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1 Introduction 
Streaming pertains to the routing of data streams from the sources to those entities that are interested in them. In 
streaming, the dissemination of streams is typically independent of the underlying network and is, instead, content-
based. The routing is within the purview of the content distribution network which tracks both the entities and their 
interests. Content distribution networks provide a scalable framework for exchanging information between a very 
large number of entities. These content distribution networks could be based on multicast, peer-t-peer, 
publish/subscribe or ad hoc networking. This work focuses on the hierarchical dissemination of streams in content 
distribution networks based on publish/subscribe. 
 By decoupling the roles of producers and consumers of a data stream, publish/subscribe systems provide a 
loosely-coupled framework for streaming. Producers of data streams include metadata describing the content 
encapsulated in a given stream fragment. These content descriptors are referred to as topics. Consumers specify their 
interests in consuming portions of a stream through subscriptions – constraints specified on the values that the 
content descriptors might take. The complexity of a subscription is directly proportional to the richness of the 
content description. The content distribution network disseminates streams based on the registered subscriptions and 
the stream’s content descriptors. 
 The simplest content descriptor is a String, for e.g. Sensor/Streams. This simplicity also enables extremely fast 
evaluations of whether a stream fragment satisfies a specified subscription constraint. Hierarchical content 
description assumes that the “/” in the content descriptors are significant, and correspond to finer-grained 
descriptions. Thus, Streams/Sensor/Fluid would describe streams produced by all sensors reporting on various fluid 
properties, while Streams/Sensor/Fluid/Pressure would describe streams produced by a Piezometer, which is used to 
measure fluid pressure. 
 Hierarchical streaming simplifies the process of registering interest in content. Without support for hierarchical 
streaming, every consumer would need to be aware of every finer-grained description of content. The case for 
hierarchical streaming becomes even more compelling if one were to consider the increase in the complexity of 
managing subscriptions at the consumers as newer, finer-grained descriptions of content become available. 
 Hierarchical content-descriptors are intuitive, flexible and light-weight. It is quite simple to both describe 
content, and to sift through it. An equivalent XML-based description of the hierarchical content descriptors would 
be complex and heavy-weight.  Hierarchical content descriptors provide an intuitive framework for finer-grained 
registration to stream (e.g. Streams/Sensor/Fluid/Pressure) or coarser-grained consumption (e.g. Streams/Sensor). 
Hierarchical streaming allows coarser grained and fine-grained consumptions to co-exist. It is up to the content 
dissemination network to manage the dissemination of content based on the subscriptions 

1.1 Wildcards and attributes 

Wildcards are placeholders specified in the subscription constraints to hierarchical streams. The wildcard operator * 
is used to signify placement of the wildcard. Most systems incorporate support for implicit wildcards, which 
correspond to the trailing portion of the hierarchical topic. Thus, the coarser-grained subscription Streams/Sensor 
can be formally represented as Streams/Sensor/* with the wildcard operator appearing at the end of the subscription 
constraint. One of the drawbacks of the implicit wildcard scheme is that a consumer may be interested in most, but 
not all, of the finer-grained content. To resolve this, a different type of wildcard is needed. 
 Wildcards can also be explicit. Such explicit wildcards can appear anywhere in the subscription constraint. By 
allowing more precision in the registration constraints, explicit wildcards combine the benefits of finer-grained and 
coarser-grained registration schemes. For example, to register an interest in fluid and atmospheric pressure readings 
from piezometers and barometers respectively, a consumer may register a constraint of the following form: 
Streams/Sensor/*/Pressure. 
 The scope of a wildcard operator is demarcated by the “/” operator. In the absence of a trailing “/”, in the case of 
implicit wildcards, the wildcard operator’s scope covers the entire range of the “/” separated String from that point 
on. Content can take on any value within the scope of the wildcard operator. A registered subscription constraint can 
specify multiple explicit wildcards, and will always support an implicit wildcard at the end of the constraint. 
 Content demarcated by “/” within the content descriptors corresponds to an attribute. The number of “/” 
separated attributes within a hierarchical descriptor corresponds to its depth. The depth of a hierarchical description 



in turn reflects the possibilities of placing the wildcard operators, and the complexity of evaluating the 
corresponding subscription constraints.  
 Subscriptions with the leading wildcard operator * is disallowed. A stand-alone * subscription would result in all 
streams within the system being routed to the consumer, which would end up being deluged. From a logical 
perspective, if the stand-alone * subscription is allowed, all consumers regardless of whether they are interested in 
all streams would be deluged. Systems would also use this first attribute as the first line of defense in preventing 
unauthorized consumption of streams. Thus, knowledge of the first attribute would be the precursor to consuming 
the related streams. 

