
1

Enabling Hierarchical Dissemination of Streams in Content Distribution Networks

Shrideep Pallickara and Geoffrey Fox
Community Grids Lab, Indiana University

{spallick, gcf}@indiana.edu)

Abstract
In streaming systems the content distribution network
routes streams based on interests registered by the
consuming entities. In hierarchical streaming, the
dissemination is also predicated on the resolution of
hierarchical dependencies between various streams.
Entities specify explicit wildcards, in addition to the
implicit ones in place, to further control the types of
streams within a given hierarchy that should be routed to
them. In this paper we describe our algorithm (hashing-
based) for hierarchical streaming. We contrast our
algorithm with two other approaches – using trees and
regular expressions – to organize, evaluate and enforce
support for wildcards in hierarchical streaming. In our
evaluation of these algorithms we are especially interested
in three factors: performance, ability to cope with flux, and
memory consumption. Comprehensive benchmarks for
these algorithms, in this paper, will enable system
designers to harness the best algorithm, which satisfies
their hierarchical streaming requirements.
Keywords: streaming systems, hierarchical streaming,
content distribution networks, pub/sub, middleware

1 Introduction
 Streaming pertains to the routing of data streams from
the sources to entities that are interested in them. In
streaming, the dissemination of streams is typically
independent of the underlying network and is, instead,
content-based. The routing is within the purview of the
content distribution network, which tracks both the entities
and their interests. Content distribution networks provide a
scalable framework for exchanging information between a
very large number of entities. These content distribution
networks could be based on multicast, peer-to-peer,
publish/subscribe or ad hoc networking. This work focuses
on the hierarchical dissemination of streams in content
distribution networks based on publish/subscribe.
 By decoupling the roles of producers and consumers of
a data stream, publish/subscribe systems provide a loosely-
coupled framework for streaming. Producers of data
streams include metadata describing the content
encapsulated in a given stream fragment. These content
descriptors are referred to as topics. Consumers specify
their interests in consuming portions of a stream through
subscriptions that are constraints specified on the values
that the content descriptors might take. Subscription
complexity is directly proportional to the richness of the
content description. Dissemination of streams is based on
these subscriptions and the stream’s content descriptors.

 The simplest content descriptor is a String, for e.g.
Sensor/Streams. This simplicity also enables extremely
fast evaluations of whether a stream fragment satisfies a
specified subscription constraint. Hierarchical content
description assumes that the “/” in the content descriptors
are significant, and correspond to finer-grained
descriptions. Thus, Streams/Sensor/Fluid would describe
streams produced by all sensors reporting on various fluid
properties, while Streams/Sensor/Fluid/Pressure would
describe streams produced by a piezometer, which is used
to measure fluid pressure.
 Hierarchical streaming simplifies the process of
registering interest in content. Without support for
hierarchical streaming, every consumer would need to be
aware of every finer-grained description of content. The
case for hierarchical streaming becomes even more
compelling if one were to consider the increase complexity
of managing subscriptions at the consumers as newer,
finer-grained descriptions of content become available.
 Hierarchical content-descriptors are intuitive, flexible
and lightweight. It is quite simple to describe content, and
also to sift through it. An equivalent XML-based
description of the hierarchical content descriptors would be
complex and heavyweight. Hierarchical content
descriptors provide an intuitive framework for
consumption patterns that could be finer-grained (e.g.
Streams/Sensor/Fluid/Pressure) or coarser-grained (e.g.
Streams/Sensor). Hierarchical streaming allows coarser-
grained and fine-grained consumption patterns to co-exist.

1.1 Wildcards and attributes

 Wildcards, denoted by *, are placeholders specified in
the subscription constraints to hierarchical streams. Most
systems incorporate support for implicit wildcards, whose
scope is over the trailing portion of the hierarchical
descriptor. Thus, the coarser-grained subscription
Streams/Sensor is equivalent to Streams/Sensor/* with
the wildcard appearing at the end of the subscription
constraint. One of the drawbacks of the implicit wildcard
scheme is that a consumer may be interested in most, but
not all, of the content that would then be routed to it. To
resolve this, a different type of wildcard is needed.
 Wildcards can also be explicit. Such explicit wildcards
can appear anywhere in the subscription constraint. By
allowing more precision in the registration of constraints,
explicit wildcards combine the benefits of finer-grained
and coarser-grained registration schemes. For example, to
register an interest in fluid and atmospheric pressure

