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Abstract 
In streaming systems the content distribution network 
routes streams based on interests registered by the 
consuming entities. In hierarchical streaming, the 
dissemination is also predicated on the resolution of 
hierarchical dependencies between various streams. 
Entities specify explicit wildcards, in addition to the 
implicit ones in place, to further control the types of 
streams within a given hierarchy that should be routed to 
them. In this paper we describe our algorithm (hashing-
based) for hierarchical streaming. We contrast our 
algorithm with two other approaches – using trees and 
regular expressions – to organize, evaluate and enforce 
support for wildcards in hierarchical streaming. In our 
evaluation of these algorithms we are especially interested 
in three factors: performance, ability to cope with flux, and 
memory consumption. Comprehensive benchmarks for 
these algorithms, in this paper, will enable system 
designers to harness the best algorithm, which satisfies 
their hierarchical streaming requirements. 
Keywords: streaming systems, hierarchical streaming, 
content distribution networks, pub/sub, middleware 

1 Introduction 
 Streaming pertains to the routing of data streams from 
the sources to entities that are interested in them. In 
streaming, the dissemination of streams is typically 
independent of the underlying network and is, instead, 
content-based. The routing is within the purview of the 
content distribution network, which tracks both the entities 
and their interests. Content distribution networks provide a 
scalable framework for exchanging information between a 
very large number of entities. These content distribution 
networks could be based on multicast, peer-to-peer, 
publish/subscribe or ad hoc networking. This work focuses 
on the hierarchical dissemination of streams in content 
distribution networks based on publish/subscribe. 
 By decoupling the roles of producers and consumers of 
a data stream, publish/subscribe systems provide a loosely-
coupled framework for streaming. Producers of data 
streams include metadata describing the content 
encapsulated in a given stream fragment. These content 
descriptors are referred to as topics. Consumers specify 
their interests in consuming portions of a stream through 
subscriptions that are constraints specified on the values 
that the content descriptors might take. Subscription 
complexity is directly proportional to the richness of the 
content description. Dissemination of streams is based on 
these subscriptions and the stream’s content descriptors. 

 The simplest content descriptor is a String, for e.g. 
Sensor/Streams. This simplicity also enables extremely 
fast evaluations of whether a stream fragment satisfies a 
specified subscription constraint. Hierarchical content 
description assumes that the “/” in the content descriptors 
are significant, and correspond to finer-grained 
descriptions. Thus, Streams/Sensor/Fluid would describe 
streams produced by all sensors reporting on various fluid 
properties, while Streams/Sensor/Fluid/Pressure would 
describe streams produced by a piezometer, which is used 
to measure fluid pressure. 
 Hierarchical streaming simplifies the process of 
registering interest in content. Without support for 
hierarchical streaming, every consumer would need to be 
aware of every finer-grained description of content. The 
case for hierarchical streaming becomes even more 
compelling if one were to consider the increase complexity 
of managing subscriptions at the consumers as newer, 
finer-grained descriptions of content become available. 
 Hierarchical content-descriptors are intuitive, flexible 
and lightweight. It is quite simple to describe content, and 
also to sift through it. An equivalent XML-based 
description of the hierarchical content descriptors would be 
complex and heavyweight.  Hierarchical content 
descriptors provide an intuitive framework for 
consumption patterns that could be finer-grained (e.g. 
Streams/Sensor/Fluid/Pressure) or coarser-grained (e.g. 
Streams/Sensor). Hierarchical streaming allows coarser-
grained and fine-grained consumption patterns to co-exist.  