1.2 Crux of this paper 

In this paper we investigate strategies to organize, evaluate and enforce support for wildcards in hierarchical 
streaming. For hierarchical streaming, we are especially interested in three factors: performance, flux, and memory 
consumption. Performance is important because these streams would be produced at extremely high rates: thus, the 
complexity of evaluating the subscription constraints should not exceed the application’s real-time thresholds. The 
data structures that underpin the organization scheme should be able cope with the flux inherent in streaming 
settings – constantly evolving interests among a large set of consumers contribute to the flux. Finally, neither the 
performance nor the ability to cope with flux should be at the expense of a substantial memory allocation costs 
associated with representing these subscription constraints. 
 We investigate three different algorithms. The fist one is based on graphs and is the most commonly used 
approach. The second one is based on using regular expressions to specify subscription constraints. Finally, we 
propose our algorithm based on hash tables which provides excellent performance, copes well with flux, and is 
optimal in its memory requirements. We have also performed extensive benchmarks, to compare and contrast the 
performance of these approaches. 
 This paper is organized as follows. Section 2 provides an overview of the NaradaBrokering content distribution 
network. Section 3 includes a description of the three different algorithms to organize and enforce support for 
wildcards in hierarchical streaming. Section 4 presents our methodology for evaluating the performance of these 
algorithms, and a discussion of their performance. Finally, we present our conclusions and a discussion of our 
proposed future work in this area. 

2 NaradaBrokering  
We have implemented the scheme described in this paper in the context of the NaradaBrokering [2] content 
distribution network, which is based on the publish/subscribe paradigm.  In NaradaBrokering, this content 
distribution network is itself a distributed infrastructure, comprising a set of cooperating router nodes known as 
brokers. A broker performs the routing function by routing content along to other brokers within the broker network. 
Entities are connected to one of the brokers within the broker network, an entity uses this broker, which it is 
connected to, to funnel messages to the broker network and from thereon to other registered consumers of that 
message. 
 NaradaBrokering is application-independent and incorporates several services to mitigate network-induced 
problems as data streams traverse domains during disseminations. The system provisions these guarantees such that 
they are easy to harness, while delivering consistent and predictable performance that is adequate for use in real-
time settings. 
 By specifying constraints on the content descriptors associated with individual stream fragments, consumers of a 
given data stream can specify, very precisely, the portions of the data stream that they are interested in consuming. 
The security scheme enforces the authorization and confidentiality constraints associated with the generation and 
consumption of secure streams while coping with several classes of denial of service attacks.  
 By preferentially deploying links during disseminations, the routing algorithm in NaradaBrokering ensures that 
underlying network is optimally utilized. This preferential routing ensures that applications receive only those 
portions of streams that are of interest. Since a given application is typically interested in only a fraction of all the 
streams present in the system, preferential routing ensures that an application is not deluged by streams that it will 
subsequently discard. Some of the domains that NaradaBrokering has been deployed in include earthquake science, 
particle physics, ecological/environmental monitoring, geosciences, GIS systems and defense applications. 

3 Hierarchical Streaming 
In this section we evaluate three different approaches to managing and evaluating subscription constraints in 
hierarchical streaming. The tree-based approach is the most commonly used approach. The regular expression based 



is less commonly used. Finally, we present our algorithm, based on hashtables, which combines the benefits of the 
earlier approaches, without inheriting their drawbacks in memory consumption and performance overheads. For 
each of these algorithms, we describe the process of adding and removing subscription constraints, and also the 
process of computing destinations associated a stream fragment.  