2

readings from piezometers and barometers respectively, a
consumer may register a constraint of the following form:
Streams/Sensor/*/Pressure.
 The scope of a wildcard operator is demarcated by the
“/” in the hierarchical descriptors; for implicit wildcards,
the scope begins at the end of the subscription constraint.
Content can take on any value within the scope of the
wildcard. A registered subscription constraint can specify
multiple explicit wildcards, and will always have an
implicit wildcard at the end.
 Content demarcated by “/” within the content
descriptors corresponds to an attribute. The number of “/”
separated attributes within a hierarchical descriptor is its
depth. The depth of a hierarchical description in turn
reflects the number of possibilities of placing wildcard
operators, and the complexity of evaluating specified
subscription constraints.
 A subscription with a wildcard on the first attribute is
disallowed. A stand-alone * subscription would result in
all streams within the system being routed to the
consumer, which would then end up being deluged.
Systems may wish to reserve the first attribute to prevent
unauthorized consumption of streams. Here, knowledge of
the first attribute would be the precursor to consuming the
related streams. Of course, additional cryptographic
operations would need to be performed to ensure that the
disseminations are indeed authorized.

1.2 Crux of this paper

 In this paper we focus on managing subscription
constraints and computing destinations based on
hierarchical content descriptors encapsulated in individual
stream fragments. Once the destinations have been
computed it is the responsibility of the content
dissemination network to efficiently disseminate these
streams by calculating routes to reach these destinations.
Our previous work, Ref [1], describes a routing algorithm,
which ensures that the computed routes are efficient and
avoid intermediate nodes that have failed or have been
failure-suspected.
 Specifically, we investigate strategies to organize,
evaluate and enforce support for wildcards in hierarchical
streaming. For hierarchical streaming, we are especially
interested in three factors: computational performance,
flux, and memory consumption. Since streams would be
produced at high rates, the complexity of evaluating
subscription constraints should not exceed an application’s
real-time threshold. Data structures that underpin the
organization scheme should be able cope with the inherent
flux, caused by constantly evolving interests among a large
set of consumers. Finally, neither the performance nor the
ability to cope with flux should be at the expense of
substantial memory allocation costs associated with
representing these subscription constraints.
 In this paper we present our hashing-based algorithm
for hierarchical streaming. We compare our algorithm with

two other approaches: tree-based and regular expressions
based.

1.3 Paper Contribution

 The primary contribution of this paper is our algorithm
(hashing based), for computing destinations in hierarchical
streaming, whose memory consumption and computational
overhead is very efficient. Algorithms for computing
destinations for hierarchical streaming tend to be either
tree-based, which are computationally optimal but memory
intensive, or are regular-expressions based, which make
optimal use of memory but with poor response times. The
asymptotic complexity of our algorithm matches that of
the tree-based case for computational efficiency, and that
of the regular expressions case for memory utilization. We
have performed extensive benchmarks, to compare and
contrast these algorithms and they confirm the suitability
of our algorithm and its ability to cope with flux.

1.4 Applicability of Hierarchical Streaming

 Hierarchical streaming is particularly suitable for
managing disseminations in several domains; here, we
focus on three such domains: workflows, map-reduce
enabled applications, and networked observational
environments. In workflows, the outputs of consecutive
stages of the pipeline can successively add attributes to the
content descriptors signifying the outputs of different
stages. A given computational unit could be part of
different stages within a pipeline or multiple workflows.
Map-reduce is a framework utilized in cloud computing
wherein the processing of large datasets is split into
smaller components (maps) that process smaller portions
of the datasets, the results of which are then combined
(reduce) to reconstitute the final result. These map-reduce
operations can be sequential or iterative. Hierarchical
streaming can be used to not only collate results produced
by individual map functions, but also to identify, process
and fuse outputs produced by different iterations of a given
map-reduce computation. In networked observational
environments, data produced by sensing equipments need
to be routed to different computational units depending on
the hardware, metric, and precision of the data.
Additionally, these observational systems need to
incorporate support for the addition and removal of
sensing equipment without having to update the processing
units at disparate locations. Hierarchical streaming can
enable selective routing and also manage the flux in the
devices being used in observational settings.
Paper Organization: Section 2 provides an overview of
the NaradaBrokering content distribution network. Section
3 includes a description of the three different algorithms to
organize and enforce support for wildcards in hierarchical
streaming. Section 4 presents our performance evaluation.
In Section 5 we describe related work in this area. Finally,
we present our conclusions and a discussion of our
proposed future work in this area.

