
Hierarchical Dissemination of Streams in Content Distribution Networks
Shrideep Pallickara and Geoffrey Fox

Community Grids Lab, Indiana University

1 Introduction
Streaming pertains to the routing of data streams from the sources to those entities that are interested in them. In
streaming, the dissemination of streams is typically independent of the underlying network and is, instead, content-
based. The routing is within the purview of the content distribution network which tracks both the entities and their
interests. Content distribution networks provide a scalable framework for exchanging information between a very
large number of entities. These content distribution networks could be based on multicast, peer-t-peer,
publish/subscribe or ad hoc networking. This work focuses on the hierarchical dissemination of streams in content
distribution networks based on publish/subscribe.
 By decoupling the roles of producers and consumers of a data stream, publish/subscribe systems provide a
loosely-coupled framework for streaming. Producers of data streams include metadata describing the content
encapsulated in a given stream fragment. These content descriptors are referred to as topics. Consumers specify their
interests in consuming portions of a stream through subscriptions – constraints specified on the values that the
content descriptors might take. The complexity of a subscription is directly proportional to the richness of the
content description. The content distribution network disseminates streams based on the registered subscriptions and
the stream’s content descriptors.
 The simplest content descriptor is a String, for e.g. Sensor/Streams. This simplicity also enables extremely fast
evaluations of whether a stream fragment satisfies a specified subscription constraint. Hierarchical content
description assumes that the “/” in the content descriptors are significant, and correspond to finer-grained
descriptions. Thus, Streams/Sensor/Fluid would describe streams produced by all sensors reporting on various fluid
properties, while Streams/Sensor/Fluid/Pressure would describe streams produced by a Piezometer, which is used to
measure fluid pressure.
 Hierarchical streaming simplifies the process of registering interest in content. Without support for hierarchical
streaming, every consumer would need to be aware of every finer-grained description of content. The case for
hierarchical streaming becomes even more compelling if one were to consider the increase in the complexity of
managing subscriptions at the consumers as newer, finer-grained descriptions of content become available.
 Hierarchical content-descriptors are intuitive, flexible and light-weight. It is quite simple to both describe
content, and to sift through it. An equivalent XML-based description of the hierarchical content descriptors would
be complex and heavy-weight. Hierarchical content descriptors provide an intuitive framework for finer-grained
registration to stream (e.g. Streams/Sensor/Fluid/Pressure) or coarser-grained consumption (e.g. Streams/Sensor).
Hierarchical streaming allows coarser grained and fine-grained consumptions to co-exist. It is up to the content
dissemination network to manage the dissemination of content based on the subscriptions

1.1 Wildcards and attributes

Wildcards are placeholders specified in the subscription constraints to hierarchical streams. The wildcard operator *
is used to signify placement of the wildcard. Most systems incorporate support for implicit wildcards, which
correspond to the trailing portion of the hierarchical topic. Thus, the coarser-grained subscription Streams/Sensor
can be formally represented as Streams/Sensor/* with the wildcard operator appearing at the end of the subscription
constraint. One of the drawbacks of the implicit wildcard scheme is that a consumer may be interested in most, but
not all, of the finer-grained content. To resolve this, a different type of wildcard is needed.
 Wildcards can also be explicit. Such explicit wildcards can appear anywhere in the subscription constraint. By
allowing more precision in the registration constraints, explicit wildcards combine the benefits of finer-grained and
coarser-grained registration schemes. For example, to register an interest in fluid and atmospheric pressure readings
from piezometers and barometers respectively, a consumer may register a constraint of the following form:
Streams/Sensor/*/Pressure.
 The scope of a wildcard operator is demarcated by the “/” operator. In the absence of a trailing “/”, in the case of
implicit wildcards, the wildcard operator’s scope covers the entire range of the “/” separated String from that point
on. Content can take on any value within the scope of the wildcard operator. A registered subscription constraint can
specify multiple explicit wildcards, and will always support an implicit wildcard at the end of the constraint.
 Content demarcated by “/” within the content descriptors corresponds to an attribute. The number of “/”
separated attributes within a hierarchical descriptor corresponds to its depth. The depth of a hierarchical description

in turn reflects the possibilities of placing the wildcard operators, and the complexity of evaluating the
corresponding subscription constraints.
 Subscriptions with the leading wildcard operator * is disallowed. A stand-alone * subscription would result in all
streams within the system being routed to the consumer, which would end up being deluged. From a logical
perspective, if the stand-alone * subscription is allowed, all consumers regardless of whether they are interested in
all streams would be deluged. Systems would also use this first attribute as the first line of defense in preventing
unauthorized consumption of streams. Thus, knowledge of the first attribute would be the precursor to consuming
the related streams.