1.1 Wildcards and attributes 

 Wildcards, denoted by *, are placeholders specified in 
the subscription constraints to hierarchical streams. Most 
systems incorporate support for implicit wildcards, whose 
scope is over the trailing portion of the hierarchical 
descriptor. Thus, the coarser-grained subscription 
Streams/Sensor is equivalent to Streams/Sensor/* with 
the wildcard appearing at the end of the subscription 
constraint. One of the drawbacks of the implicit wildcard 
scheme is that a consumer may be interested in most, but 
not all, of the content that would then be routed to it. To 
resolve this, a different type of wildcard is needed. 
 Wildcards can also be explicit. Such explicit wildcards 
can appear anywhere in the subscription constraint. By 
allowing more precision in the registration of constraints, 
explicit wildcards combine the benefits of finer-grained 
and coarser-grained registration schemes. For example, to 
register an interest in fluid and atmospheric pressure 
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readings from piezometers and barometers respectively, a 
consumer may register a constraint of the following form: 
Streams/Sensor/*/Pressure. 
 The scope of a wildcard operator is demarcated by the 
“/” in the hierarchical descriptors; for implicit wildcards, 
the scope begins at the end of the subscription constraint. 
Content can take on any value within the scope of the 
wildcard. A registered subscription constraint can specify 
multiple explicit wildcards, and will always have an 
implicit wildcard at the end. 
 Content demarcated by “/” within the content 
descriptors corresponds to an attribute. The number of “/” 
separated attributes within a hierarchical descriptor is its 
depth. The depth of a hierarchical description in turn 
reflects the number of possibilities of placing wildcard 
operators, and the complexity of evaluating specified 
subscription constraints.  
 A subscription with a wildcard on the first attribute is 
disallowed. A stand-alone * subscription would result in 
all streams within the system being routed to the 
consumer, which would then end up being deluged. 
Systems may wish to reserve the first attribute to prevent 
unauthorized consumption of streams. Here, knowledge of 
the first attribute would be the precursor to consuming the 
related streams. Of course, additional cryptographic 
operations would need to be performed to ensure that the 
disseminations are indeed authorized.  

1.2 Crux of this paper 

 In this paper we focus on managing subscription 
constraints and computing destinations based on 
hierarchical content descriptors encapsulated in individual 
stream fragments. Once the destinations have been 
computed it is the responsibility of the content 
dissemination network to efficiently disseminate these 
streams by calculating routes to reach these destinations. 
Our previous work, Ref [1], describes a routing algorithm, 
which ensures that the computed routes are efficient and 
avoid intermediate nodes that have failed or have been 
failure-suspected. 
 Specifically, we investigate strategies to organize, 
evaluate and enforce support for wildcards in hierarchical 
streaming. For hierarchical streaming, we are especially 
interested in three factors: computational performance, 
flux, and memory consumption. Since streams would be 
produced at high rates, the complexity of evaluating 
subscription constraints should not exceed an application’s 
real-time threshold. Data structures that underpin the 
organization scheme should be able cope with the inherent 
flux, caused by constantly evolving interests among a large 
set of consumers. Finally, neither the performance nor the 
ability to cope with flux should be at the expense of 
substantial memory allocation costs associated with 
representing these subscription constraints. 
 In this paper we present our hashing-based algorithm 
for hierarchical streaming. We compare our algorithm with 

two other approaches: tree-based and regular expressions 
based. 

1.3 Paper Contribution  

 The primary contribution of this paper is our algorithm 
(hashing based), for computing destinations in hierarchical 
streaming, whose memory consumption and computational 
overhead is very efficient. Algorithms for computing 
destinations for hierarchical streaming tend to be either 
tree-based, which are computationally optimal but memory 
intensive, or are regular-expressions based, which make 
optimal use of memory but with poor response times. The 
asymptotic complexity of our algorithm matches that of 
the tree-based case for computational efficiency, and that 
of the regular expressions case for memory utilization. We 
have performed extensive benchmarks, to compare and 
contrast these algorithms and they confirm the suitability 
of our algorithm and its ability to cope with flux. 