3.1 Tree based approach 

The tree-based representation of subscription constraints on hierarchical content descriptors is the most commonly 
used approach. Each “/” separated subscription is first converted into a set of <tag, value> tuples. Thus, constraint 
of the form /Streams/Sensors/*/Pressure would be represented as the following set of comma separated <tag, value> 
tuples: <Tag1=Streams,Tag2=Sensors, Tag3=*, Tag4=Pressure>.  
 The tree representation of this subscription constraint is depicted in Figure x. One reason the Tag# is introduced 
is because traversal of the graph is based on the values that the edges take. By representing attribute constraints as 
edges in the graph, we can allow multiple edges (each corresponding to a different value for the attribute) to emerge 
from a node. Each edge has its own set of destinations. An edge with a destination indicates that a subscription 
constraint has been specified up until that point.  

3.1.1 Adding and removal of subscription constraints 

Subscription tuples are processed from left-to-right, and the graph traversed top-to-bottom. Nodes, and edges, are 
reused when possible. If an edge cannot be reused, new edges and nodes to be created from that point on, resulting 
in the addition of a sub-tree to the existing subscriptions tree. The last edge created as a result of processing a 
subscription constraint is referred to as a destination edge. In cases where multiple subscriptions reuse a given 
destination edge, their destination info appears in the destination list associated with the edge. 
 Each edge maintains a reference count of the number of destination edges that can be reached by traversing it. 
The reference count for a destination edge is the size of the destination list that it maintains. Each edge traversed 
during the addition (or removal) of subscriptions has its reference count increased (or decreased) by one.  
 During the removal of a subscription the reference counts are updated in a top-down fashion. Determination of 
whether edges and nodes need to be pruned from the subscriptions tree are done in a bottom-up fashion, starting at 
the destination edge associated with the subscription being removed. An edge is removed if its reference count is 
reduced to zero: this signifies that no destinations can be computed by traversing this edge.  A node is removed if 
the last edge that originated from it is removed. Since the reference counts associated with edges closer to the root of 
the tree is greater than, or equal to, the reference counts associated with the child edges, if it is determined that an 
edge is not to be removed, no further processing of edges and nodes higher-up in the tree need to be performed. 

3.1.2 Computing destinations 

To compute destinations associated with a stream fragment, the content descriptors associated with stream fragment 
is first retrieved. These content descriptors are then used to traverse the subscription tree. At every node in the 
graph, the edges traversed include the edge with matching value as well as the wildcard edge. Depending on the 
number and placement of wildcard edges, there could be multiple traversal paths during this process. 
A given traversal path may or may not end in a destination edge, but some of the edges within the path may be 
destination edges. The destination list for a path is the union of destination lists associated with each of the 
constituent destination edges. The cumulative destination list for a stream fragment is the union of the destination 
lists associated with each of the traversed paths within the subscription tree.  

3.1.3 Complexity Analysis 

While computing destinations, the worst case occurs when after the first attribute at every node the value edge as 
well as the wildcard edge are traversed. In the worst case, if the number of attributes is m, there would be 1+2 + 4 + 
… + 2m-1 = ∑ 2௜௠ିଵ

௜ୀ଴  operations that would need to be performed. The complexity for computing destinations is 
O(2m-1) in the worst-case. In the best case, exactly m operations would need to be performed, for a complexity of 
O(m).  Managing subscriptions typically involves the creation and deletion of nodes and links. In the worst case, for 
each of the N subscriptions, m-1 nodes and m edges would need to be created. The space utilization in the worst case 
is O(mN).  

3.2 Regular expressions 

In our second approach, we make use of regular expressions to compute destinations associated with hierarchical 
streaming. We first recast subscription constraints as regular expressions. To do this, we make use of the Kleene star 



operator (.*) in the wildcard region demarcated by “/”. In regular expression terms, the  (.) corresponds to matching 
any single character in that position, while the (*) matches the preceding element zero or more times. In tandem, (.*) 
signifies that any set of characters can appear in the within its scope, which is delimited by the “/” in the 
subscription constraint.  

3.2.1 Addition and Removal of Subscription constraints 

The data structure used to store subscriptions is a Hashtable: the subscription identifier is used as the key and the 
subscription is stored as the value corresponding to that key. Each subscription also includes destination 
information. Subscription identifiers are 128-bit UUIDs (Universally Unique Identifier) to ensure that they are 
unique system-wide. When a subscription is added (or moved), a check is made to see if the corresponding 
subscription identifier is already present.  
 Additionally, every regular expression that is specified as a String is first compiled into a pattern, which is then 
used to match arbitrary character sequences against the regular expression. The Pattern engine performs traditional 
NFA-based (Non-Deterministic Finite-State Automata) matching. 

