
Combustion Exascale Co-Design Center
Center Director: Jacqueline Chen (SNL)

Deputy Director: John Bell (LBNL)

Members and Team Leads (bold): Janine Bennett (SNL), Curtis Janssen (SNL), Arun Rodrigues (SNL),
Omar Ghattas (UT Austin), Robert Moser (UT Austin), Valerio Pascucci (Utah), Patrick McCormick
(LANL), Allen McPherson (LANL), Patrick Hanrahan (Stanford), Alexander Aiken (Stanford), Marc Day
(LBNL), Michael Lijewski (LBNL), Paul Hargrove (LBNL), John Shalf (LBNL), David Donofrio (LBNL),
Erich Strohmaier (LBNL), Samuel Williams (LBNL), Robert Falgout (LLNL), Ulrike Meier Yang (LLNL),
Daniel Quinlan(LLNL), Ray Grout (NREL), Scott Klasky (ORNL), Karsten Schwan (Georgia Tech),

Manish Parashar (Rutgers)

6th International Exascale Software Project Workshop
San Francisco, CA

April 6-7, 2011

Co-Design Will Enable Predictive Simulation and
Modeling of Combustion with 21st Century Fuels

Motivation:
Aggressive federal mandates to reduce greenhouse gas emissions by 80
percent by 2050 and petroleum consumption by 25 percent by 2020

Goals:
Develop an exascale combustion modeling capability that combines
high-fidelity direct numerical simulation, in situ analytics and embedded
uncertainty quantification
Develop the necessary computer science tools and applied math
methodology to facilitate the design and implementation of these
applications
Quantify hardware constraints for an effective system

Impact:
Simulations that differentiate alternative fuel effects on turbulence-
chemistry interactions in high pressure regimes of practical combustors
Simulations will provide fundamental insight and validation data to guide
development of predictive models used by industry to shorten the design
cycle, promote economic competetiveness, reduce foreign oil
dependence, and promote environmental stewardship
Insights will enable co-design of 21st Century fuels and fuel-flexible,
efficient, low emissions combustion systems for transportation, power
generation, and industrial processes

Performance Analysis

Data Management and Analytics

Hardware Evaluation

Programming Models

Math

PDE
In Situ

Analytics UQ
Skeletal Apps
•Model overall

data flow
•Evaluate global

network topology

Compact Apps
Node level issues
•Nonuniform memory

access
•Data movement
•Heterogeneous cores

Compute Kernels
Core level issues
•Map algorithms to
•architectures
•Combine performance

modeling, autotuning
& hardware simulation

Vertically-Integrated Co-Design Teams

C
or

e
M

at
h

an
d

C
om

pu
te

r S
ci

en
ce

Co-Design Strategy

Presenter
Presentation Notes
3 Vertically integrated co-design teams for each key theme – include core elements of math, programming models, performance analysis and hardware evaluation

In each area we address requirements at 3 levels of granularity. Loosely speaking,
Skeletal app’s to model overall data flow and evaluate global network topology
Compact app’s to address node-level issues
Nonuniform memory access
Data movement
Heterogeneous cores
Computational kernels to address core-level issues
Investigate how different algorithms interact with different core architecture characteristics
Combine performance modeling, autotuning, and hardware simulation

Requirements, Research, and Collaboration

Requirements:
PDE methodology for direct numerical simulation

Require AMR to meet spatial resolution requirements
Must support both low Mach number and fully compressible formulations

In situ data analytics
Data rates too high for deferred analysis – emphasis on data reduction and
steering
Support for data layout, volume and particle visualization, topological feature
tracking, pathlines, local flame coordinates, feature-base statistics

Embedded uncertainty quantification (UQ)
Impact of uncertainty of chemical parameters on predictive capability
Quantitative comparisons with experimental data

Research issues and opportunities for collaboration
How can programming models be used to: exploit fine-grained parallelism in
PDE algorithms, express data movement vs. floating point operations in
designing numerical algorithms, expose issues of fault tolerance and energy
use?
What is the most effective strategy for in situ data analysis? Shared work on
nodes or staging? Use scratchpad memory for analysis? How do we balance
simulation with analysis? What is the optimal data structure?
How can we best formulate UQ problems for complex multiphysics problems
with “chaotic” dynamics such as turbulent combustion? Hardware support?