1.4  Applicability of Hierarchical Streaming 

 Hierarchical streaming is particularly suitable for 
managing disseminations in several domains; here, we 
focus on three such domains: workflows, map-reduce 
enabled applications, and networked observational 
environments. In workflows, the outputs of consecutive 
stages of the pipeline can successively add attributes to the 
content descriptors signifying the outputs of different 
stages. A given computational unit could be part of 
different stages within a pipeline or multiple workflows.  
Map-reduce is a framework utilized in cloud computing 
wherein the processing of large datasets is split into 
smaller components (maps) that process smaller portions 
of the datasets, the results of which are then combined 
(reduce) to reconstitute the final result. These map-reduce 
operations can be sequential or iterative. Hierarchical 
streaming can be used to not only collate results produced 
by individual map functions, but also to identify, process 
and fuse outputs produced by different iterations of a given 
map-reduce computation. In networked observational 
environments, data produced by sensing equipments need 
to be routed to different computational units depending on 
the hardware, metric, and precision of the data. 
Additionally, these observational systems need to 
incorporate support for the addition and removal of 
sensing equipment without having to update the processing 
units at disparate locations. Hierarchical streaming can 
enable selective routing and also manage the flux in the 
devices being used in observational settings. 
Paper Organization: Section 2 provides an overview of 
the NaradaBrokering content distribution network. Section 
3 includes a description of the three different algorithms to 
organize and enforce support for wildcards in hierarchical 
streaming. Section 4 presents our performance evaluation. 
In Section 5 we describe related work in this area. Finally, 
we present our conclusions and a discussion of our 
proposed future work in this area. 
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2 NaradaBrokering  
 We have implemented the scheme described in this 
paper in the context of the NaradaBrokering [1,2] content 
distribution network. The NaradaBrokering content 
distribution network comprises a set of cooperating router 
nodes known as brokers. Entities, connected to one of the 
brokers within the broker network, use their hosting broker 
to funnel streams into the broker network and from thereon 
to other registered consumers of those streams. 
 NaradaBrokering is application-independent and 
incorporates several services to mitigate network-induced 
problems as streams traverse domains during 
disseminations. The system provisions easy to use 
guarantees, while delivering consistent and predictable 
performance that is adequate for use in real-time settings. 
 By specifying constraints on the content descriptors 
associated with individual stream fragments, consumers of 
a given data stream can specify, very precisely, the 
portions of the data stream that they are interested in 
consuming. The security scheme [2] enforces the 
authorization and confidentiality constraints associated 
with the generation and consumption of secure streams 
while coping with denial of service attacks.  
 By preferentially deploying links during 
disseminations, the routing algorithm in NaradaBrokering 
ensures that underlying network is optimally utilized. This 
preferential routing ensures that applications receive only 
those portions of streams that are of interest. Since a given 
application is typically interested in only a fraction of the 
streams present in the system, preferential routing ensures 
that an application is not deluged by streams that it will 
subsequently discard. Some of the domains that 
NaradaBrokering has been deployed in include earthquake 
science, particle physics, environmental monitoring, 
geosciences, GIS systems, and defense applications. 

3 Hierarchical Streaming 
 In this section we describe three different approaches 
to managing and evaluating subscription constraints in 
hierarchical streaming. The tree-based approach is the 
most commonly used approach, while the regular 
expression based approach is less commonly used. We also 
present our algorithm, based on hashtables. For each 
algorithm, we describe the addition and removal of 
subscription constraints, and computing destinations for 
stream fragments.  

3.1 Tree based approach 

      The tree-based representation of subscription 
constraints on hierarchical content descriptors is the most 
commonly used approach. Each “/” separated subscription 
is first converted into a set of comma 
separated<tag=value> tuples. Thus, a constraint of the 
form /Streams/Sensors/*/Pressure would be represented 
as the following: <Tag1=Streams, Tag2=Sensors, 

Tag3=*, Tag4=Pressure>.  The tree representation of this 
subscription constraint, within an existing subscription 
tree, is depicted in Figure 1. The Tag# is introduced 
because traversal of the graph is based on the values that 
the edges take. By representing attribute constraints as 
edges in the graph, we can allow multiple edges (each 
corresponding to a different value of the attribute) to 
emerge from a node. Each edge has its own set of 
destinations. An edge with a destination indicates that a 
subscription constraint has been specified until that point. 

 
Figure 1: An example subscription tree 

3.1.1 Adding and removal of subscription constraints 

 When processing subscription constraints the tree 
traversal is from top-to-bottom. Nodes and edges are 
reused when possible. If an edge cannot be reused, new 
edges and nodes will be created from that point on, 
resulting in the addition of a sub-tree to the existing 
subscriptions tree. The last edge created as a result of 
processing a subscription constraint is referred to as a 
destination edge. When multiple subscriptions reuse a 
given destination edge, the corresponding destination info 
appears in the destination list associated with that edge. 
 Each edge maintains a reference count of the number 
of destination edges that can be reached by traversing it. 
The reference count for a destination edge is the size of the 
destination list that it maintains. Each edge traversed 
during the addition (or removal) of subscriptions has its 
reference count increased (or decreased) by one.  
 Determination of whether edges and nodes need to be 
pruned from the subscriptions tree are done in a bottom-up 
fashion, starting at the destination edge associated with the 
subscription being removed. An edge is removed if its 
reference count is reduced to zero: this signifies that no 
destinations can be computed by traversing this edge.  A 
node is removed if the last edge that originated from it is 
removed. Reference counts associated with edges closer to 
the root of the tree is greater than, or equal to, the 
reference counts associated with the child edges. So, if it is 
determined that an edge is not to be removed, pruning of 
edges and nodes higher-up in the tree is not needed. 