3

2 NaradaBrokering
 We have implemented the scheme described in this
paper in the context of the NaradaBrokering [1,2] content
distribution network. The NaradaBrokering content
distribution network comprises a set of cooperating router
nodes known as brokers. Entities, connected to one of the
brokers within the broker network, use their hosting broker
to funnel streams into the broker network and from thereon
to other registered consumers of those streams.
 NaradaBrokering is application-independent and
incorporates several services to mitigate network-induced
problems as streams traverse domains during
disseminations. The system provisions easy to use
guarantees, while delivering consistent and predictable
performance that is adequate for use in real-time settings.
 By specifying constraints on the content descriptors
associated with individual stream fragments, consumers of
a given data stream can specify, very precisely, the
portions of the data stream that they are interested in
consuming. The security scheme [2] enforces the
authorization and confidentiality constraints associated
with the generation and consumption of secure streams
while coping with denial of service attacks.
 By preferentially deploying links during
disseminations, the routing algorithm in NaradaBrokering
ensures that underlying network is optimally utilized. This
preferential routing ensures that applications receive only
those portions of streams that are of interest. Since a given
application is typically interested in only a fraction of the
streams present in the system, preferential routing ensures
that an application is not deluged by streams that it will
subsequently discard. Some of the domains that
NaradaBrokering has been deployed in include earthquake
science, particle physics, environmental monitoring,
geosciences, GIS systems, and defense applications.

3 Hierarchical Streaming
 In this section we describe three different approaches
to managing and evaluating subscription constraints in
hierarchical streaming. The tree-based approach is the
most commonly used approach, while the regular
expression based approach is less commonly used. We also
present our algorithm, based on hashtables. For each
algorithm, we describe the addition and removal of
subscription constraints, and computing destinations for
stream fragments.

3.1 Tree based approach

 The tree-based representation of subscription
constraints on hierarchical content descriptors is the most
commonly used approach. Each “/” separated subscription
is first converted into a set of comma
separated<tag=value> tuples. Thus, a constraint of the
form /Streams/Sensors/*/Pressure would be represented
as the following: <Tag1=Streams, Tag2=Sensors,

Tag3=*, Tag4=Pressure>. The tree representation of this
subscription constraint, within an existing subscription
tree, is depicted in Figure 1. The Tag# is introduced
because traversal of the graph is based on the values that
the edges take. By representing attribute constraints as
edges in the graph, we can allow multiple edges (each
corresponding to a different value of the attribute) to
emerge from a node. Each edge has its own set of
destinations. An edge with a destination indicates that a
subscription constraint has been specified until that point.

Figure 1: An example subscription tree

3.1.1 Adding and removal of subscription constraints

 When processing subscription constraints the tree
traversal is from top-to-bottom. Nodes and edges are
reused when possible. If an edge cannot be reused, new
edges and nodes will be created from that point on,
resulting in the addition of a sub-tree to the existing
subscriptions tree. The last edge created as a result of
processing a subscription constraint is referred to as a
destination edge. When multiple subscriptions reuse a
given destination edge, the corresponding destination info
appears in the destination list associated with that edge.
 Each edge maintains a reference count of the number
of destination edges that can be reached by traversing it.
The reference count for a destination edge is the size of the
destination list that it maintains. Each edge traversed
during the addition (or removal) of subscriptions has its
reference count increased (or decreased) by one.
 Determination of whether edges and nodes need to be
pruned from the subscriptions tree are done in a bottom-up
fashion, starting at the destination edge associated with the
subscription being removed. An edge is removed if its
reference count is reduced to zero: this signifies that no
destinations can be computed by traversing this edge. A
node is removed if the last edge that originated from it is
removed. Reference counts associated with edges closer to
the root of the tree is greater than, or equal to, the
reference counts associated with the child edges. So, if it is
determined that an edge is not to be removed, pruning of
edges and nodes higher-up in the tree is not needed.

Tag 2

Tag 3

Tag 4

Tag 3

Tag 4

Sensors Results

Fluid Atmospheric
Transform

Tag 4

*

Pressure Pressure PressureDensity Stage 1* *

Tag 1

Streams

Tag 4

Tag 2

 Workflow

4

3.1.2 Computing destinations

 To compute destinations associated with a stream
fragment, the content descriptors associated with stream
fragment is first retrieved. These content descriptors are
then used to traverse the subscription tree. At every node at
most 2 edges may be traversed: the edge with matching
value and, if present, the wildcard edge. Depending on the
number and location of wildcard edges, there could be
multiple traversal paths during this process.
 A given traversal path may include zero or more
destination edges. The destination list for a path is the
union of destination lists associated with each of the
constituent destination edges. The cumulative destination
list for a stream fragment is the union of the destination
lists associated with each of the traversed paths.