Presenter
Presentation Notes
PDE algorithms have potential for significant fine-grained parallelisms – How do we develop programming models to exploit this characteristic? “Pseudo-functional” language constructs?
Numerical algorithms are implemented by expressing floating point operations but data movement is more important for performance – Should we explore programming models that enable us to express data movement?
What is the most effective strategy for in situ data analysis? Shared work on nodes or staging? Can we effectively use scratchpad memory for analysis? How do we balance simulation with analysis? How do we determine optimal data structure (simulation code, analytics, UQ)?
How can we best formulate UQ problems for complex multiphysics problems with “chaotic” dynamics such as turbulent combustion?
What is needed at the applications level beyond good software practice to address issues of fault tolerance?
Advances in applied math and computer science are potentially “game-changing” Need to engage the broader applied math and computer science communities

Starting from Petascale Combustion Codes:
LMC

Adaptive Mesh Refinement code
John Bell’s group at LBNL
~750,000 lines of code
C++/F90
• Runs on Crays, IBM Powers, clusters – failed on BG/L

MPI, OpenMP (mostly for performance)
• MPI is hidden, OpenMP is not

Use (mostly) their own libraries (BoxLib, AmrLib)
Used up to 50,000 cores (could go higher)
• Strategy: Problem size -> Memory -> # of nodes

Up to ~60TB output right now

Combustion: LMC

AMR code with:
Structured Grids
Adaptive Multigrid
Sparse linear algebra (iterative methods)
Local ODEs ((mostly serial)
• Solve for Chemistry
• Highly variable load depending on physical conditions

— load balancing issue

Combustion: LMC

Dynamic list of structured grids of various sizes
• Limited by architectures and math requirements
• Physical locality is not necessarily preserved between

different sub-grids
• Potential data affinity and communication issue

Data layouts with space filling curves
AMR has inherent, dynamic load-balancing
problem
• Thinking about multi-level strategies to match future

architectures – inter-node and intra-node.

Combustion: S3D

Cartesian structure mesh compressible N-S solver for reacting flows (high
order 9 pt stencils, explicit time integration)

Jackie Chen’s group at SNL
~250,000 lines of code
F90/F77

• Runs on CrayXT5, CrayXE6, IBM BG/L, clusters
MPI code scales to 250,000 cores,
MPI+OpenMP and MPI+CUDA (OLCF-3 CAAR program, hybrid 2012)
Use (mostly) their own libraries (ACML)
Used up to 250,000 cores (could go higher), production runs on
144,000 cores

• Strategy: Problem size -> Memory -> # of nodes
Up to ~3/4 petabyte output/run 50M cpu-hr on Jaguar
No out of core (100 MB), small memory usage
No global synchronization needed (monitoring and async I/O)
In-situ visualization and topological feature extraction
MPI-IO and ADIOS for I/O and data staging
Want to explore DSLs for hiding low level constructs for parallelism

Math

AMR grids (each with 323 - 643 cells)
dynamically resolve “interesting” solution

features
Multi-level hierarchy of
block-structured state
data

•Examine basic PDE discretization approaches from the
perspective of minimizing memory requirements and data
movement (managing power) instead of optimizing floating
point efficiency

•Explore algorithms and hardware support for structured linear
solvers

•Explore algorithms for verification and UQ including hardware
acceleration (adjoints in transient problems, PC expansions)

•Investigate hierarchical scalable approaches to AMR that
minimize global communication and data movement

•Investigate alternative programming models that facilitate
expressing parallelism and controlling data layout in structured
grid discretizations

•Explore the effect of architecture variation on performance of
stencil operation kernels using a combination of modeling,
autotuning and hardware simulations