1.2 Crux of this paper

In this paper we investigate strategies to organize, evaluate and enforce support for wildcards in hierarchical
streaming. For hierarchical streaming, we are especially interested in three factors: performance, flux, and memory
consumption. Performance is important because these streams would be produced at extremely high rates: thus, the
complexity of evaluating the subscription constraints should not exceed the application’s real-time thresholds. The
data structures that underpin the organization scheme should be able cope with the flux inherent in streaming
settings – constantly evolving interests among a large set of consumers contribute to the flux. Finally, neither the
performance nor the ability to cope with flux should be at the expense of a substantial memory allocation costs
associated with representing these subscription constraints.
 We investigate three different algorithms. The fist one is based on graphs and is the most commonly used
approach. The second one is based on using regular expressions to specify subscription constraints. Finally, we
propose our algorithm based on hash tables which provides excellent performance, copes well with flux, and is
optimal in its memory requirements. We have also performed extensive benchmarks, to compare and contrast the
performance of these approaches.
 This paper is organized as follows. Section 2 provides an overview of the NaradaBrokering content distribution
network. Section 3 includes a description of the three different algorithms to organize and enforce support for
wildcards in hierarchical streaming. Section 4 presents our methodology for evaluating the performance of these
algorithms, and a discussion of their performance. Finally, we present our conclusions and a discussion of our
proposed future work in this area.

2 NaradaBrokering
We have implemented the scheme described in this paper in the context of the NaradaBrokering [2] content
distribution network, which is based on the publish/subscribe paradigm. In NaradaBrokering, this content
distribution network is itself a distributed infrastructure, comprising a set of cooperating router nodes known as
brokers. A broker performs the routing function by routing content along to other brokers within the broker network.
Entities are connected to one of the brokers within the broker network, an entity uses this broker, which it is
connected to, to funnel messages to the broker network and from thereon to other registered consumers of that
message.
 NaradaBrokering is application-independent and incorporates several services to mitigate network-induced
problems as data streams traverse domains during disseminations. The system provisions these guarantees such that
they are easy to harness, while delivering consistent and predictable performance that is adequate for use in real-
time settings.
 By specifying constraints on the content descriptors associated with individual stream fragments, consumers of a
given data stream can specify, very precisely, the portions of the data stream that they are interested in consuming.
The security scheme enforces the authorization and confidentiality constraints associated with the generation and
consumption of secure streams while coping with several classes of denial of service attacks.
 By preferentially deploying links during disseminations, the routing algorithm in NaradaBrokering ensures that
underlying network is optimally utilized. This preferential routing ensures that applications receive only those
portions of streams that are of interest. Since a given application is typically interested in only a fraction of all the
streams present in the system, preferential routing ensures that an application is not deluged by streams that it will
subsequently discard. Some of the domains that NaradaBrokering has been deployed in include earthquake science,
particle physics, ecological/environmental monitoring, geosciences, GIS systems and defense applications.

3 Hierarchical Streaming
In this section we evaluate three different approaches to managing and evaluating subscription constraints in
hierarchical streaming. The tree-based approach is the most commonly used approach. The regular expression based

is less commonly used. Finally, we present our algorithm, based on hashtables, which combines the benefits of the
earlier approaches, without inheriting their drawbacks in memory consumption and performance overheads. For
each of these algorithms, we describe the process of adding and removing subscription constraints, and also the
process of computing destinations associated a stream fragment.

3.1 Tree based approach

The tree-based representation of subscription constraints on hierarchical content descriptors is the most commonly
used approach. Each “/” separated subscription is first converted into a set of <tag, value> tuples. Thus, constraint
of the form /Streams/Sensors/*/Pressure would be represented as the following set of comma separated <tag, value>
tuples: <Tag1=Streams,Tag2=Sensors, Tag3=*, Tag4=Pressure>.
 The tree representation of this subscription constraint is depicted in Figure x. One reason the Tag# is introduced
is because traversal of the graph is based on the values that the edges take. By representing attribute constraints as
edges in the graph, we can allow multiple edges (each corresponding to a different value for the attribute) to emerge
from a node. Each edge has its own set of destinations. An edge with a destination indicates that a subscription
constraint has been specified up until that point.