3.2.2 Computing destinations 

To compute destinations associated with a stream fragment, the content descriptors associated with stream fragment 
is first retrieved. Every subscription constraint (which encapsulates the regular expression query) is then matched 
against this identifier to determine if there is a match. In case of match, the destination within the subscription is 
added to the destination list associated with the fragment. As an optimization feature, a check is made to see if the 
subscription’s destination is already present in the destination list associated with the stream fragment; if it is, the 
encapsulated regular expression is not evaluated.   

3.2.3 Complexity Analysis 

It has been shown, Ref[Katz] that the processing complexity for evaluating an NFA-based regular expression of size 
n is O(n2). In the worst case, where the registered subscription constraints are from different destinations, the entire 
set, of size N, of subscriptions would need to be evaluated. In this case, the processing complexity would be O(n2N) 
when assuming that n is the average size of the regular expression query. The storage overheads in this scheme 
correspond to storing the set of subscriptions. If there are N subscriptions, each of size n, the storage costs would be 
O(nN). 

3.3 Hashing based 

In our hashing based algorithm, we try to achieve benefit from the performance gains available in the tree-based and 
regular expressions scheme. Specifically, we aim to have the performance of the tree-based scheme for computing 
destinations, but the memory utilization profile of the regular expression scheme. 
 Before we proceed further, we digress for a brief discussion of the location of wildcards and the number of 
attributes in hierarchical descriptors. As mentioned in section 1.1, subscriptions with the leading wildcard operator * 
is disallowed i.e. a wildcard operator cannot be specified on the first attribute of a hierarchical descriptor. This is 
done to prevent deluge at the subscriber, and also to ensure the authorized consumption of data streams: the first 
attribute would be 128-bit UUID in some cases to thwart guess and also to ensure that only authorized consumers 
can specify subscriptions to those streams. 
 To prevent the possibility of combinatorially explosive search spaces, we limit the number of attributes that can 
be specified within “/” separated descriptors and subscriptions. Individual attributes, however, do have any size 
limitations associated with them.  
 
Normalization of subscriptions 
Subscriptions are normalized at the source to remove any trailing wildcards. Thus, A/B/C* would be represented as 
A/B/C. Removal of implied wildcard operators simplifies the process of computing destinations. 

3.3.1 Addition and removal of subscription constraints 

In our algorithm, the data structure used to manage the subscriptions is the hashtable. However, in this case the 
subscription constraint is itself stored as the key, and the value is the destination list associated with the subscription. 
The first time a subscription is added to the subscriptions table, the destination list corresponding to this subscription 
is the destination associated with the subscription. Additional subscriptions with the same subscription constraint 
simply result in the addition of the corresponding destinations to the destination list associated with the subscription. 



 The algorithm maintains another hashtable to keep track of wildcards that have been specified. The wildcards 
table is indexed based on the value of the first attribute of the hierarchical descriptors. Since a wildcard is disallowed 
for this attribute, all subscriptions will specify this attribute. An integer array, the wildcard counts array, is then 
initialized with size equal to the maximum allowable number of attributes m.  
When a subscription is added, a check is made to see if this subscription has been previously processed, and if it is 
stored in the subscriptions table. If the subscriptions table currently has this subscription, no further processing is 
done. If this is a new subscription, a check is made to determine the number and location of wildcards that have been 
specified within the “/” that demarcates the content descriptor attributes. Based on the value of the first attribute in 
the subscription constraint, an attempt is made to retrieve the wildcard counts array from the wildcards table. If an 
entry corresponding to the first attribute is not present in the wildcard table, a new entry is created based on the 
newly initialized wildcard counts array.  
 The wildcard counts array is incremented by one at indices corresponding to the location of wildcards. The 
wildcard counts array thus snapshots the locations at which a wildcard operator has been specified by subscriptions 
to hierarchical content descriptors.  
 When a subscription is removed, a check is made to determine the number and location of wildcards that have 
been specified for various attributes. If a wildcard is present, the wildcard counts array corresponding to the first 
attribute of the subscription constraint is retrieved. The wildcard counts are then decremented by one at the 
corresponding to the location of wildcards.  
 Since a wildcard cannot be specified for the first attribute, the first element in the wildcard counts array is always 
zero. We use this first index to keep track of the number of subscriptions that have been specified on the first 
attribute of the hierarchical descriptor. This is incremented the first time a subscription has been specified, 
irrespective of whether the constraint contains wildcard operators or not. When a subscription is removed, this count 
is reduced to zero indicating that this entry is ready for garbage collection. 