Programming Models

Develop set of combustion-centric abstractions to unify
simulation, in situ UQ and analytics/viz

Multi-level APIs for different levels of use: proof-of-concept,
performance-focused development, and DSL-compiler
driven optimizations

Evaluate programming models and develop extensions to PM to
map key algorithms to exascale hardware –

initial efforts support PM that address both distributed and
local memory architectures (MPI + OpenMP + GPU) for
encapsulating combustion domain
later extensions to PM for restricted forms of cache
coherency (i.e. support forms of parallelism requiring data
sharing)

Design domain specific languages (DSL’s) and compiler support
tailored to combustion needs along with technologies required
for DSL’s to be developed - embedded DSL compilers and run
time systems that support scheduling and interoperability

Data Management and Analytics

Goals: Develop resilient algorithms and middleware to
suport in situ data management, minimize data movement
and storage requirments and to reduce power and
manage the volume of data for future exascale
combustion simulations
ADIOS middleware: streaming middleware for in-transit
processing; adaptive and dynamic approachs for in-transit
processing to deal with variable data volumes AMR;
accelerator support on compute or staging nodes via a
PM
Extreme distributed graphs (merge trees, MS complexes)
Exploit intra-node parallelism for parallel image
compositing

12

Simulation with in-situ analysis and visualization workflow

Presenter
Presentation Notes
Designing and building scalable analysis and visualization tools is a necessary step to achieve exascale computation. We will develop a comprehensive suite of algorithms that will be deployed in situ and as a post process.

In situ processing will occur either on the same nodes as the simulation or on tightly coupled co-process nodes with fast, efficient access to the simulation data. These algorithms will enable drastic data reduction and produce feedback to steer the simulation. For example, hotspots detected by the segmentation code can be used to inject Lagrangian particles for tracking.

Code that does not scale to keep up with the simulation code will run as a post-process. We will target our code to the best hardware/programming environment to fully exploit state-of-the-art and emerging exascale platforms.

13

Distributed parallel computation of merge tree

The Merge tree is a topological structure that can be used to segment and
analyze scientific simulation data sets.

Presenter
Presentation Notes
The merge tree is a topological data structure that can be used to analyze scientific data sets, such as combustion simulations. Here we see an application to a 3D temporal jet simulation. We have extracted segments from the scalar dissipation rate field and colored each segment based on the average OH mass fraction inside them. The transparent grey surface is the stoichiometric flame surface and provides context.

14

Distributed parallel computation of merge tree

We have developed a distributed parallel algorithm to compute the merge tree of
massive combustion data.

Tests on S3D data achieve run times < 10 seconds.

6.187 5.441 5.226 4.782

Presenter
Presentation Notes
As a necessary step to providing sophisticated data reduction tools for future simulation codes, we have implemented a distributed parallel merge tree algorithm. This algorithm shows promise for deployment in-situ. On the left, we show a schematic of the algorithm: the domain is decomposed into equal sized chunks. The merge tree for each chunk is computed in parallel, and the individual trees are then combined in stages to produce the merge tree for the entire data set.
On the right, we show running times for a couple of data sets for varying total processor count. We see run times for the S3D lifted flame data in the 10s of seconds.

In-situ Visualization

Motivation
Scientists need efficient and effective solutions to
manage and study their increasing amount of
data
Traditional data analysis and visualization
methods suffers from I/O and network bandwidth
bound
In-situ processing is to transform or reduce the
data on the same machine as the simulation runs
to minimize the amount of data need to be stored
or transferred

Challenges
Integrate visualization code and simulation code
to share same data structure and optimize
memory usage
Make visualization as scalable as simulation with
simulation data partitioning and distribution
Perform visualization with a low cost that is only a
very small fraction of simulation time

In-situ Visualization

In-situ visualization for S3D Combustion simulations
Design grid adaptor mechanism to ease the integration

• Simulation only provides data partition and pointer of field and particle data to grid
adaptor

• Visualization directly takes data regions from grid adaptor

Highly scalable parallel volume rendering, particle rendering, and image compositing