Tag 2

Tag 3

Tag 4

Tag 3

Tag 4

Sensors Results

Fluid    Atmospheric
Transform

Tag 4

*

Pressure Pressure PressureDensity Stage 1* *

Tag 1

Streams

Tag 4

Tag 2

  Workflow



4 

3.1.2 Computing destinations 

 To compute destinations associated with a stream 
fragment, the content descriptors associated with stream 
fragment is first retrieved. These content descriptors are 
then used to traverse the subscription tree. At every node at 
most 2 edges may be traversed: the edge with matching 
value and, if present, the wildcard edge. Depending on the 
number and location of wildcard edges, there could be 
multiple traversal paths during this process. 
 A given traversal path may include zero or more 
destination edges. The destination list for a path is the 
union of destination lists associated with each of the 
constituent destination edges. The cumulative destination 
list for a stream fragment is the union of the destination 
lists associated with each of the traversed paths.  

3.1.3 Complexity Analysis 

 While computing destinations, the worst case occurs 
when after the first attribute at every subsequent node 2 
edges – the value edge and the wildcard edge – are 
traversed. In the worst case, if the number of attributes is 
m, there would be 1+2 + 4 + … + 2m-1 = ∑ 2  
operations, each of cost O(1), need to be performed. The 
complexity for computing destinations is O(1) where the 
constant is 2m-1 in the worst-case. In the best case, exactly 
m operations would need to be performed, for a 
complexity of O(1) where the constant is m.  Managing 
subscriptions typically involves the creation and deletion 
of nodes and links. In the worst case, for each of the N 
subscriptions, (m-1) nodes and m edges would need to be 
created. The space utilization in the worst case is O(N) 
where the constant is m.  

3.2 Regular expressions 

 In our second approach, we make use of regular 
expressions to compute destinations associated with 
hierarchical streaming. We first recast subscription 
constraints as regular expressions. To do this, we make use 
of the Kleene star operator (.*) in the wildcard region 
demarcated by “/”. In regular expression terms, the (.) 
corresponds to matching any single character in that 
position, while the (*) matches the preceding element zero 
or more times. In tandem, (.*) signifies that any set of 
characters can appear within the wildcard’s scope.  

3.2.1 Addition and Removal of Subscription constraints 

 The data structure used to store subscriptions is a 
hashtable: the subscription identifier is used as the key and 
the subscription is stored as the corresponding value. 
Subscriptions include destination information. 
Subscription identifiers are 128-bit UUIDs (Universally 
Unique Identifier) to ensure system-wide uniqueness, and 
are used during the addition and removal of subscriptions 
to see if a subscription was previously registered.  
 Additionally, every regular expression that is specified 
as a String is first compiled into a pattern, which is then 

used to match arbitrary character sequences against the 
regular expression. The Pattern engine performs traditional 
NFA (Non-Deterministic Finite-State Automata) matching. 

3.2.2 Computing destinations 

 To compute destinations associated with a stream 
fragment, the content descriptors associated with stream 
fragment is first retrieved. Every subscription constraint 
(encapsulating the regular expression query) is then 
matched against this identifier to determine if there is a 
match. In case of match, the destination within the 
subscription is added to the destination list associated with 
the fragment. As an optimization feature, a check is made 
to see if the subscription’s destination is already present in 
the destination list associated with the stream fragment; if 
it is, the encapsulated regular expression is not evaluated.   

3.2.3 Complexity Analysis 

 It has been shown, Ref [3], that the processing 
complexity for evaluating an NFA-based regular 
expression of size n is O(n2). In the worst case, where the 
registered subscription constraints are all from different 
destinations, the entire set, of size N, of subscriptions 
would need to be evaluated. In this case, the processing 
complexity would be O(n2N) when assuming that n is the 
average size of the regular expression query. The storage 
overheads in this scheme correspond to storing the set of 
subscriptions. If there are N subscriptions, the storage 
complexity is O(N) with a fixed small constant that is 
independent of the number of attributes. 