3.1.1 Adding and removal of subscription constraints

Subscription tuples are processed from left-to-right, and the graph traversed top-to-bottom. Nodes, and edges, are
reused when possible. If an edge cannot be reused, new edges and nodes to be created from that point on, resulting
in the addition of a sub-tree to the existing subscriptions tree. The last edge created as a result of processing a
subscription constraint is referred to as a destination edge. In cases where multiple subscriptions reuse a given
destination edge, their destination info appears in the destination list associated with the edge.
 Each edge maintains a reference count of the number of destination edges that can be reached by traversing it.
The reference count for a destination edge is the size of the destination list that it maintains. Each edge traversed
during the addition (or removal) of subscriptions has its reference count increased (or decreased) by one.
 During the removal of a subscription the reference counts are updated in a top-down fashion. Determination of
whether edges and nodes need to be pruned from the subscriptions tree are done in a bottom-up fashion, starting at
the destination edge associated with the subscription being removed. An edge is removed if its reference count is
reduced to zero: this signifies that no destinations can be computed by traversing this edge. A node is removed if
the last edge that originated from it is removed. Since the reference counts associated with edges closer to the root of
the tree is greater than, or equal to, the reference counts associated with the child edges, if it is determined that an
edge is not to be removed, no further processing of edges and nodes higher-up in the tree need to be performed.

3.1.2 Computing destinations

To compute destinations associated with a stream fragment, the content descriptors associated with stream fragment
is first retrieved. These content descriptors are then used to traverse the subscription tree. At every node in the
graph, the edges traversed include the edge with matching value as well as the wildcard edge. Depending on the
number and placement of wildcard edges, there could be multiple traversal paths during this process.
A given traversal path may or may not end in a destination edge, but some of the edges within the path may be
destination edges. The destination list for a path is the union of destination lists associated with each of the
constituent destination edges. The cumulative destination list for a stream fragment is the union of the destination
lists associated with each of the traversed paths within the subscription tree.

3.1.3 Complexity Analysis

While computing destinations, the worst case occurs when after the first attribute at every node the value edge as
well as the wildcard edge are traversed. In the worst case, if the number of attributes is m, there would be 1+2 + 4 +
… + 2m-1 = ∑ 2௜௠ିଵ

௜ୀ଴ operations that would need to be performed. The complexity for computing destinations is
O(2m-1) in the worst-case. In the best case, exactly m operations would need to be performed, for a complexity of
O(m). Managing subscriptions typically involves the creation and deletion of nodes and links. In the worst case, for
each of the N subscriptions, m-1 nodes and m edges would need to be created. The space utilization in the worst case
is O(mN).

3.2 Regular expressions

In our second approach, we make use of regular expressions to compute destinations associated with hierarchical
streaming. We first recast subscription constraints as regular expressions. To do this, we make use of the Kleene star

operator (.*) in the wildcard region demarcated by “/”. In regular expression terms, the (.) corresponds to matching
any single character in that position, while the (*) matches the preceding element zero or more times. In tandem, (.*)
signifies that any set of characters can appear in the within its scope, which is delimited by the “/” in the
subscription constraint.

3.2.1 Addition and Removal of Subscription constraints

The data structure used to store subscriptions is a Hashtable: the subscription identifier is used as the key and the
subscription is stored as the value corresponding to that key. Each subscription also includes destination
information. Subscription identifiers are 128-bit UUIDs (Universally Unique Identifier) to ensure that they are
unique system-wide. When a subscription is added (or moved), a check is made to see if the corresponding
subscription identifier is already present.
 Additionally, every regular expression that is specified as a String is first compiled into a pattern, which is then
used to match arbitrary character sequences against the regular expression. The Pattern engine performs traditional
NFA-based (Non-Deterministic Finite-State Automata) matching.

3.2.2 Computing destinations

To compute destinations associated with a stream fragment, the content descriptors associated with stream fragment
is first retrieved. Every subscription constraint (which encapsulates the regular expression query) is then matched
against this identifier to determine if there is a match. In case of match, the destination within the subscription is
added to the destination list associated with the fragment. As an optimization feature, a check is made to see if the
subscription’s destination is already present in the destination list associated with the stream fragment; if it is, the
encapsulated regular expression is not evaluated.

3.2.3 Complexity Analysis

It has been shown, Ref[Katz] that the processing complexity for evaluating an NFA-based regular expression of size
n is O(n2). In the worst case, where the registered subscription constraints are from different destinations, the entire
set, of size N, of subscriptions would need to be evaluated. In this case, the processing complexity would be O(n2N)
when assuming that n is the average size of the regular expression query. The storage overheads in this scheme
correspond to storing the set of subscriptions. If there are N subscriptions, each of size n, the storage costs would be
O(nN).