3.1.3 Complexity Analysis

 While computing destinations, the worst case occurs
when after the first attribute at every subsequent node 2
edges – the value edge and the wildcard edge – are
traversed. In the worst case, if the number of attributes is
m, there would be 1+2 + 4 + … + 2m-1 = ∑ 2
operations, each of cost O(1), need to be performed. The
complexity for computing destinations is O(1) where the
constant is 2m-1 in the worst-case. In the best case, exactly
m operations would need to be performed, for a
complexity of O(1) where the constant is m. Managing
subscriptions typically involves the creation and deletion
of nodes and links. In the worst case, for each of the N
subscriptions, (m-1) nodes and m edges would need to be
created. The space utilization in the worst case is O(N)
where the constant is m.

3.2 Regular expressions

 In our second approach, we make use of regular
expressions to compute destinations associated with
hierarchical streaming. We first recast subscription
constraints as regular expressions. To do this, we make use
of the Kleene star operator (.*) in the wildcard region
demarcated by “/”. In regular expression terms, the (.)
corresponds to matching any single character in that
position, while the (*) matches the preceding element zero
or more times. In tandem, (.*) signifies that any set of
characters can appear within the wildcard’s scope.

3.2.1 Addition and Removal of Subscription constraints

 The data structure used to store subscriptions is a
hashtable: the subscription identifier is used as the key and
the subscription is stored as the corresponding value.
Subscriptions include destination information.
Subscription identifiers are 128-bit UUIDs (Universally
Unique Identifier) to ensure system-wide uniqueness, and
are used during the addition and removal of subscriptions
to see if a subscription was previously registered.
 Additionally, every regular expression that is specified
as a String is first compiled into a pattern, which is then

used to match arbitrary character sequences against the
regular expression. The Pattern engine performs traditional
NFA (Non-Deterministic Finite-State Automata) matching.

3.2.2 Computing destinations

 To compute destinations associated with a stream
fragment, the content descriptors associated with stream
fragment is first retrieved. Every subscription constraint
(encapsulating the regular expression query) is then
matched against this identifier to determine if there is a
match. In case of match, the destination within the
subscription is added to the destination list associated with
the fragment. As an optimization feature, a check is made
to see if the subscription’s destination is already present in
the destination list associated with the stream fragment; if
it is, the encapsulated regular expression is not evaluated.

3.2.3 Complexity Analysis

 It has been shown, Ref [3], that the processing
complexity for evaluating an NFA-based regular
expression of size n is O(n2). In the worst case, where the
registered subscription constraints are all from different
destinations, the entire set, of size N, of subscriptions
would need to be evaluated. In this case, the processing
complexity would be O(n2N) when assuming that n is the
average size of the regular expression query. The storage
overheads in this scheme correspond to storing the set of
subscriptions. If there are N subscriptions, the storage
complexity is O(N) with a fixed small constant that is
independent of the number of attributes.

3.3 Hashing based

 In our hashing based algorithm, we aim to have the
performance of the tree-based scheme for computing
destinations, but the memory utilization profile of the
regular expression scheme.

3.3.1 Addition and removal of subscription constraints

 In our algorithm, the data structure used to manage the
subscriptions is the hashtable. The subscription constraint
is itself stored as the key, and the value is the destination
list associated with the subscription. The algorithm
maintains another hashtable to keep track of wildcards that
have been specified. The wildcards-table is indexed based
on the value of the first attribute of the hierarchical
descriptors; since a wildcard is disallowed for the first
attribute, all subscriptions will specify this.
 When a new subscription (depicted in Figure 2.a),
needs to be processed, the subscription constraint attributes
are processed before the subscription can be added to the
subscriptions-table. Based on the value of the first attribute
in the subscription constraint, an attempt is made to
retrieve the wildcard counts array from the wildcards-
table. If an entry corresponding to the first attribute is not
present in the wildcards-table, a new entry is initialized
with the maximum allowable number of attributes m. Next,

