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Abstract 
In streaming systems the content distribution network routes streams based on interests registered by the consuming 
entities. In hierarchical streaming, the dissemination is also predicated on the resolution of hierarchical 
dependencies between various streams. Entities specify explicit wildcards, in addition to the implicit ones in place, 
to further control the types of streams within a given hierarchy that should be routed to them. We investigate three 
approaches to organize, evaluate and enforce support for wildcards in hierarchical streaming. In our evaluation of 
these algorithms we are especially interested in three factors: performance, ability to cope with flux, and memory 
consumption. Comprehensive benchmarks for these algorithms, in this paper, will enable system designers to 
harness the best algorithm, which satisfies their hierarchical streaming requirements. 
Keywords: streaming systems, hierarchical streaming, content distribution networks, pub/sub systems, middleware 

1 Introduction 
 Streaming pertains to the routing of data streams from the sources to entities that are interested in them. In 
streaming, the dissemination of streams is typically independent of the underlying network and is, instead, content-
based. The routing is within the purview of the content distribution network, which tracks both the entities and their 
interests. Content distribution networks provide a scalable framework for exchanging information between a very 
large number of entities. These content distribution networks could be based on multicast, peer-to-peer, 
publish/subscribe or ad hoc networking. This work focuses on the hierarchical dissemination of streams in content 
distribution networks based on publish/subscribe. 
 By decoupling the roles of producers and consumers of a data stream, publish/subscribe systems provide a 
loosely-coupled framework for streaming. Producers of data streams include metadata describing the content 
encapsulated in a given stream fragment. These content descriptors are referred to as topics. Consumers specify their 
interests in consuming portions of a stream through subscriptions that are constraints specified on the values that the 
content descriptors might take. Subscription complexity is directly proportional to the richness of the content 
description. Dissemination of streams is based on the registered subscriptions and the stream’s content descriptors. 
 The simplest content descriptor is a String, for e.g. Sensor/Streams. This simplicity also enables extremely fast 
evaluations of whether a stream fragment satisfies a specified subscription constraint. Hierarchical content 
description assumes that the “/” in the content descriptors are significant, and correspond to finer-grained 
descriptions. Thus, Streams/Sensor/Fluid would describe streams produced by all sensors reporting on various fluid 
properties, while Streams/Sensor/Fluid/Pressure would describe streams produced by a piezometer, which is used to 
measure fluid pressure. 
 Hierarchical streaming simplifies the process of registering interest in content. Without support for hierarchical 
streaming, every consumer would need to be aware of every finer-grained description of content. The case for 
hierarchical streaming becomes even more compelling if one were to consider the increase in the complexity of 
managing subscriptions at the consumers as newer, finer-grained descriptions of content become available. 
 Hierarchical content-descriptors are intuitive, flexible and lightweight. It is quite simple to describe content, and 
also to sift through it. An equivalent XML-based description of the hierarchical content descriptors would be 
complex and heavyweight.  Hierarchical content descriptors provide an intuitive framework for consumption 
patterns that could be finer-grained (e.g. Streams/Sensor/Fluid/Pressure) or coarser-grained (e.g. Streams/Sensor). 
Hierarchical streaming allows coarser-grained and fine-grained consumption patterns to co-exist.  