3.3 Hashing based 

 In our hashing based algorithm, we aim to have the 
performance of the tree-based scheme for computing 
destinations, but the memory utilization profile of the 
regular expression scheme. 

3.3.1 Addition and removal of subscription constraints 

 In our algorithm, the data structure used to manage the 
subscriptions is the hashtable. The subscription constraint 
is itself stored as the key, and the value is the destination 
list associated with the subscription. The algorithm 
maintains another hashtable to keep track of wildcards that 
have been specified. The wildcards-table is indexed based 
on the value of the first attribute of the hierarchical 
descriptors; since a wildcard is disallowed for the first 
attribute, all subscriptions will specify this. 
 When a new subscription (depicted in Figure 2.a), 
needs to be processed, the subscription constraint attributes 
are processed before the subscription can be added to the 
subscriptions-table. Based on the value of the first attribute 
in the subscription constraint, an attempt is made to 
retrieve the wildcard counts array from the wildcards-
table. If an entry corresponding to the first attribute is not 
present in the wildcards-table, a new entry is initialized 
with the maximum allowable number of attributes m. Next, 



5 

we determine the number and location of wildcards that 
have been specified within the “/” that demarcate the 
content descriptor attributes. The wildcard-counts array is 
incremented by one at the indices corresponding to the 
location of wildcards. The wildcard-counts, for the first 
attribute of a hierarchical descriptor, thus snapshots the 
locations at which wildcards have been specified by the set 
of related (similar first attribute) subscriptions. 
 The first time a subscription is added to the 
subscriptions-table, the destination list corresponding to 
this subscription is the destination associated with the 
subscription. Additional subscriptions with the same 
subscription constraint result in the addition of the 
corresponding destinations to that subscription’s 
destination list. 
 When a subscription is removed, a check is made to 
determine the number and location of wildcards that have 
been specified for various attributes. If a wildcard is 
present, the wildcard counts array corresponding to the 
first attribute of the subscription constraint is retrieved. 
The wildcard counts are then decremented by one at the 
indices corresponding to the location of the wildcards.  
 Since a wildcard cannot be specified for the first 
attribute, the first element in the wildcard-counts array is 
always zero. We use this first index to keep track of the 
number of subscriptions that have been specified on the 
first attribute of the hierarchical descriptor. This is 
incremented the first time a subscription, with a matching 
first attribute, has been specified irrespective of whether 
the constraint contains wildcard operators or not. Removal 
of the subscription will result in a corresponding reduction 
in the count. When the subscription-count corresponding 
to the first attribute is reduced to zero, the space allocated 
for the wildcard-counts array will be reclaimed. 

MANAGESUBSCRIPTIONADDITION(A, consumerDest)  
   INITIALIZEWILDCARDCOUNTSARRAY(A1) 
   wcounts = GETWILDCARDCOUNTSARRAY(A1) 

   for i  2 to SIZE(A) 
      if Ai = * 
        then wcounts[i]   wcounts[i] + 1 

   ADDSUBSCRIPTION(A, consumerDest) 
   wcounts[1]  wcounts[1] + 1 
 
ADDSUBSCRIPTION(A, consumerDest)  
    if subscription A in dictionary 
      then dest  get destinations from subscription dictionary 
               dest  dest U consumerDest 
      else   put (A, consumerDest) into subscription dictionary 
 
INITIALIZEWILDCARDCOUNTSARRAY(attribute) 
    if attribute in wildcard dictionary  
      then return  
      else  wcounts = ALLOCATE(maxAttributeDepth) 
              put (attribute, wcounts) into wildcard dictionary 
 
GETWILDCARDCOUNTSARRAY(attribute) 
    return retrieved counts from wildcard dictionary 

(a) 

COMPUTEDESTINATIONS(A)  
   dest  -NIL, level  1 
   wcounts  GETWILDCARDCOUNTSARRAY(A1); 
   if (wcounts = NIL)  
     then return dest 
 

   dest  GETDESTINATIONFOR(A1); 
   dest  dest U FINERRECURSION (dest, A, wcounts, A1, level) 