5

we determine the number and location of wildcards that
have been specified within the “/” that demarcate the
content descriptor attributes. The wildcard-counts array is
incremented by one at the indices corresponding to the
location of wildcards. The wildcard-counts, for the first
attribute of a hierarchical descriptor, thus snapshots the
locations at which wildcards have been specified by the set
of related (similar first attribute) subscriptions.
 The first time a subscription is added to the
subscriptions-table, the destination list corresponding to
this subscription is the destination associated with the
subscription. Additional subscriptions with the same
subscription constraint result in the addition of the
corresponding destinations to that subscription’s
destination list.
 When a subscription is removed, a check is made to
determine the number and location of wildcards that have
been specified for various attributes. If a wildcard is
present, the wildcard counts array corresponding to the
first attribute of the subscription constraint is retrieved.
The wildcard counts are then decremented by one at the
indices corresponding to the location of the wildcards.
 Since a wildcard cannot be specified for the first
attribute, the first element in the wildcard-counts array is
always zero. We use this first index to keep track of the
number of subscriptions that have been specified on the
first attribute of the hierarchical descriptor. This is
incremented the first time a subscription, with a matching
first attribute, has been specified irrespective of whether
the constraint contains wildcard operators or not. Removal
of the subscription will result in a corresponding reduction
in the count. When the subscription-count corresponding
to the first attribute is reduced to zero, the space allocated
for the wildcard-counts array will be reclaimed.

MANAGESUBSCRIPTIONADDITION(A, consumerDest)
 INITIALIZEWILDCARDCOUNTSARRAY(A1)
 wcounts = GETWILDCARDCOUNTSARRAY(A1)

 for i 2 to SIZE(A)
 if Ai = *
 then wcounts[i] wcounts[i] + 1

 ADDSUBSCRIPTION(A, consumerDest)
 wcounts[1] wcounts[1] + 1

ADDSUBSCRIPTION(A, consumerDest)
 if subscription A in dictionary
 then dest get destinations from subscription dictionary
 dest dest U consumerDest
 else put (A, consumerDest) into subscription dictionary

INITIALIZEWILDCARDCOUNTSARRAY(attribute)
 if attribute in wildcard dictionary
 then return
 else wcounts = ALLOCATE(maxAttributeDepth)
 put (attribute, wcounts) into wildcard dictionary

GETWILDCARDCOUNTSARRAY(attribute)
 return retrieved counts from wildcard dictionary

(a)

COMPUTEDESTINATIONS(A)
 dest -NIL, level 1
 wcounts GETWILDCARDCOUNTSARRAY(A1);
 if (wcounts = NIL)
 then return dest

 dest GETDESTINATIONFOR(A1);
 dest dest U FINERRECURSION (dest, A, wcounts, A1, level)

FINERRECURSION (dest, A, wcounts, coarserSub, level)
 if (level > SIZE(A))
 then return dest

 level level + 1
 finerSub coarserSub + “/” + Alevel
 dest GETDESTINATIONFOR (finerSub)
 dest dest U FINERRECURSION (dest, A, wcounts, finerSub, level)

 if (wcounts[level] > 0)
 then finerWCSub coarserSub + “/*”
 dest GETDESTINATIONFOR (finerWCSub)
 dest dest U FINERRECURSION(dest, A, wcounts,
 finerWCSub,level)

 return dest

GETDESTINATIONFOR (subscription)
 Perform dictionary operation to retrieve destination

(b)

Figure 2: Algorithm for adding subscriptions and
computing destinations

3.3.2 Computing destinations

 To compute destinations (depicted in Figure 2.b)
associated with a stream fragment, the content descriptors
associated with stream fragment is first retrieved. Next, the
wildcard counts array corresponding to the first attribute in
the content descriptor retrieved. If such a wildcard counts
array is not available, no subscriptions that could
potentially match the content descriptor have been
specified, and no further processing is performed. If, on
the other hand, the wildcard counts array exists for the first
attribute, processing continues.
 The content descriptors along with indices, where the
wildcards have been specified, are used to construct the set
of subscriptions that would match the content descriptor.
Consider the case where A/B/C/D is the content descriptor,
and wildcard counts indicate that wildcards have been
specified for the second and third attribute. In this case, the
set of subscriptions that would be constructed are:
A/B/C/D, A/*/C/D, A/B/C/* and A/*/C/* in addition to A
and A/B.
 These constructed subscriptions are then used to
compute destinations associated with the stream fragment.
For every subscription, a simple lookup of the
subscriptions table yields the corresponding destination
list. The destination list for the stream fragment is the
union of the destination lists associated with each of the
constructed subscriptions.

6

3.3.3 Complexity Analysis

 The complexity of supporting dictionary operations for
a hashtable on the average is O(1). Thus, the lookup,
addition and retrieval times for a hashtable is O(1). When
computing destinations, in the best case, only one such
access would be needed to retrieve the destinations list for
the subscription constraint. In the worst case, for
hierarchical descriptors with a maximum of the m
attributes and wild card operators for every attribute except
the first one, 2m-1 accesses (each with a cost of O(1))
would need to be made. Please note that the O(1) costs in
our hashtable scheme would be slightly higher than the
corresponding O(1) costs in the tree-based scheme: our
benchmarks also confirm this. The memory consumption
is O(N) in the worst case, when all the N subscription
constraints are unique. The constant for the space-
complexity would depend on the implementation strategy:
the Google Sparse Hash, for example is extremely
memory-efficient with only a 2 bit overhead per entry. In
our implementation and benchmarks we used the hashtable
that is available as part of the Java libraries.