1.1 Wildcards and attributes 

 Wildcards, denoted by *, are placeholders specified in the subscription constraints to hierarchical streams. Most 
systems incorporate support for implicit wildcards, whose scope is over the trailing portion of the hierarchical 
descriptor. Thus, the coarser-grained subscription Streams/Sensor is equivalent to Streams/Sensor/* with the 
wildcard appearing at the end of the subscription constraint. One of the drawbacks of the implicit wildcard scheme is 
that a consumer may be interested in most, but not all, of the content that would then be routed to it. To resolve this, 
a different type of wildcard is needed. 
 Wildcards can also be explicit. Such explicit wildcards can appear anywhere in the subscription constraint. By 
allowing more precision in the registration of constraints, explicit wildcards combine the benefits of finer-grained 
and coarser-grained registration schemes. For example, to register an interest in fluid and atmospheric pressure 
readings from piezometers and barometers respectively, a consumer may register a constraint of the following form: 
Streams/Sensor/*/Pressure. 
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 The scope of a wildcard operator is demarcated by the “/” in the hierarchical descriptors; for implicit wildcards, 
the scope begins at the end of the subscription constraint. Content can take on any value within the scope of the 
wildcard. A registered subscription constraint can specify multiple explicit wildcards, and will always have an 
implicit wildcard at the end. 
 Content demarcated by “/” within the content descriptors corresponds to an attribute. The number of “/” 
separated attributes within a hierarchical descriptor is its depth. The depth of a hierarchical description in turn 
reflects the number of possibilities of placing wildcard operators, and the complexity of evaluating specified 
subscription constraints.  
 A subscription with a wildcard on the first attribute is disallowed. A stand-alone * subscription would result in 
all streams within the system being routed to the consumer, which would then end up being deluged. Systems may 
wish to reserve the first attribute to prevent unauthorized consumption of streams. Here, knowledge of the first 
attribute would be the precursor to consuming the related streams. Of course, additional cryptographic operations 
would need to be performed to ensure that the disseminations are indeed authorized.  

1.2 Crux of this paper 

 In this paper we focus on managing subscription constraints and computing destinations based on hierarchical 
content descriptors encapsulated in individual stream fragments. Once the destinations have been computed it is the 
responsibility of the content dissemination network to efficiently disseminate these streams by calculating routes to 
reach these destinations. Our previous work, Ref [1], describes a routing algorithm, which ensures that the computed 
routes are efficient and avoid intermediate nodes that have failed or have been failure-suspected. 
 Specifically, we investigate strategies to organize, evaluate and enforce support for wildcards in hierarchical 
streaming. For hierarchical streaming, we are especially interested in three factors: computational performance, flux, 
and memory consumption. Since streams would be produced at high rates, the complexity of evaluating subscription 
constraints should not exceed an application’s real-time threshold. Data structures that underpin the organization 
scheme should be able cope with the inherent flux, caused by constantly evolving interests among a large set of 
consumers. Finally, neither the performance nor the ability to cope with flux should be at the expense of  substantial 
memory allocation costs associated with representing these subscription constraints. 
 We investigate three different algorithms. The first one, and the most commonly used, is tree-based. The second 
one is based on using regular expressions for subscriptions. Finally, we propose our algorithm based on hashtables. 

1.3 Paper Contribution  

 The primary contribution of this paper is an algorithm, for computing destinations in hierarchical streaming, 
whose memory consumption and computational overhead is very efficient. Algorithms for computing destinations 
for hierarchical streaming tend to be either tree-based, which are computationally optimal but memory intensive, or 
are regular-expressions based, which make optimal use of memory but with poor response times. The asymptotic 
complexity of our algorithm matches that of the tree-based case for computational efficiency, and that of the regular 
expressions case for memory utilization. We have performed extensive benchmarks, to compare and contrast these 
algorithms and they confirm the suitability of our algorithm and its ability to cope with flux. 

1.4 Applicability of Hierarchical Streaming 

 Hierarchical streaming is particularly suitable for managing disseminations in several domains; here, we focus 
on three such domains: workflows, map-reduce enabled applications, and networked observational environments. In 
workflows, the outputs of consecutive stages of the pipeline can successively add attributes to the content 
descriptors signifying the outputs of different stages. A given computational unit could be part of different stages 
within a pipeline or multiple workflows.  Map-reduce is a framework utilized in cloud computing wherein the 
processing of large datasets is split into smaller components (maps) that process smaller portions of the datasets, the 
results of which are then combined (reduce) to reconstitute the final result. These map-reduce operations can be 
sequential or iterative. Hierarchical streaming can be used to not only collate results produced by individual map 
functions, but also to identify, process and fuse outputs produced by different iterations of a given map-reduce 
computation. In networked observational environments, data produced by sensing equipments need to be routed to 
different computational units depending on the hardware, metric, and precision of the data. Additionally, these 
observational systems need to incorporate support for the addition and removal of sensing equipment without having 
to update the processing units at disparate locations. Hierarchical streaming can enable selective routing and also 
manage the flux in the devices being used in observational settings. 
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Paper Organization: Section 2 provides an overview of the NaradaBrokering content distribution network. Section 
3 includes a description of the three different algorithms to organize and enforce support for wildcards in 
hierarchical streaming. Section 4 presents our performance evaluation. In Section 5 we describe related work in this 
area. Finally, we present our conclusions and a discussion of our proposed future work in this area. 