FINERRECURSION (dest, A, wcounts, coarserSub, level) 
   if (level > SIZE(A))  
     then return dest 
 
   level  level + 1 
   finerSub  coarserSub + “/” + Alevel 
   dest   GETDESTINATIONFOR (finerSub) 
   dest  dest U FINERRECURSION (dest, A, wcounts, finerSub, level) 

   if (wcounts[level] > 0)  
    then finerWCSub  coarserSub + “/*” 
             dest GETDESTINATIONFOR (finerWCSub) 
             dest  dest U FINERRECURSION(dest, A, wcounts,  
                                                                  finerWCSub,level) 

   return dest 
 
GETDESTINATIONFOR (subscription) 
    Perform dictionary operation to retrieve destination 

(b) 
 

Figure 2: Algorithm for adding subscriptions and 
computing destinations 

3.3.2 Computing destinations 

 To compute destinations (depicted in Figure 2.b) 
associated with a stream fragment, the content descriptors 
associated with stream fragment is first retrieved. Next, the 
wildcard counts array corresponding to the first attribute in 
the content descriptor retrieved. If such a wildcard counts 
array is not available, no subscriptions that could 
potentially match the content descriptor have been 
specified, and no further processing is performed. If, on 
the other hand, the wildcard counts array exists for the first 
attribute, processing continues.  
 The content descriptors along with indices, where the 
wildcards have been specified, are used to construct the set 
of subscriptions that would match the content descriptor. 
Consider the case where A/B/C/D is the content descriptor, 
and wildcard counts indicate that wildcards have been 
specified for the second and third attribute. In this case, the 
set of subscriptions that would be constructed are: 
A/B/C/D, A/*/C/D, A/B/C/* and A/*/C/* in addition to A 
and A/B. 
 These constructed subscriptions are then used to 
compute destinations associated with the stream fragment. 
For every subscription, a simple lookup of the 
subscriptions table yields the corresponding destination 
list. The destination list for the stream fragment is the 
union of the destination lists associated with each of the 
constructed subscriptions.  
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3.3.3 Complexity Analysis 

 The complexity of supporting dictionary operations for 
a hashtable on the average is O(1). Thus, the lookup, 
addition and retrieval times for a hashtable is O(1). When 
computing destinations, in the best case, only one such 
access would be needed to retrieve the destinations list for 
the subscription constraint. In the worst case, for 
hierarchical descriptors with a maximum of the m 
attributes and wild card operators for every attribute except 
the first one, 2m-1 accesses (each with a cost of O(1) ) 
would need to be made. Please note that the O(1) costs in 
our hashtable scheme would be slightly higher than the 
corresponding O(1) costs in the tree-based scheme: our 
benchmarks also confirm this. The memory consumption 
is O(N) in the worst case, when all the N subscription 
constraints are unique. The constant for the space-
complexity would depend on the implementation strategy: 
the Google Sparse Hash, for example is extremely 
memory-efficient with only a 2 bit overhead per entry. In 
our implementation and benchmarks we used the hashtable 
that is available as part of the Java libraries. 

4 Performance Evaluation 
 We first start-off by presenting results outlining the 
communication latencies in a simplified setting involving 
one producer and consumer. The communication latencies 
will be reported for stream fragments with different 
payload sizes, each of which has a one-attribute content 
descriptor. The reported communication latencies include 
the time spent in computing destinations. Benchmarks of 
NaradaBrokering in settings involving distributed broker 
networks can be found in [1,2]. 
 To benchmark the three algorithms for hierarchical 
streaming we profile several aspects related to its 
performance, ability to cope with flux and memory 
utilization. To measure the performance of the algorithms, 
we vary both the number of attributes in the content 
descriptors and the also the number of subscription 
constraints that are managed by each algorithm. Under 
these conditions, we report the costs involved in 
computing destinations for a given stream fragment. These 
computational costs reveal the suitability of each algorithm 
for real-time streaming. 
 To determine the ability of the algorithms to cope with 
flux, we compute the costs involved in adding and 
removing subscriptions when the size of the managed 
subscription vary.  
 We also profiled the tree-based approach for its 
memory utilization: specifically, we track the number of 
nodes and edges that are created for different number of 
attributes as the size of the managed subscriptions varies.  