4 Performance Evaluation
 We first start-off by presenting results outlining the
communication latencies in a simplified setting involving
one producer and consumer. The communication latencies
will be reported for stream fragments with different
payload sizes, each of which has a one-attribute content
descriptor. The reported communication latencies include
the time spent in computing destinations. Benchmarks of
NaradaBrokering in settings involving distributed broker
networks can be found in [1,2].
 To benchmark the three algorithms for hierarchical
streaming we profile several aspects related to its
performance, ability to cope with flux and memory
utilization. To measure the performance of the algorithms,
we vary both the number of attributes in the content
descriptors and the also the number of subscription
constraints that are managed by each algorithm. Under
these conditions, we report the costs involved in
computing destinations for a given stream fragment. These
computational costs reveal the suitability of each algorithm
for real-time streaming.
 To determine the ability of the algorithms to cope with
flux, we compute the costs involved in adding and
removing subscriptions when the size of the managed
subscription vary.
 We also profiled the tree-based approach for its
memory utilization: specifically, we track the number of
nodes and edges that are created for different number of
attributes as the size of the managed subscriptions varies.

4.1 Streaming in Cluster Settings

 Our first set of benchmarks relate to measuring stream
communication latencies in cluster settings. We

benchmarked the simplest case involving one producer,
one consumer, and a content distribution network that
comprises one broker. There is just one subscription being
maintained, and it is specified on a content descriptor with
exactly one attribute. This setting will reveal the lowest
possible latencies for streaming in LAN settings. For real-
time streaming, in multimedia settings, the acceptable
latencies are typically about 10-30 milliseconds in LAN
settings, and around 100-200 milliseconds in WAN
settings depending on the quality of the underlying
network.
 The two cluster machines (4 CPU, 2.4GHz, 2GB
RAM) involved in the benchmark were hosted on 100
Mbps LAN. The producer and consumer were hosted on
the same machine to obviate the need to account for clock
drifts while measuring latencies for streams issued by the
producer, and routed by the broker (hosted on the second
machine) to the consumer. All processes executed within
version 1.6 of Sun’s JVM.

Figure 3: Streaming overheads in cluster settings

 The results, depicted in Figure 3, report the mean
communication delays for different payload sizes
encapsulated within the stream fragments. The reported
delay is the average of 50 samples for a given payload
size; the standard deviation for these samples also being
reported. For stream fragment payload sizes, the delays are
around a millisecond for payloads up to a 10 KB, and
increasing to 20 milliseconds for 1 MB payload size. It
must be noted that in WAN settings the communication
latencies are in the order of 50-200 milliseconds per hop

4.2 Performance of the algorithms

 The remainder of the benchmarks, pertain to the three
algorithms presented in this paper, and were performed on
a standalone machine (4 CPU, 2.4GHz, 2GB RAM) with
processes executing within version 1.6 of Sun’s JVM. We
also used a high-resolution timer to report most of our
measurements in microseconds.

4.2.1 Computational Performance

 To measure the computational performance of the
algorithms, we vary the number of attributes in the content
descriptors and also the number of managed subscriptions
in each algorithm from 104 to 105 subscriptions. The

 0

 10

 20

 30

 40

 50

 60

 100 1000 10000 100000 1e+006
 0

 2

 4

 6

 8

 10

 12

 14

M
e
a
n
 t

ra
n
si

t
d
e
la

y

(M

ill
is

e
co

n
d
s)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

M
ill

is
e
co

n
d
s)

Content Payload Size (Bytes)

Streaming overheads for different
 payload sizes (100B - 1MB)

 Delay
 Standard Deviation

7

subscriptions are generated randomly, with every attribute
being randomly assigned one of 50 possible values. For
each subscription, except for the first attribute, wildcards
will be specified on one of the other attributes.

Figure 4: Overheads for tree-based scheme

Figure 5: Overheads for the Hashing scheme

Figure 6: Overheads for Regular expressions

 Figure 4, Figure 5 and Figure 6 depict the overheads
for computing destinations in tree-based, hashing and
regular expressions scheme respectively. In general, the
matching overheads increase as the number of
subscriptions and the number of attributes within the
subscriptions increase. Given the large number, and
random generation, of subscriptions, a wildcard eventually
appears for almost every other attribute in a set of related
subscriptions (based on the first attribute). This in turn
causes the hashing-based scheme – Figure 5 – to approach
its worst-case performance wherein the number of sweeps
of the Hashtable becomes proportional to the number of
specified attributes. In the regular expressions case, Figure
6, the costs (in milliseconds) do not depart significantly
from their high base costs as the attributes increase.