2 NaradaBrokering  
 We have implemented the scheme described in this paper in the context of the NaradaBrokering [1,2] content 
distribution network. The NaradaBrokering content distribution network comprises a set of cooperating router nodes 
known as brokers. Entities, connected to one of the brokers within the broker network, use their hosting broker to 
funnel streams into the broker network and from thereon to other registered consumers of those streams. 
 NaradaBrokering is application-independent and incorporates several services to mitigate network-induced 
problems as streams traverse domains during disseminations. The system provisions easy to use guarantees, while 
delivering consistent and predictable performance that is adequate for use in real-time settings. 
 By specifying constraints on the content descriptors associated with individual stream fragments, consumers of a 
given data stream can specify, very precisely, the portions of the data stream that they are interested in consuming. 
The security scheme [2] enforces the authorization and confidentiality constraints associated with the generation and 
consumption of secure streams while coping with several classes of denial of service attacks.  
 By preferentially deploying links during disseminations, the routing algorithm in NaradaBrokering ensures that 
underlying network is optimally utilized. This preferential routing ensures that applications receive only those 
portions of streams that are of interest. Since a given application is typically interested in only a fraction of the 
streams present in the system, preferential routing ensures that an application is not deluged by streams that it will 
subsequently discard. Some of the domains that NaradaBrokering has been deployed in include earthquake science, 
particle physics, ecological/environmental monitoring, geosciences, GIS systems, and defense applications. 

3 Hierarchical Streaming 
 In this section we describe three different approaches to managing and evaluating subscription constraints in 
hierarchical streaming. The tree-based approach is the most commonly used approach, while the regular expression 
based approach is less commonly used. We also present our algorithm, based on hashtables. For each algorithm, we 
describe the addition and removal of subscription constraints, and computing destinations for stream fragments.  

3.1 Tree based approach 

      The tree-based representation of subscription constraints on 
hierarchical content descriptors is the most commonly used approach. 
Each “/” separated subscription is first converted into a set of comma 
separated<tag=value> tuples. Thus, a constraint of the form 
/Streams/Sensors/*/Pressure would be represented as the following: 
<Tag1=Streams, Tag2=Sensors, Tag3=*, Tag4=Pressure>.  The tree 
representation of this subscription constraint, within an existing 
subscription tree, is depicted in Figure 1. The Tag# is introduced 
because traversal of the graph is based on the values that the edges 
take. By representing attribute constraints as edges in the graph, we 
can allow multiple edges (each corresponding to a different value of 
the attribute) to emerge from a node. Each edge has its own set of 
destinations. An edge with a destination indicates that a subscription 
constraint has been specified up until that point.  

Figure 1: An example subscription tree 

3.1.1 Adding and removal of subscription constraints 

 When processing subscription constraints the tree traversal is from top-to-bottom. Nodes and edges are reused 
when possible. If an edge cannot be reused, new edges and nodes will be created from that point on, resulting in the 
addition of a sub-tree to the existing subscriptions tree. The last edge created as a result of processing a subscription 
constraint is referred to as a destination edge. When multiple subscriptions reuse a given destination edge, the 
corresponding destination info appears in the destination list associated with that edge. 
 Each edge maintains a reference count of the number of destination edges that can be reached by traversing it. 
The reference count for a destination edge is the size of the destination list that it maintains. Each edge traversed 
during the addition (or removal) of subscriptions has its reference count increased (or decreased) by one.  
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 Determination of whether edges and nodes need to be pruned from the subscriptions tree are done in a bottom-up 
fashion, starting at the destination edge associated with the subscription being removed. An edge is removed if its 
reference count is reduced to zero: this signifies that no destinations can be computed by traversing this edge.  A 
node is removed if the last edge that originated from it is removed. Reference counts associated with edges closer to 
the root of the tree is greater than, or equal to, the reference counts associated with the child edges. So, if it is 
determined that an edge is not to be removed, pruning of edges and nodes higher-up in the tree is not needed. 