3.3.2 Computing destinations 

To compute destinations associated with a stream fragment, the content descriptors associated with stream fragment 
is first retrieved. Next, the wildcard counts array corresponding to the first attribute in the content descriptor 
retrieved. If such a wildcard counts array is not available, no subscriptions that could potentially match the content 
descriptor have been specified, and no further processing is performed. If, on the other hand, the wildcard counts 
array exists for the first attribute, processing continues.  
 The metadata descriptors along with indices, where the wildcards have been specified, are used to construct the 
set of subscriptions that would match the content descriptor. Consider the case where A/B/C/D is the content 
descriptor, and wildcard counts indicate that wildcards have been specified for the second and third attribute. In this 
case, the set of subscriptions that would be constructed would be A/B/C/D, A/*/C/D, A/B/C/* and A/*/C/* in 
addition to A/B. 
 These constructed subscriptions are then used to compute destinations associated with the stream fragment. For 
every subscription, a simple lookup of the subscriptions table yields the corresponding destination list. The 
destination list for the stream fragment is the union of the destination lists associated with each of the constructed 
subscriptions.  

3.3.3 Complexity Analysis 

Two hashtables: one for wildcard counts and another for maintaining destination lists. For a set of N subscriptions 
the space utilization for each of these tables is O(N) in the worst case where each subscription constraint is unique.  
 Access times Hashtables is O(1). In the best case, only one such access would be needed to retrieve the 
destinations list. In the worst case, for hierarchical descriptors with a maximum of the m attributes and wild card 
operators for every attribute except the first one, 2m-1 O(1) accesses need to be made. 
 Expansion of the hashtable is quite expensive. To keep these costs under control, the initial capacity of the 
Hashtable is set to preclude the need for unnecessary expansions. The hashtables are initialized with a load factor of 
0.75. The expected number of probes needed when a collision occurs is 1/(1-loadFactor); thus, 4 probes are needed 
on average during collisions. The initial capacity controls a tradeoff between wasted space and the need for rehash 
operations, which are time-consuming. 
 The memory consumption is approximately O(N). In the worst case, all the N registered subscription constraints 
would be unique. If each registered subscription constraint is of size n, the memory consumption would be O(nN). 

4 Performance Evaluation 
In this section we describe or experimental methodology and a discussion of results obtained from our benchmarks. 



4.1 Experimental Methodology 

We first start-off by presenting results outlining the communication latencies in a simplified setting involving one 
producer and consumer. The communication latencies will be reported for stream fragments with different payload 
sizes, each of which has a one-attribute content descriptor. Since these communication latencies include the time 
spent in computing destinations, we expect that this would give the reader a good feel what would constitute as an 
acceptable overhead in computing destinations. In general, the overheads introduced by a good algorithm for 
computing destinations would be a fraction of the end-to-end communication costs in cluster settings. Readers who 
are interested in NaradaBrokering benchmarks in settings involving broker networks are referred to [][][]. 
 To benchmark the three algorithms for hierarchical streaming we profile several aspects related to its 
performance, ability to cope with flux and memory utilization. To measure the performance of the algorithms, we 
vary the number of attributes in the content descriptors and the corresponding subscription constraints. Additionally, 
we also vary the number of subscriptions that are managed by each algorithm. Under conditions of varying number 
of attributes and the number of subscriptions, we compute the costs involved in computing destinations for a given 
stream fragment. These calculation costs reveal the suitability of each algorithm for real-time streaming. 
 To determine the ability of the algorithms to cope with flux, we also compute the costs involved in adding and 
removing subscriptions for different subscription sizes. We also profiled the tree-based approach for its memory 
utilization: specifically, we track the number of nodes that are created for different number of attributes as the 
number of subscriptions varies.  