Figure 7: Cumulative overhead comparisons

 Figure 7 contrasts the matching overheads for the three
algorithms for varying number of subscriptions, each of
which have 7 attributes. It is clear that the matching
overheads are the best in the case of the tree-based scheme,
with slightly higher overheads for the hashing-based
scheme. The overheads introduced by the regular
expressions scheme are several orders of magnitude higher
than that of the tree-based and hashing-based schemes.

4.2.2 Space Utilization in the Tree-based scheme

 Perhaps the biggest drawback of the tree-based scheme
is the memory requirements associated with maintaining
the set of subscriptions. Figure 8 depicts the memory
allocation costs associated with the tree-based scheme.

Figure 8: Node allocation costs in tree-based scheme

 As the number of attributes and subscriptions increase,
the number of nodes and edges needed to represent the set
of managed subscriptions also increase substantially. Case
in point is the fact that in the tree-based case, managing
100000 subscriptions, each with 10 attributes, results in the
creation of 798188 nodes and 898187 edges:
approximately 2 million objects. During the benchmarks,
the heap size allocated for the JVM had to be set to more
than 1 GB for the tree-based scheme.

4.2.3 Coping with flux

We also performed benchmarks to determine the ability of
the algorithms to cope with flux, wherein subscriptions are
being added and removed at high rates. Figure 9 and
Figure 10 depict the cost associated with adding and

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50 60 70 80 90 100M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

Tree based hierarchical descriptors

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50 60 70 80 90 100

M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

10

100

10 20 30 40 50 60 70 80 90 100

M
at

ch
in

g
O

ve
rh

ea
d

(M
ill

is
ec

on
ds

)

Number of Subscriptions (Thousands)

Regular expressions based hierarchical descriptors

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

 10

 100

 1000

 10000

 100000

 1e+006

10 20 30 40 50 60 70 80 90 100M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

Contrasting performance for different algorithms
with 7 attributes in the hierarchical descriptors

 Regular expressions
Hashing

Tree-based

Tree-based Nodes

 4 5 6 7 8 9 10Number of
Descriptor Attributes

0
20

40
60

80
100

Number of
Subscriptions

 (1000s)

 10000

 100000

 1e+006

Number of
Tree Nodes

8

removing one subscription for each of the algorithms. The
regular expressions scheme delivers the best performance,
with the hashing-based performance quite close to this.
The additional overhead in the hashing scheme is
introduced by the need to maintain the wildcard-counts
array. The higher costs in the tree-based scheme pertain to
the creation or removal of nodes and edges.

Figure 9: Costs for adding a subscription

Figure 10: Costs for removing a subscription

4.2.4 Standard Deviation

Each point in our graphs (figures 4,5,6,7, 9 and 10)
corresponds to the average of a 100 runs on a dedicated
machine on which no other user jobs were executing. The
standard deviations involved in these measurements were
low: for computing destinations, in the tree-based case it
was around 1 microsecond while in the hashing scheme it
was around 4-10 microseconds.

5 Related Work
 Support for tree-based <tag, value> tuples with
equality checks and wildcards in the values was first used
in the Gryphon [6] system. Gryphon’s matching scheme
provides a time-complexity that is sub-linear in the number
of subscriptions. However, even though their complexity
of space consumption is linear in the number of
subscriptions, the constant is high enough that the costs
become prohibitive as the number of attributes increase.
An optimization to their matching algorithm based on
successor nodes, reduces the matching time even further