3.1.2 Computing destinations 

 To compute destinations associated with a stream fragment, the content descriptors associated with stream 
fragment is first retrieved. These content descriptors are then used to traverse the subscription tree. At every node at 
most 2 edges may be traversed: the edge with matching value and, if present, the wildcard edge. Depending on the 
number and location of wildcard edges, there could be multiple traversal paths during this process. 
 A given traversal path may include zero or more destination edges. The destination list for a path is the union of 
destination lists associated with each of the constituent destination edges. The cumulative destination list for a 
stream fragment is the union of the destination lists associated with each of the traversed paths.  

3.1.3 Complexity Analysis 

 While computing destinations, the worst case occurs when after the first attribute at every subsequent node 2 
edges – the value edge and the wildcard edge – are traversed. In the worst case, if the number of attributes is m, 
there would be 1+2 + 4 + … + 2m-1 = ∑ 2௜௠ିଵ

௜ୀ଴  operations, each of cost O(1), need to be performed. The complexity 
for computing destinations is O(1) where the constant is 2m-1 in the worst-case. In the best case, exactly m operations 
would need to be performed, for a complexity of O(1) where the constant is m.  Managing subscriptions typically 
involves the creation and deletion of nodes and links. In the worst case, for each of the N subscriptions, (m-1) nodes 
and m edges would need to be created. The space utilization in the worst case is O(N) where the constant is m.  

3.2 Regular expressions 

 In our second approach, we make use of regular expressions to compute destinations associated with hierarchical 
streaming. We first recast subscription constraints as regular expressions. To do this, we make use of the Kleene star 
operator (.*) in the wildcard region demarcated by “/”. In regular expression terms, the (.) corresponds to matching 
any single character in that position, while the (*) matches the preceding element zero or more times. In tandem, (.*) 
signifies that any set of characters can appear within the wildcard’s scope.  

3.2.1 Addition and Removal of Subscription constraints 

 The data structure used to store subscriptions is a hashtable: the subscription identifier is used as the key and the 
subscription is stored as the corresponding value. Subscriptions include destination information. Subscription 
identifiers are 128-bit UUIDs (Universally Unique Identifier) to ensure system-wide uniqueness, and are used during 
the addition and removal of subscriptions to see if a subscription was previously registered.  
 Additionally, every regular expression that is specified as a String is first compiled into a pattern, which is then 
used to match arbitrary character sequences against the regular expression. The Pattern engine performs traditional 
NFA-based (Non-Deterministic Finite-State Automata) matching. 

3.2.2 Computing destinations 

 To compute destinations associated with a stream fragment, the content descriptors associated with stream 
fragment is first retrieved. Every subscription constraint (encapsulating the regular expression query) is then 
matched against this identifier to determine if there is a match. In case of match, the destination within the 
subscription is added to the destination list associated with the fragment. As an optimization feature, a check is made 
to see if the subscription’s destination is already present in the destination list associated with the stream fragment; if 
it is, the encapsulated regular expression is not evaluated.   

3.2.3 Complexity Analysis 

 It has been shown, Ref [3], that the processing complexity for evaluating an NFA-based regular expression of 
size n is O(n2). In the worst case, where the registered subscription constraints are all from different destinations, the 
entire set, of size N, of subscriptions would need to be evaluated. In this case, the processing complexity would be 
O(n2N) when assuming that n is the average size of the regular expression query. The storage overheads in this 
scheme correspond to storing the set of subscriptions. If there are N subscriptions, the storage complexity is O(N) 
with a fixed small constant that is independent of the number of attributes. 
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3.3 Hashing based 

 In our hashing based algorithm, we aim to have the performance of the tree-based scheme for computing 
destinations, but the memory utilization profile of the regular expression scheme. 

