
1

Enabling Hierarchical Dissemination of Streams in Content Distribution Networks
Shrideep Pallickara (spallick@indiana.edu)
Community Grids Lab, Indiana University

Abstract
In streaming systems the content distribution network routes streams based on interests registered by the consuming
entities. In hierarchical streaming, the dissemination is also predicated on the resolution of hierarchical
dependencies between various streams. Entities specify explicit wildcards, in addition to the implicit ones in place,
to further control the types of streams within a given hierarchy that should be routed to them. We investigate three
approaches to organize, evaluate and enforce support for wildcards in hierarchical streaming. In our evaluation of
these algorithms we are especially interested in three factors: performance, ability to cope with flux, and memory
consumption. Comprehensive benchmarks for these algorithms, in this paper, will enable system designers to
harness the best algorithm, which satisfies their hierarchical streaming requirements.
Keywords: streaming systems, hierarchical streaming, content distribution networks, pub/sub systems, middleware

1 Introduction
 Streaming pertains to the routing of data streams from the sources to entities that are interested in them. In
streaming, the dissemination of streams is typically independent of the underlying network and is, instead, content-
based. The routing is within the purview of the content distribution network, which tracks both the entities and their
interests. Content distribution networks provide a scalable framework for exchanging information between a very
large number of entities. These content distribution networks could be based on multicast, peer-to-peer,
publish/subscribe or ad hoc networking. This work focuses on the hierarchical dissemination of streams in content
distribution networks based on publish/subscribe.
 By decoupling the roles of producers and consumers of a data stream, publish/subscribe systems provide a
loosely-coupled framework for streaming. Producers of data streams include metadata describing the content
encapsulated in a given stream fragment. These content descriptors are referred to as topics. Consumers specify their
interests in consuming portions of a stream through subscriptions that are constraints specified on the values that the
content descriptors might take. Subscription complexity is directly proportional to the richness of the content
description. Dissemination of streams is based on the registered subscriptions and the stream’s content descriptors.
 The simplest content descriptor is a String, for e.g. Sensor/Streams. This simplicity also enables extremely fast
evaluations of whether a stream fragment satisfies a specified subscription constraint. Hierarchical content
description assumes that the “/” in the content descriptors are significant, and correspond to finer-grained
descriptions. Thus, Streams/Sensor/Fluid would describe streams produced by all sensors reporting on various fluid
properties, while Streams/Sensor/Fluid/Pressure would describe streams produced by a piezometer, which is used to
measure fluid pressure.
 Hierarchical streaming simplifies the process of registering interest in content. Without support for hierarchical
streaming, every consumer would need to be aware of every finer-grained description of content. The case for
hierarchical streaming becomes even more compelling if one were to consider the increase in the complexity of
managing subscriptions at the consumers as newer, finer-grained descriptions of content become available.
 Hierarchical content-descriptors are intuitive, flexible and lightweight. It is quite simple to describe content, and
also to sift through it. An equivalent XML-based description of the hierarchical content descriptors would be
complex and heavyweight. Hierarchical content descriptors provide an intuitive framework for consumption
patterns that could be finer-grained (e.g. Streams/Sensor/Fluid/Pressure) or coarser-grained (e.g. Streams/Sensor).
Hierarchical streaming allows coarser-grained and fine-grained consumption patterns to co-exist.

1.1 Wildcards and attributes

 Wildcards, denoted by *, are placeholders specified in the subscription constraints to hierarchical streams. Most
systems incorporate support for implicit wildcards, whose scope is over the trailing portion of the hierarchical
descriptor. Thus, the coarser-grained subscription Streams/Sensor is equivalent to Streams/Sensor/* with the
wildcard appearing at the end of the subscription constraint. One of the drawbacks of the implicit wildcard scheme is
that a consumer may be interested in most, but not all, of the content that would then be routed to it. To resolve this,
a different type of wildcard is needed.
 Wildcards can also be explicit. Such explicit wildcards can appear anywhere in the subscription constraint. By
allowing more precision in the registration of constraints, explicit wildcards combine the benefits of finer-grained
and coarser-grained registration schemes. For example, to register an interest in fluid and atmospheric pressure
readings from piezometers and barometers respectively, a consumer may register a constraint of the following form:
Streams/Sensor/*/Pressure.

2

 The scope of a wildcard operator is demarcated by the “/” in the hierarchical descriptors; for implicit wildcards,
the scope begins at the end of the subscription constraint. Content can take on any value within the scope of the
wildcard. A registered subscription constraint can specify multiple explicit wildcards, and will always have an
implicit wildcard at the end.
 Content demarcated by “/” within the content descriptors corresponds to an attribute. The number of “/”
separated attributes within a hierarchical descriptor is its depth. The depth of a hierarchical description in turn
reflects the number of possibilities of placing wildcard operators, and the complexity of evaluating specified
subscription constraints.
 A subscription with a wildcard on the first attribute is disallowed. A stand-alone * subscription would result in
all streams within the system being routed to the consumer, which would then end up being deluged. Systems may
wish to reserve the first attribute to prevent unauthorized consumption of streams. Here, knowledge of the first
attribute would be the precursor to consuming the related streams. Of course, additional cryptographic operations
would need to be performed to ensure that the disseminations are indeed authorized.