by 20%, but at the expense of increased space complexity.
Their suggested space optimization involves collapsing
chains of *-edges will not have a significant effect: in our
benchmarks, where we randomly generated constraints,
there were no subscription constraints that lead to such *
chains and the space costs were still very high (Figure 8).
 The WS-Topics [5] specification incorporates support
for organizing topics and also for maintaining aliases
associated with these topics. While wildcards are not
explicitly supported, subscribers can navigate the topic
hierarchy to determine the topics to subscribe to. WS-
Topics is part of the Web Service Resource Framework
(WSRF) suite of specifications that are used to build Grid
systems. WSRF is a realignment of the dominant Open
Grid Service Infrastructure [6] to be more in line with the
emerging consensus within the Web Services community.
 Ref [7] outlines a strategy to convert each subscription
in Elvin into a deterministic finite state automaton. This
conversion, and the matching solutions, nevertheless can
lead to an combinatorial explosion in the number of states
for a small number of subscriptions. Systems such as
SonicMQ [8] and TIBCO [9] incorporate support for
hierarchical “/”-separated topic spaces. However, to the
best of our knowledge, they do not seem to include support
for implicit wildcard operators.
 The Java Message Service (JMS) [10] specification
from Sun defines a set of Java interfaces that enables the
development of publish/subscribe applications. Individual
messages have properties associated with them; constraints
based on SQL queries can specified on the values that
these properties take. SQL query evaluation in general
tends to be just as compute intensive as the evaluation of
regular expressions.
 The Event Service [11] approach adopted by the OMG
is one of establishing channels and subsequently
registering suppliers and consumers to the event channels.
The approach could entail clients (consumers) to be aware
of a large number of event channels.

6 Conclusions
 Hierarchical descriptors provide a flexible, lightweight
scheme for content description and also for the
specification of constraints on these content descriptors. In
this paper we presented algorithms that could be utilized
for enabling hierarchical streaming.
 Regular expressions provide a rich language for the
specification of constraints through various operators that
enable specification of patterns, partial matches,
placeholders, and case independence among others.
However, the computational costs introduced by the
regular expressions scheme can be prohibitive as the
number of subscription constraints increase.
 The tree-based approach provides excellent
performance, but the memory costs associated with
maintaining the nodes and edges associated with individual
subscription constraints increase substantially as the

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30 40 50 60 70 80 90 100Ad
di

tio
n

O
ve

rh
ea

ds
 (M

ic
ro

se
co

nd
s)

Number of Subscriptions (Thousands)

Costs for adding 1 subscription in different algorithms
with 7 attributes in the hierarchical descriptors

Tree-based
Hashing

 Regular expressions

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30 40 50 60 70 80 90 100R
em

ov
al

 O
ve

rh
ea

ds
 (M

ic
ro

se
co

nd
s)

Number of Subscriptions (Thousands)

Costs for removing 1 subscription in different algorithms
with 7 attributes in the hierarchical descriptors

Tree-based
Hashing

 Regular expressions

9

number of the attributes and subscriptions increase. In our
benchmarks, for 105 subscriptions each with 10 attributes,
about 2 million elements (edges and nodes combined)
were created.
 Our hashing-based scheme provides computational
performance approaching that of the tree-based scheme
while at the same time providing excellent memory
utilization performance.
 In general, all three algorithms coped reasonably well
in their ability to cope with the flux in their set of managed
subscriptions.
 As part of our future work, we will investigate the use
of hierarchical streaming in map-reduce computations that
could be either single-phase or iterative. This will be the
subject of our future papers in this area.

Bibliography
1. S Pallickara et al. A Framework for Secure End-to-End

Delivery of Messages in Publish/Subscribe Systems.
Proceedings of the 7th IEEE/ACM International Conference
on Grid Computing (GRID 2006). Barcelona, Spain.

2. S Pallickara and G Fox. NaradaBrokering: A Middleware
Framework and Architecture for Enabling Durable Peer-to-
Peer Grids. Proceedings of the ACM/IFIP/USENIX
International Middleware Conference Middleware-2003. pp
41-61.

3. F. Yu, Z. Chen, Y. Diao, T. Lakshman and R. Katz. Fast and
memory-efficient regular expression matching for deep
packet inspection. Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and
communications systems.

4. Marcos Aguilera et al. Matching events in a content-based
subscription system. In Proceedings of the 18th ACM
Symposium on Principles of Distributed Computing
Systems.1999.

5. Web Services Topics (WS-Topics). IBM, Globus, Akamai et
al.ftp://www6.software.ibm.com/software/developer/library/
ws-notification/WS-Topics.pdf

6. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology
of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration.” Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002.

7. Bill Segall, David Arnold, Julian Boot, Michael Henderson,
and Ted Phelps. Content based routing with Elvin4. In
Proceedings AUUG2K, Canberra, Australia, June 2000.

8. SonicMQ: Enterprise Messaging System:
www.sonicsoftware.com/

9. P Maheshwari, M Pang: Benchmarking message-oriented
middleware: TIB/RV versus SonicMQ. Concurrency -
Practice and Experience 17(12): 1507-1526 (2005)

10. M. Happner, R Burridge and R Sharma. Sun Microsystems.
Java Message Service Specification. 2000.

11. The Object Management Group (OMG). OMG’s CORBA
Event Service. Available from http://www.omg.org/