3.3 Hashing based

In our hashing based algorithm, we try to achieve benefit from the performance gains available in the tree-based and
regular expressions scheme. Specifically, we aim to have the performance of the tree-based scheme for computing
destinations, but the memory utilization profile of the regular expression scheme.
 Before we proceed further, we digress for a brief discussion of the location of wildcards and the number of
attributes in hierarchical descriptors. As mentioned in section 1.1, subscriptions with the leading wildcard operator *
is disallowed i.e. a wildcard operator cannot be specified on the first attribute of a hierarchical descriptor. This is
done to prevent deluge at the subscriber, and also to ensure the authorized consumption of data streams: the first
attribute would be 128-bit UUID in some cases to thwart guess and also to ensure that only authorized consumers
can specify subscriptions to those streams.
 To prevent the possibility of combinatorially explosive search spaces, we limit the number of attributes that can
be specified within “/” separated descriptors and subscriptions. Individual attributes, however, do have any size
limitations associated with them.

Normalization of subscriptions
Subscriptions are normalized at the source to remove any trailing wildcards. Thus, A/B/C* would be represented as
A/B/C. Removal of implied wildcard operators simplifies the process of computing destinations.

3.3.1 Addition and removal of subscription constraints

In our algorithm, the data structure used to manage the subscriptions is the hashtable. However, in this case the
subscription constraint is itself stored as the key, and the value is the destination list associated with the subscription.
The first time a subscription is added to the subscriptions table, the destination list corresponding to this subscription
is the destination associated with the subscription. Additional subscriptions with the same subscription constraint
simply result in the addition of the corresponding destinations to the destination list associated with the subscription.

 The algorithm maintains another hashtable to keep track of wildcards that have been specified. The wildcards
table is indexed based on the value of the first attribute of the hierarchical descriptors. Since a wildcard is disallowed
for this attribute, all subscriptions will specify this attribute. An integer array, the wildcard counts array, is then
initialized with size equal to the maximum allowable number of attributes m.
When a subscription is added, a check is made to see if this subscription has been previously processed, and if it is
stored in the subscriptions table. If the subscriptions table currently has this subscription, no further processing is
done. If this is a new subscription, a check is made to determine the number and location of wildcards that have been
specified within the “/” that demarcates the content descriptor attributes. Based on the value of the first attribute in
the subscription constraint, an attempt is made to retrieve the wildcard counts array from the wildcards table. If an
entry corresponding to the first attribute is not present in the wildcard table, a new entry is created based on the
newly initialized wildcard counts array.
 The wildcard counts array is incremented by one at indices corresponding to the location of wildcards. The
wildcard counts array thus snapshots the locations at which a wildcard operator has been specified by subscriptions
to hierarchical content descriptors.
 When a subscription is removed, a check is made to determine the number and location of wildcards that have
been specified for various attributes. If a wildcard is present, the wildcard counts array corresponding to the first
attribute of the subscription constraint is retrieved. The wildcard counts are then decremented by one at the
corresponding to the location of wildcards.
 Since a wildcard cannot be specified for the first attribute, the first element in the wildcard counts array is always
zero. We use this first index to keep track of the number of subscriptions that have been specified on the first
attribute of the hierarchical descriptor. This is incremented the first time a subscription has been specified,
irrespective of whether the constraint contains wildcard operators or not. When a subscription is removed, this count
is reduced to zero indicating that this entry is ready for garbage collection.

3.3.2 Computing destinations

To compute destinations associated with a stream fragment, the content descriptors associated with stream fragment
is first retrieved. Next, the wildcard counts array corresponding to the first attribute in the content descriptor
retrieved. If such a wildcard counts array is not available, no subscriptions that could potentially match the content
descriptor have been specified, and no further processing is performed. If, on the other hand, the wildcard counts
array exists for the first attribute, processing continues.
 The metadata descriptors along with indices, where the wildcards have been specified, are used to construct the
set of subscriptions that would match the content descriptor. Consider the case where A/B/C/D is the content
descriptor, and wildcard counts indicate that wildcards have been specified for the second and third attribute. In this
case, the set of subscriptions that would be constructed would be A/B/C/D, A/*/C/D, A/B/C/* and A/*/C/* in
addition to A/B.
 These constructed subscriptions are then used to compute destinations associated with the stream fragment. For
every subscription, a simple lookup of the subscriptions table yields the corresponding destination list. The
destination list for the stream fragment is the union of the destination lists associated with each of the constructed
subscriptions.