4.1 Streaming in Cluster Settings 

 Our first set of benchmarks relate to measuring stream 
communication latencies in cluster settings. We 

benchmarked the simplest case involving one producer, 
one consumer, and a content distribution network that 
comprises one broker. There is just one subscription being 
maintained, and it is specified on a content descriptor with 
exactly one attribute. This setting will reveal the lowest 
possible latencies for streaming in LAN settings. For real-
time streaming, in multimedia settings, the acceptable 
latencies are typically about 10-30 milliseconds in LAN 
settings, and around 100-200 milliseconds in WAN 
settings depending on the quality of the underlying 
network. 
 The two cluster machines (4 CPU, 2.4GHz, 2GB 
RAM) involved in the benchmark were hosted on 100 
Mbps LAN. The producer and consumer were hosted on 
the same machine to obviate the need to account for clock 
drifts while measuring latencies for streams issued by the 
producer, and routed by the broker (hosted on the second 
machine) to the consumer. All processes executed within 
version 1.6 of Sun’s JVM.  

 
Figure 3: Streaming overheads in cluster settings 

 The results, depicted in Figure 3, report the mean 
communication delays for different payload sizes 
encapsulated within the stream fragments. The reported 
delay is the average of 50 samples for a given payload 
size; the standard deviation for these samples also being 
reported. For stream fragment payload sizes, the delays are 
around a millisecond for payloads up to a 10 KB, and 
increasing to 20 milliseconds for 1 MB payload size. It 
must be noted that in WAN settings the communication 
latencies are in the order of 50-200 milliseconds per hop 

4.2 Performance of the algorithms 

 The remainder of the benchmarks, pertain to the three 
algorithms presented in this paper, and were performed on 
a standalone machine (4 CPU, 2.4GHz, 2GB RAM) with 
processes executing within version 1.6 of Sun’s JVM. We 
also used a high-resolution timer to report most of our 
measurements in microseconds.  

4.2.1 Computational Performance 

 To measure the computational performance of the 
algorithms, we vary the number of attributes in the content 
descriptors and also the number of managed subscriptions 
in each algorithm from 104 to 105 subscriptions. The 
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subscriptions are generated randomly, with every attribute 
being randomly assigned one of 50 possible values. For 
each subscription, except for the first attribute, wildcards 
will be specified on one of the other attributes.  

 
Figure 4: Overheads for  tree-based scheme 

 
Figure 5: Overheads for the Hashing scheme 

 
Figure 6: Overheads for Regular expressions 

 Figure 4, Figure 5 and Figure 6 depict the overheads 
for computing destinations in tree-based, hashing and 
regular expressions scheme respectively. In general, the 
matching overheads increase as the number of 
subscriptions and the number of attributes within the 
subscriptions increase. Given the large number, and 
random generation, of subscriptions, a wildcard eventually 
appears for almost every other attribute in a set of related 
subscriptions (based on the first attribute). This in turn 
causes the hashing-based scheme – Figure 5 – to approach 
its worst-case performance wherein the number of sweeps 
of the Hashtable becomes proportional to the number of 
specified attributes. In the regular expressions case, Figure 
6, the costs (in milliseconds) do not depart significantly 
from their high base costs as the attributes increase. 

 
Figure 7: Cumulative overhead comparisons 

 Figure 7 contrasts the matching overheads for the three 
algorithms for varying number of subscriptions, each of 
which have 7 attributes. It is clear that the matching 
overheads are the best in the case of the tree-based scheme, 
with slightly higher overheads for the hashing-based 
scheme. The overheads introduced by the regular 
expressions scheme are several orders of magnitude higher 
than that of the tree-based and hashing-based schemes.  

4.2.2 Space Utilization in the Tree-based scheme 

 Perhaps the biggest drawback of the tree-based scheme 
is the memory requirements associated with maintaining 
the set of subscriptions. Figure 8 depicts the memory 
allocation costs associated with the tree-based scheme.  

 
Figure 8: Node allocation costs in tree-based scheme 

 As the number of attributes and subscriptions increase, 
the number of nodes and edges needed to represent the set 
of managed subscriptions also increase substantially. Case 
in point is the fact that in the tree-based case, managing 
100000 subscriptions, each with 10 attributes, results in the 
creation of 798188 nodes and 898187 edges: 
approximately 2 million objects. During the benchmarks, 
the heap size allocated for the JVM had to be set to more 
than 1 GB for the tree-based scheme. 