3.3.1 Addition and removal of subscription constraints 

 In our algorithm, the data structure used to manage the subscriptions is the hashtable. The subscription constraint 
is itself stored as the key, and the value is the destination list associated with the subscription. The algorithm 
maintains another hashtable to keep track of wildcards that have been specified. The wildcards-table is indexed 
based on the value of the first attribute of the hierarchical descriptors; since a wildcard is disallowed for the first 
attribute, all subscriptions will specify this. 
 When a new subscription (depicted in Figure 2.a), needs to be processed, the subscription constraint attributes 
are processed before the subscription can be added to the subscriptions-table. Based on the value of the first attribute 
in the subscription constraint, an attempt is made to retrieve the wildcard counts array from the wildcards-table. If an 
entry corresponding to the first attribute is not present in the wildcards-table, a new entry is initialized with the 
maximum allowable number of attributes m. Next, we determine the number and location of wildcards that have 
been specified within the “/” that demarcate the content descriptor attributes. The wildcard-counts array is 
incremented by one at the indices corresponding to the location of wildcards. The wildcard-counts, for the first 
attribute of a hierarchical descriptor, thus snapshots the locations at which wildcards have been specified by the set 
of related (similar first attribute) subscriptions. 
 The first time a subscription is added to the subscriptions-table, the destination list corresponding to this 
subscription is the destination associated with the subscription. Additional subscriptions with the same subscription 
constraint result in the addition of the corresponding destinations to that subscription’s destination list. 
 When a subscription is removed, a check is made to determine the number and location of wildcards that have 
been specified for various attributes. If a wildcard is present, the wildcard counts array corresponding to the first 
attribute of the subscription constraint is retrieved. The wildcard counts are then decremented by one at the indices 
corresponding to the location of the wildcards.  
 Since a wildcard cannot be specified for the first attribute, the first element in the wildcard-counts array is 
always zero. We use this first index to keep track of the number of subscriptions that have been specified on the first 
attribute of the hierarchical descriptor. This is incremented the first time a subscription, with a matching first 
attribute, has been specified irrespective of whether the constraint contains wildcard operators or not. Removal of 
the subscription will result in a corresponding reduction in the count. When the subscription-count corresponding to 
the first attribute is reduced to zero, the space allocated for the wildcard-counts array will be reclaimed. 

MANAGESUBSCRIPTIONADDITION(A, consumerDest)  
   INITIALIZEWILDCARDCOUNTSARRAY(A1) 
   wcounts = GETWILDCARDCOUNTSARRAY(A1) 

   for i  2 to SIZE(A) 
      if Ai = * 
        then wcounts[i]   wcounts[i] + 1 

   ADDSUBSCRIPTION(A, consumerDest) 
   wcounts[1]  wcounts[1] + 1 
 
ADDSUBSCRIPTION(A, consumerDest)  
    if subscription A in dictionary 
      then dest  get destinations from subscription dictionary 
               dest  dest U consumerDest 
      else   put (A, consumerDest) into subscription dictionary 
 
INITIALIZEWILDCARDCOUNTSARRAY(attribute) 
    if attribute in wildcard dictionary  
      then return  
      else  wcounts = ALLOCATE(maxAttributeDepth) 
              put (attribute, wcounts) into wildcard dictionary 
 
GETWILDCARDCOUNTSARRAY(attribute) 
    return retrieved counts from wildcard dictionary 

(a) 

COMPUTEDESTINATIONS(A)  
   dest  -NIL, level  1 
   wcounts  GETWILDCARDCOUNTSARRAY(A1); 
   if (wcounts = NIL)  
     then return dest 
 

   dest  GETDESTINATIONFOR(A1); 
   dest  dest U FINERRECURSION (dest, A, wcounts, A1, level) 

FINERRECURSION (dest, A, wcounts, coarserSub, level) 
   if (level > SIZE(A))  
     then return dest 
 
   level  level + 1 
   finerSub  coarserSub + “/” + Alevel 
   dest   GETDESTINATIONFOR (finerSub) 
   dest  dest U FINERRECURSION (dest, A, wcounts, finerSub, level) 

   if (wcounts[level] > 0)  
    then finerWCSub  coarserSub + “/*” 
             dest GETDESTINATIONFOR (finerWCSub) 
             dest dest U FINERRECURSION(dest, A, wcounts, finerWCSub,level) 

   return dest 
 
GETDESTINATIONFOR (subscription) 
    Perform dictionary operation to retrieve destination 