3.3.3 Complexity Analysis

Two hashtables: one for wildcard counts and another for maintaining destination lists. For a set of N subscriptions
the space utilization for each of these tables is O(N) in the worst case where each subscription constraint is unique.
 Access times Hashtables is O(1). In the best case, only one such access would be needed to retrieve the
destinations list. In the worst case, for hierarchical descriptors with a maximum of the m attributes and wild card
operators for every attribute except the first one, 2m-1 O(1) accesses need to be made.
 Expansion of the hashtable is quite expensive. To keep these costs under control, the initial capacity of the
Hashtable is set to preclude the need for unnecessary expansions. The hashtables are initialized with a load factor of
0.75. The expected number of probes needed when a collision occurs is 1/(1-loadFactor); thus, 4 probes are needed
on average during collisions. The initial capacity controls a tradeoff between wasted space and the need for rehash
operations, which are time-consuming.
 The memory consumption is approximately O(N). In the worst case, all the N registered subscription constraints
would be unique. If each registered subscription constraint is of size n, the memory consumption would be O(nN).

4 Performance Evaluation
In this section we describe or experimental methodology and a discussion of results obtained from our benchmarks.

4.1 Experimental Methodology

We first start-off by presenting results outlining the communication latencies in a simplified setting involving one
producer and consumer. The communication latencies will be reported for stream fragments with different payload
sizes, each of which has a one-attribute content descriptor. Since these communication latencies include the time
spent in computing destinations, we expect that this would give the reader a good feel what would constitute as an
acceptable overhead in computing destinations. In general, the overheads introduced by a good algorithm for
computing destinations would be a fraction of the end-to-end communication costs in cluster settings. Readers who
are interested in NaradaBrokering benchmarks in settings involving broker networks are referred to [][][].
 To benchmark the three algorithms for hierarchical streaming we profile several aspects related to its
performance, ability to cope with flux and memory utilization. To measure the performance of the algorithms, we
vary the number of attributes in the content descriptors and the corresponding subscription constraints. Additionally,
we also vary the number of subscriptions that are managed by each algorithm. Under conditions of varying number
of attributes and the number of subscriptions, we compute the costs involved in computing destinations for a given
stream fragment. These calculation costs reveal the suitability of each algorithm for real-time streaming.
 To determine the ability of the algorithms to cope with flux, we also compute the costs involved in adding and
removing subscriptions for different subscription sizes. We also profiled the tree-based approach for its memory
utilization: specifically, we track the number of nodes that are created for different number of attributes as the
number of subscriptions varies.

4.2 Experimental Results

Our first set of benchmarks relate to measuring stream communication latencies in a cluster settings. We
benchmarked the simplest case, where the content distribution network comprises a broker, a producer and a
consumer. There is just one subscription being maintained, and is specified on a content descriptor with exactly one
attribute. This setting will reveal the lowest possible overheads for streaming in LAN settings.
 The two cluster machines (4 CPU, 2.4GHz, 2GB RAM)) involved in the benchmark were hosted on 100 Mbps
LAN. The producer and consumer were hosted on the same machine to obviate the need to account for clock drifts
while measuring latencies for streams issued by the producer, and routed by the broker (hosted on the second
machine) to the consumer. All processes executed within version 1.6 of Sun’s JVM.

Figure 1: Streaming overheads in cluster settings

 The results, depicted in Figure 1, report the
mean communication delays for different payload
sizes encapsulated within the stream fragments.
The reported delay is the average of 50 samples
for a given payload size, with the standard
deviation for these samples also being reported.
For stream fragment payload sizes, the delays are
around a millisecond for payloads up to a 10 KB,
and increasing to 20 milliseconds for 1 MB
payload size. It must be noted that in WAN
settings the communication latencies are in the
order of tens of milliseconds and can go up to a
130 millisecond per hop.