4.2.3 Coping with flux 

We also performed benchmarks to determine the ability of 
the algorithms to cope with flux, wherein subscriptions are 
being added and removed at high rates. Figure 9 and 
Figure 10 depict the cost associated with adding and 
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removing one subscription for each of the algorithms. The 
regular expressions scheme delivers the best performance, 
with the hashing-based performance quite close to this. 
The additional overhead in the hashing scheme is 
introduced by the need to maintain the wildcard-counts 
array. The higher costs in the tree-based scheme pertain to 
the creation or removal of nodes and edges.  

 
Figure 9: Costs for adding a subscription 

 
Figure 10: Costs for removing a subscription 

4.2.4  Standard Deviation 

Each point in our graphs (figures 4,5,6,7, 9 and 10) 
corresponds to the average of a 100 runs on a dedicated 
machine on which no other user jobs were executing. The 
standard deviations involved in these measurements were 
low: for computing destinations, in the tree-based case it 
was around 1 microsecond while in the hashing scheme it 
was around 4-10 microseconds.  

5 Related Work 
 Support for tree-based <tag, value> tuples with 
equality checks and wildcards in the values was first used 
in the Gryphon [6] system. Gryphon’s matching scheme 
provides a time-complexity that is sub-linear in the number 
of subscriptions. However, even though their complexity 
of space consumption is linear in the number of 
subscriptions, the constant is high enough that the costs 
become prohibitive as the number of attributes increase. 
An optimization to their matching algorithm based on 
successor nodes, reduces the matching time even further 

by 20%, but at the expense of increased space complexity. 
Their suggested space optimization involves collapsing 
chains of *-edges will not have a significant effect: in our 
benchmarks, where we randomly generated constraints, 
there were no subscription constraints that lead to such * 
chains and the space costs were still very high (Figure 8). 
 The WS-Topics [5] specification incorporates support 
for organizing topics and also for maintaining aliases 
associated with these topics. While wildcards are not 
explicitly supported, subscribers can navigate the topic 
hierarchy to determine the topics to subscribe to. WS-
Topics is part of the Web Service Resource Framework 
(WSRF) suite of specifications that are used to build Grid 
systems. WSRF is a realignment of the dominant Open 
Grid Service Infrastructure [6] to be more in line with the 
emerging consensus within the Web Services community. 
 Ref [7] outlines a strategy to convert each subscription 
in Elvin into a deterministic finite state automaton. This 
conversion, and the matching solutions, nevertheless can 
lead to an combinatorial explosion in the number of states 
for a small number of subscriptions. Systems such as 
SonicMQ [8] and TIBCO [9] incorporate support for 
hierarchical “/”-separated topic spaces. However, to the 
best of our knowledge, they do not seem to include support 
for implicit wildcard operators.  
 The Java Message Service (JMS) [10] specification 
from Sun defines a set of Java interfaces that enables the 
development of publish/subscribe applications. Individual 
messages have properties associated with them; constraints 
based on SQL queries can specified on the values that 
these properties take. SQL query evaluation in general 
tends to be just as compute intensive as the evaluation of 
regular expressions.  
 The Event Service [11] approach adopted by the OMG 
is one of establishing channels and subsequently 
registering suppliers and consumers to the event channels. 
The approach could entail clients (consumers) to be aware 
of a large number of event channels.  

6 Conclusions 
 Hierarchical descriptors provide a flexible, lightweight 
scheme for content description and also for the 
specification of constraints on these content descriptors. In 
this paper we presented algorithms that could be utilized 
for enabling hierarchical streaming.  
 Regular expressions provide a rich language for the 
specification of constraints through various operators that 
enable specification of patterns, partial matches, 
placeholders, and case independence among others. 
However, the computational costs introduced by the 
regular expressions scheme can be prohibitive as the 
number of subscription constraints increase. 
 The tree-based approach provides excellent 
performance, but the memory costs associated with 
maintaining the nodes and edges associated with individual 
subscription constraints increase substantially as the 
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number of the attributes and subscriptions increase. In our 
benchmarks, for 105 subscriptions each with 10 attributes, 
about 2 million elements (edges and nodes combined) 
were created. 
 Our hashing-based scheme provides computational 
performance approaching that of the tree-based scheme 
while at the same time providing excellent memory 
utilization performance.  
 In general, all three algorithms coped reasonably well 
in their ability to cope with the flux in their set of managed 
subscriptions. 
 As part of our future work, we will investigate the use 
of hierarchical streaming in map-reduce computations that 
could be either single-phase or iterative. This will be the 
subject of our future papers in this area. 
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