(b) 
Figure 2: Algorithm for adding subscriptions and computing destinations 
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3.3.2 Computing destinations 

 To compute destinations ((depicted in Figure 2.b)) associated with a stream fragment, the content descriptors 
associated with stream fragment is first retrieved. Next, the wildcard counts array corresponding to the first attribute 
in the content descriptor retrieved. If such a wildcard counts array is not available, no subscriptions that could 
potentially match the content descriptor have been specified, and no further processing is performed. If, on the other 
hand, the wildcard counts array exists for the first attribute, processing continues.  
 The content descriptors along with indices, where the wildcards have been specified, are used to construct the set 
of subscriptions that would match the content descriptor. Consider the case where A/B/C/D is the content descriptor, 
and wildcard counts indicate that wildcards have been specified for the second and third attribute. In this case, the 
set of subscriptions that would be constructed are: A/B/C/D, A/*/C/D, A/B/C/* and A/*/C/* in addition to A and A/B. 
 These constructed subscriptions are then used to compute destinations associated with the stream fragment. For 
every subscription, a simple lookup of the subscriptions table yields the corresponding destination list. The 
destination list for the stream fragment is the union of the destination lists associated with each of the constructed 
subscriptions.  

3.3.3 Complexity Analysis 

 The complexity of supporting dictionary operations for a hashtable on the average is O(1). Thus, the lookup, 
addition and retrieval times for a hashtable is O(1). When computing destinations, in the best case, only one such 
access would be needed to retrieve the destinations list for the subscription constraint. In the worst case, for 
hierarchical descriptors with a maximum of the m attributes and wild card operators for every attribute except the 
first one, 2m-1 accesses (each with a cost of O(1) ) would need to be made. Please note that the O(1) costs in our 
hashtable scheme would be slightly higher than the corresponding O(1) costs in the tree-based scheme: our 
benchmarks also confirm this. The memory consumption is O(N) in the worst case, when all the N subscription 
constraints are unique. The constant for the space-complexity would depend on the implementation strategy: the 
Google Sparse Hash, for example is extremely memory-efficient with only a 2 bit overhead per entry. In our 
implementation and benchmarks we used the hashtable that is available as part of the Java libraries. 

4 Performance Evaluation 
 We first start-off by presenting results outlining the communication latencies in a simplified setting involving 
one producer and consumer. The communication latencies will be reported for stream fragments with different 
payload sizes, each of which has a one-attribute content descriptor. The reported communication latencies include 
the time spent in computing destinations. Readers interested in NaradaBrokering benchmarks in settings involving 
broker networks are referred to [1,2]. 
 To benchmark the three algorithms for hierarchical streaming we profile several aspects related to its 
performance, ability to cope with flux and memory utilization. To measure the performance of the algorithms, we 
vary both the number of attributes in the content descriptors and the also the number of subscription constraints that 
are managed by each algorithm. Under these conditions, we report the costs involved in computing destinations for a 
given stream fragment. These computational costs reveal the suitability of each algorithm for real-time streaming. 
 To determine the ability of the algorithms to cope with flux, we compute the costs involved in adding and 
removing subscriptions when the size of the managed subscription vary.  
 We also profiled the tree-based approach for its memory utilization: specifically, we track the number of nodes 
and edges that are created for different number of attributes as the size of the managed subscriptions varies.  