Visualization time is less than 1% of simulation time if visualization is performed every
10th time step (based on the experimentation results with 15,360 cores, 1620x1280x320 volume
size, and 1024x1024 image size on JaguarPF at ORNL)

Selected zoomed-in views of mix rendering of volume and particle data (volume variable CH2O and particle variable HO2)

In-situ Visualization

Future Work
Continue studying in-situ processing for selected applications to understand
the impact on simulations, subsequent visualization tasks, and scientists’
work processes

• In-situ methods to prepare data for portraying time-varying particles and
how they are clustered into groups with distinct characteristics

• In-situ methods to generate compact data representations of each time
step at simulation time that can be used for subsequent operations on
the opacity and color mappings after simulation

• In-situ methods to compute and visualize metrics suitable for
quantifying variable correlations using statistical analysis techniques

Hierarchy of Application Proxies
(enable hierarchy of understanding for co-design process)

18

CG, Elliptic Solve, Stencil, PIC particle
push vs. particle

Just the communication (halo
exchange) per-core compute load

All Application Kernels, but stripped
down to essentials

Hydro, radiation transport, etc…

Full Workload

Compact apps

Composite tests

Kernels

Skeleton
s

Full application

Coupled Multiphysics Application

In
te

gr
at

io
n

(r
ea

lit
y)

 In
cr

ea
se

s

U
nd

er
st

an
di

ng
 In

cr
ea

se
s

Wasserman 2006

Architectural Simulation for CoDesign

ROSE Compiler: Enables deep analysis of
application requirements, semi-automatic
generation of skeleton applications, and code
generation for ACE and SST.

ACE Node Emulation: Rapid design synthesis
and RAMP/FPGA-accelerated emulation for
rapid prototyping cycle accurate models of
manycore node designs.

SST System Simulation: Enables system-scale
simulation through capture of application
communication traces and simulation of large-
scale interconnects.

– Simulate hardware before it is built!
– Break slow feedback loop for system designs
– Protect vendor IP
– Insert applications and algorithms into the

tightly coupled HW/SW CoDesign process

CoDEx

CoDesign Tool Flow

20

Dan Quinlan 2011

	Combustion Exascale Co-Design Center�Center Director: Jacqueline Chen (SNL)�Deputy Director: John Bell (LBNL)������������Members and Team Leads (bold): Janine Bennett (SNL), Curtis Janssen (SNL), Arun Rodrigues (SNL), Omar Ghattas (UT Austin), Robert Moser (UT Austin), Valerio Pascucci (Utah), Patrick McCormick (LANL), Allen McPherson (LANL), Patrick Hanrahan (Stanford), Alexander Aiken (Stanford), Marc Day (LBNL), Michael Lijewski (LBNL), Paul Hargrove (LBNL), John Shalf (LBNL), David Donofrio (LBNL), Erich Strohmaier (LBNL), Samuel Williams (LBNL), Robert Falgout (LLNL), Ulrike Meier Yang (LLNL), Daniel Quinlan(LLNL), Ray Grout (NREL), Scott Klasky (ORNL), Karsten Schwan (Georgia Tech), Manish Parashar (Rutgers) ��6th International Exascale Software Project Workshop�San Francisco, CA�April 6-7, 2011
	Co-Design Will Enable Predictive Simulation and Modeling of Combustion with 21st Century Fuels
	Slide Number 3
	Requirements, Research, and Collaboration
	Starting from Petascale Combustion Codes: LMC
	Combustion: LMC
	Combustion: LMC
	Combustion: S3D
	Math
	Programming Models
	Data Management and Analytics
	Simulation with in-situ analysis and visualization workflow
	Distributed parallel computation of merge tree
	Distributed parallel computation of merge tree
	In-situ Visualization
	In-situ Visualization
	In-situ Visualization
	Hierarchy of Application Proxies�(enable hierarchy of understanding for co-design process)
	Architectural Simulation for CoDesign
	CoDesign Tool Flow