 The remainder of the benchmarks, pertain to the three algorithms presented in this paper, and were performed on
a standalone machine (4 CPU, 2.4GHz, 2GB RAM). We used a high-resolution timer to report several of our
measurements in microseconds.
 To measure the performance of the algorithms, we vary the number of attributes in the content descriptors and
also the corresponding subscriptions. Additionally, we vary the number of subscriptions being managed by each
algorithm from 104 to 105 subscriptions. The subscriptions are generated randomly, with every attribute being
randomly assigned one of 50 possible values. For each subscription, except for the first attribute, wildcards will be
specified on at least one of the other attributes.
 Figures Figure 2, Figure 3 and Figure 4 depict the overheads for computing destinations in tree-based, hashing
and regular expressions scheme. In general, the matching overheads increase as the number of subscriptions and the
number of attributes within the subscriptions increase. It must be noted that given the large number of subscriptions,
and also that these subscriptions are generated randomly, for a given hierarchical descriptor (based on the first

 0

 10

 20

 30

 40

 50

 60

 100 1000 10000 100000 1e+006
 0

 2

 4

 6

 8

 10

 12

 14

M
e
a
n
 t

ra
n
si

t
d
e
la

y

(M

ill
is

e
co

n
d
s)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

M
ill

is
e
co

n
d
s)

Content Payload Size (Bytes)

Streaming overheads for different
 payload sizes (100B - 1MB)

 Delay
 Standard Deviation

attribute), a wildcard operator eventually appears for every other attribute. This in turn causes the hashing-based
scheme – Figure Figure 3 – to approach its worst-case performance wherein the number of sweeps of the Hashtable
become proportional to the number of attributes. In the regular expressions case, Figure Figure 4, do not depart
significantly from their high base costs.

Figure 2: Overheads for tree-based scheme

Figure 3: Overheads for the Hashing scheme

Figure 4: Overheads for Regular expressions

Figure 5: Overhead comparisons for different
algorithms with 7 attributes

 Figure 5 contrasts the matching overheads for the three algorithms for varying number of subscriptions, each of
which have 7 attributes. It is clear that the matching overheads are the best in the case of the tree-based and hashing-
based schemes, while the overheads introduced by the regular expressions scheme are several orders of magnitude
higher than the other two.

Figure 6: Node allocation costs in tree-based scheme

 Perhaps the biggest drawback of the tree-based
scheme is the memory requirements associated with
maintaining the subscriptions. Figure 6 depicts the
memory allocation costs associated with the tree-based
scheme. As the number of attributes and subscriptions
increase, the number of nodes and edges needed to
represent the set of managed subscriptions also
increase substantially. Case in point is the fact that for
managing 100000 subscriptions, each with 10
attributes, results in the creation of 798188 nodes and
898187 edges: approximately 2 million objects!
During the benchmark process the heap size allocated
for the JVM had to be set to more than 1 GB to
benchmark the tree-based scheme.

 We also performed benchmarks to determine the ability of the algorithms to cope with flux, wherein
subscriptions are being added and removed at high rates. Figure 7 and Figure 8 depict the cost associated with
adding and removing one subscription for each of the algorithms. The regular expressions scheme delivers the best
performance, with the hashing-based performance quite close to this. The additional overhead in the hashing scheme

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50 60 70 80 90 100M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

Tree based hierarchical descriptors

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50 60 70 80 90 100

M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

10

100

10 20 30 40 50 60 70 80 90 100

M
at

ch
in

g
O

ve
rh

ea
d

(M
ill

is
ec

on
ds

)

Number of Subscriptions (Thousands)

Regular expressions based hierarchical descriptors

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

 10

 100

 1000

 10000

 100000

 1e+006

10 20 30 40 50 60 70 80 90 100M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

Contrasting performance for different algorithms
with 7 attributes in the hierarchical descriptors

 Regular expressions
Hashing

Tree-based

Tree-based Nodes

 4 5 6 7 8 9 10Number of
Descriptor Attributes

0
20

40
60

80
100

Number of
Subscriptions

 (1000s)

 10000

 100000

 1e+006

Number of
Tree Nodes

is introduced by the need to maintain the wildcard counts array. The higher costs in the tree-based scheme pertain to
the creation or removal of nodes and edges.

Figure 7: Costs for adding a subscription

Figure 8: Costs for removing a subscription

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30 40 50 60 70 80 90 100Ad
di

tio
n

O
ve

rh
ea

ds
 (M

ic
ro

se
co

nd
s)

Number of Subscriptions (Thousands)

Costs for adding 1 subscription in different algorithms
with 7 attributes in the hierarchical descriptors

Tree-based
Hashing

 Regular expressions

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30 40 50 60 70 80 90 100R
em

ov
al

 O
ve

rh
ea

ds
 (M

ic
ro

se
co

nd
s)

Number of Subscriptions (Thousands)

Costs for removing 1 subscription in different algorithms
with 7 attributes in the hierarchical descriptors

Tree-based
Hashing

 Regular expressions