4.1 Streaming in Cluster Settings 

 Our first set of benchmarks relate to measuring stream communication latencies in cluster settings. We 
benchmarked the simplest case involving one producer, one consumer, and a content distribution network that 
comprises one broker. There is just one subscription being maintained, and it is specified on a content descriptor 
with exactly one attribute. This setting will reveal the lowest possible latencies for streaming in LAN settings. For 
real-time streaming, in multimedia settings, the acceptable latencies are typically about 10-30 milliseconds in LAN 
settings, and around 100-200 milliseconds in WAN settings depending on the quality of the underlying network. 
 The two cluster machines (4 CPU, 2.4GHz, 2GB RAM)) involved in the benchmark were hosted on 100 Mbps 
LAN. The producer and consumer were hosted on the same machine to obviate the need to account for clock drifts 
while measuring latencies for streams issued by the producer, and routed by the broker (hosted on the second 
machine) to the consumer. All processes executed within version 1.6 of Sun’s JVM.  
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     The results, depicted in Figure 3, report the mean 
communication delays for different payload sizes 
encapsulated within the stream fragments. The reported 
delay is the average of 50 samples for a given payload 
size; the standard deviation for these samples also being 
reported. For stream fragment payload sizes, the delays 
are around a millisecond for payloads up to a 10 KB, 
and increasing to 20 milliseconds for 1 MB payload size. 
It must be noted that in WAN settings the 
communication latencies are in the order of 50-200 
milliseconds per hop 

4.2 Performance of the algorithms  
Figure 3: Streaming overheads in cluster settings 

 The remainder of the benchmarks, pertain to the three algorithms presented in this paper, and were performed on 
a standalone machine (4 CPU, 2.4GHz, 2GB RAM) with processes executing within version 1.6 of Sun’s JVM. We 
also used a high-resolution timer to report most of our measurements in microseconds.  

4.2.1 Computational Performance 

 To measure the computational performance of the algorithms, we vary the number of attributes in the content 
descriptors and also the number of managed subscriptions in each algorithm from 104 to 105 subscriptions. The 
subscriptions are generated randomly, with every attribute being randomly assigned one of 50 possible values. For 
each subscription, except for the first attribute, wildcards will be specified on one of the other attributes.  

 
Figure 4: Overheads for  tree-based scheme  

Figure 5: Overheads for the Hashing scheme 

 
Figure 6: Overheads for Regular expressions  

Figure 7: Cumulative overhead comparisons  
 Figure 4, Figure 5 and Figure 6 depict the overheads for computing destinations in tree-based, hashing and 
regular expressions scheme respectively. In general, the matching overheads increase as the number of subscriptions 
and the number of attributes within the subscriptions increase. Given the large number, and random generation, of 
subscriptions, a wildcard eventually appears for almost every other attribute in a set of related subscriptions (based 
on the first attribute). This in turn causes the hashing-based scheme – Figure 5 – to approach its worst-case 
performance wherein the number of sweeps of the Hashtable becomes proportional to the number of specified 
attributes. In the regular expressions case, Figure 6, the costs (in milliseconds) do not depart significantly from their 
high base costs as the number of attributes increase.  
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 Figure 7 contrasts the matching overheads for the three algorithms for varying number of subscriptions, each of 
which have 7 attributes. It is clear that the matching overheads are the best in the case of the tree-based scheme, with 
slightly higher overheads for the hashing-based scheme. The overheads introduced by the regular expressions 
scheme are several orders of magnitude higher than that of the other two.  

4.2.2 Space Utilization in the Tree-based scheme 

     Perhaps the biggest drawback of the tree-based 
scheme is the memory requirements associated with 
maintaining the set of subscriptions. Figure 8 depicts the 
memory allocation costs associated with the tree-based 
scheme. As the number of attributes and subscriptions 
increase, the number of nodes and edges needed to 
represent the set of managed subscriptions also increase 
substantially. Case in point is the fact that in the tree-
based case, managing 100000 subscriptions, each with 10 
attributes, results in the creation of 798188 nodes and 
898187 edges: approximately 2 million objects. During 
the benchmarks, the heap size allocated for the JVM had 
to be set to more than 1 GB for the tree-based scheme. Figure 8: Node allocation costs in tree-based scheme

4.2.3 Coping with flux 

We also performed benchmarks to determine the ability of the algorithms to cope with flux, wherein subscriptions 
are being added and removed at high rates. Figure 9 and Figure 10 depict the cost associated with adding and 
removing one subscription for each of the algorithms. The regular expressions scheme delivers the best 
performance, with the hashing-based performance quite close to this. The additional overhead in the hashing scheme 
is introduced by the need to maintain the wildcard-counts array. The higher costs in the tree-based scheme pertain to 
the creation or removal of nodes and edges.  