4.2 Experimental Results 

Our first set of benchmarks relate to measuring stream communication latencies in a cluster settings. We 
benchmarked the simplest case, where the content distribution network comprises a broker, a producer and a 
consumer. There is just one subscription being maintained, and is specified on a content descriptor with exactly one 
attribute. This setting will reveal the lowest possible overheads for streaming in LAN settings.  
 The two cluster machines (4 CPU, 2.4GHz, 2GB RAM)) involved in the benchmark were hosted on 100 Mbps 
LAN. The producer and consumer were hosted on the same machine to obviate the need to account for clock drifts 
while measuring latencies for streams issued by the producer, and routed by the broker (hosted on the second 
machine) to the consumer. All processes executed within version 1.6 of Sun’s JVM.  

 
Figure 1: Streaming overheads in cluster settings 
 

 
     The results, depicted in Figure 1, report the 
mean communication delays for different payload 
sizes encapsulated within the stream fragments. 
The reported delay is the average of 50 samples 
for a given payload size, with the standard 
deviation for these samples also being reported. 
For stream fragment payload sizes, the delays are 
around a millisecond for payloads up to a 10 KB, 
and increasing to 20 milliseconds for 1 MB 
payload size. It must be noted that in WAN 
settings the communication latencies are in the 
order of tens of milliseconds and can go up to a 
130 millisecond per hop. 
 

 The remainder of the benchmarks, pertain to the three algorithms presented in this paper, and were performed on 
a standalone machine (4 CPU, 2.4GHz, 2GB RAM). We used a high-resolution timer to report several of our 
measurements in microseconds.  
 To measure the performance of the algorithms, we vary the number of attributes in the content descriptors and 
also the corresponding subscriptions. Additionally, we vary the number of subscriptions being managed by each 
algorithm from 104 to 105 subscriptions. The subscriptions are generated randomly, with every attribute being 
randomly assigned one of 50 possible values. For each subscription, except for the first attribute, wildcards will be 
specified on at least one of the other attributes.  
 Figures Figure 2, Figure 3 and Figure 4 depict the overheads for computing destinations in tree-based, hashing 
and regular expressions scheme. In general, the matching overheads increase as the number of subscriptions and the 
number of attributes within the subscriptions increase. It must be noted that given the large number of subscriptions, 
and also that these subscriptions are generated randomly, for a given hierarchical descriptor (based on the first 
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attribute), a wildcard operator eventually appears for every other attribute. This in turn causes the hashing-based 
scheme – Figure Figure 3 – to approach its worst-case performance wherein the number of sweeps of the Hashtable 
become proportional to the number of attributes. In the regular expressions case, Figure Figure 4, do not depart 
significantly from their high base costs. 

 
Figure 2: Overheads for  tree-based scheme  

Figure 3: Overheads for the Hashing scheme 
 

 
Figure 4: Overheads for Regular expressions 
 

 
Figure 5: Overhead comparisons for different 
algorithms with 7 attributes 
 

  Figure 5 contrasts the matching overheads for the three algorithms for varying number of subscriptions, each of 
which have 7 attributes. It is clear that the matching overheads are the best in the case of the tree-based and hashing-
based schemes, while the overheads introduced by the regular expressions scheme are several orders of magnitude 
higher than the other two.  

 
Figure 6: Node allocation costs in tree-based scheme 

     Perhaps the biggest drawback of the tree-based 
scheme is the memory requirements associated with 
maintaining the subscriptions. Figure 6 depicts the 
memory allocation costs associated with the tree-based 
scheme. As the number of attributes and subscriptions 
increase, the number of nodes and edges needed to 
represent the set of managed subscriptions also 
increase substantially. Case in point is the fact that for 
managing 100000 subscriptions, each with 10 
attributes, results in the creation of 798188 nodes and 
898187 edges: approximately 2 million objects! 
During the benchmark process the heap size allocated 
for the JVM had to be set to more than 1 GB to 
benchmark the tree-based scheme. 

 We also performed benchmarks to determine the ability of the algorithms to cope with flux, wherein 
subscriptions are being added and removed at high rates. Figure 7 and Figure 8 depict the cost associated with 
adding and removing one subscription for each of the algorithms. The regular expressions scheme delivers the best 
performance, with the hashing-based performance quite close to this. The additional overhead in the hashing scheme 
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is introduced by the need to maintain the wildcard counts array. The higher costs in the tree-based scheme pertain to 
the creation or removal of nodes and edges.  

 
Figure 7: Costs for adding a subscription 
 

 
Figure 8: Costs for removing a subscription 
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