), Curtis Janssen (SNL), Arun Rodrigues (SNL), Omar Ghattas (UT Austin), Robert Moser (UT Austin), Valerio Pascucci (Utah), Patrick McCormick (LANL), Allen McPherson (LANL), Patrick Hanrahan (Stanford), Alexander Aiken (Stanford), Marc Day (LBNL), Michael Lijewski (LBNL), Paul Hargrove (LBNL), John Shalf (LBNL), David Donofrio (LBNL), Erich Strohmaier (LBNL), Samuel Williams (LBNL), Robert Falgout (LLNL), Ulrike Meier Yang (LLNL), Daniel Quinlan(LLNL), Ray Grout (NREL), Scott Klasky (ORNL), Karsten Schwan (Georgia Tech), Manish Parashar (Rutgers) ��6th International Exascale Software Project Workshop�San Francisco, CA�April 6-7, 2011
	Co-Design Will Enable Predictive Simulation and Modeling of Combustion with 21st Century Fuels
	Slide Number 3
	Requirements, Research, and Collaboration
	Starting from Petascale Combustion Codes: LMC
	Combustion: LMC
	Combustion: LMC
	Combustion: S3D
	Math
	Programming Models
	Data Management and Analytics
	Simulation with in-situ analysis and visualization workflow 
	Distributed parallel computation of merge tree
	Distributed parallel computation of merge tree
	In-situ Visualization 
	In-situ Visualization 
	In-situ Visualization 
	Hierarchy of Application Proxies�(enable hierarchy of understanding for co-design process)
	Architectural Simulation for CoDesign
	CoDesign Tool Flow