 
Figure 9: Costs for adding a subscription 

 
Figure 10: Costs for removing a subscription 

Standard Deviation 
Each point in our graphs (figures 4,5,6,7, 9 and 10) corresponds to the average of a 100 runs on a dedicated machine 
on which no other user jobs were executing. The standard deviations involved in these measurements were low: for 
computing destinations, in the tree-based case it was around 1 microsecond while in the hashing scheme it was 
around 4-10 microseconds. One reason we did not plot these standard deviations was because of space constraints.  

5 Related Work 
 Support for tree-based <tag,value>  tuples with equality checks and wildcards in the values was first used in the 
Gryphon [6] system. Gryphon’s matching scheme provides a time-complexity that is sub-linear in the number of 
subscriptions. However, even though their complexity of space consumption is linear in the number of subscriptions, 
the constant is high enough that the costs become prohibitive as the number of attributes increase. An optimization 
to their matching algorithm based on successor nodes, reduces the matching time even further by 20%, but at the 
expense of increased space complexity. Their suggested space optimization involves collapsing chains of *-edges 
will not have a significant effect: in our benchmarks, where we randomly generated constraints, there were no 
subscription constraints that lead to such * chains and the space costs were still very high (Figure 8). 
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 The WS-Topics [5] specification incorporates support for organizing topics and also for maintaining aliases 
associated with these topics. While wildcards are not explicitly supported, subscribers can navigate the topic 
hierarchy to determine the topics to subscribe to. WS-Topics is part of the Web Service Resource Framework 
(WSRF) suite of specifications that are used to build Grid systems. WSRF is a realignment of the dominant Open 
Grid Service Infrastructure [6] to be more in line with the emerging consensus within the Web Services community. 
 Ref [7] outlines a strategy to convert each subscription in Elvin into a deterministic finite state automaton. This 
conversion, and the matching solutions, nevertheless can lead to an combinatorial explosion in the number of states 
for a small number of subscriptions. Systems such as SonicMQ [8] and TIBCO [9] incorporate support for 
hierarchical “/”-separated topic spaces. However, to the best of our knowledge, they do not seem to include support 
for implicit wildcard operators.  
 The Java Message Service (JMS) [10] specification from Sun defines a set of Java interfaces that enables the 
development of publish/subscribe applications. Individual messages have properties associated with them; 
constraints based on SQL queries can specified on the values that these properties take. SQL query evaluation in 
general tends to be just as compute intensive as the evaluation of regular expressions.  
 The Event Service [11] approach adopted by the OMG is one of establishing channels and subsequently 
registering suppliers and consumers to the event channels. The approach could entail clients (consumers) to be 
aware of a large number of event channels.  

6 Conclusions 
Hierarchical descriptors provide a flexible, lightweight scheme for content description and also for the specification 
of constraints on these content descriptors. In this paper we presented algorithms that could be utilized for enabling 
hierarchical streaming.  
 Regular expressions provide a rich language for the specification of constraints through various operators that 
enable specification of patterns, partial matches, placeholders, and case independence among others. However, the 
computational costs introduced by the regular expressions scheme can be prohibitive as the number of subscription 
constraints increase. 
 The tree-based approach provides excellent performance, but the memory costs associated with maintaining the 
nodes and edges associated with individual subscription constraints increase substantially as the number of the 
attributes and subscriptions increase. In our benchmarks, for 105 subscriptions each with 10 attributes, about 2 
million elements (edges and nodes combined) were created. 
 The hashing-based scheme provides performance approaching that of the tree-based scheme while at the same 
time providing excellent memory utilization performance.  
 In general, all three algorithms coped reasonably well in their ability to cope with the flux in their set of managed 
subscriptions. 
 As part of our future work, we will investigate the use of hierarchical streaming in map-reduce style 
computations both in the single-phase and iterative modes. This will be the subject of our future papers in this area. 
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