1.2 Crux of this paper

 In this paper we focus on managing subscription constraints and computing destinations based on hierarchical
content descriptors encapsulated in individual stream fragments. Once the destinations have been computed it is the
responsibility of the content dissemination network to efficiently disseminate these streams by calculating routes to
reach these destinations. Our previous work, Ref [1], describes a routing algorithm, which ensures that the computed
routes are efficient and avoid intermediate nodes that have failed or have been failure-suspected.
 Specifically, we investigate strategies to organize, evaluate and enforce support for wildcards in hierarchical
streaming. For hierarchical streaming, we are especially interested in three factors: computational performance, flux,
and memory consumption. Since streams would be produced at high rates, the complexity of evaluating subscription
constraints should not exceed an application’s real-time threshold. Data structures that underpin the organization
scheme should be able cope with the inherent flux, caused by constantly evolving interests among a large set of
consumers. Finally, neither the performance nor the ability to cope with flux should be at the expense of substantial
memory allocation costs associated with representing these subscription constraints.
 We investigate three different algorithms. The first one, and the most commonly used, is tree-based. The second
one is based on using regular expressions for subscriptions. Finally, we propose our algorithm based on hashtables.

1.3 Paper Contribution

 The primary contribution of this paper is an algorithm, for computing destinations in hierarchical streaming,
whose memory consumption and computational overhead is very efficient. Algorithms for computing destinations
for hierarchical streaming tend to be either tree-based, which are computationally optimal but memory intensive, or
are regular-expressions based, which make optimal use of memory but with poor response times. The asymptotic
complexity of our algorithm matches that of the tree-based case for computational efficiency, and that of the regular
expressions case for memory utilization. We have performed extensive benchmarks, to compare and contrast these
algorithms and they confirm the suitability of our algorithm and its ability to cope with flux.

1.4 Applicability of Hierarchical Streaming

 Hierarchical streaming is particularly suitable for managing disseminations in several domains; here, we focus
on three such domains: workflows, map-reduce enabled applications, and networked observational environments. In
workflows, the outputs of consecutive stages of the pipeline can successively add attributes to the content
descriptors signifying the outputs of different stages. A given computational unit could be part of different stages
within a pipeline or multiple workflows. Map-reduce is a framework utilized in cloud computing wherein the
processing of large datasets is split into smaller components (maps) that process smaller portions of the datasets, the
results of which are then combined (reduce) to reconstitute the final result. These map-reduce operations can be
sequential or iterative. Hierarchical streaming can be used to not only collate results produced by individual map
functions, but also to identify, process and fuse outputs produced by different iterations of a given map-reduce
computation. In networked observational environments, data produced by sensing equipments need to be routed to
different computational units depending on the hardware, metric, and precision of the data. Additionally, these
observational systems need to incorporate support for the addition and removal of sensing equipment without having
to update the processing units at disparate locations. Hierarchical streaming can enable selective routing and also
manage the flux in the devices being used in observational settings.

3

Paper Organization: Section 2 provides an overview of the NaradaBrokering content distribution network. Section
3 includes a description of the three different algorithms to organize and enforce support for wildcards in
hierarchical streaming. Section 4 presents our performance evaluation. In Section 5 we describe related work in this
area. Finally, we present our conclusions and a discussion of our proposed future work in this area.

2 NaradaBrokering
 We have implemented the scheme described in this paper in the context of the NaradaBrokering [1,2] content
distribution network. The NaradaBrokering content distribution network comprises a set of cooperating router nodes
known as brokers. Entities, connected to one of the brokers within the broker network, use their hosting broker to
funnel streams into the broker network and from thereon to other registered consumers of those streams.
 NaradaBrokering is application-independent and incorporates several services to mitigate network-induced
problems as streams traverse domains during disseminations. The system provisions easy to use guarantees, while
delivering consistent and predictable performance that is adequate for use in real-time settings.
 By specifying constraints on the content descriptors associated with individual stream fragments, consumers of a
given data stream can specify, very precisely, the portions of the data stream that they are interested in consuming.
The security scheme [2] enforces the authorization and confidentiality constraints associated with the generation and
consumption of secure streams while coping with several classes of denial of service attacks.
 By preferentially deploying links during disseminations, the routing algorithm in NaradaBrokering ensures that
underlying network is optimally utilized. This preferential routing ensures that applications receive only those
portions of streams that are of interest. Since a given application is typically interested in only a fraction of the
streams present in the system, preferential routing ensures that an application is not deluged by streams that it will
subsequently discard. Some of the domains that NaradaBrokering has been deployed in include earthquake science,
particle physics, ecological/environmental monitoring, geosciences, GIS systems, and defense applications.

3 Hierarchical Streaming
 In this section we describe three different approaches to managing and evaluating subscription constraints in
hierarchical streaming. The tree-based approach is the most commonly used approach, while the regular expression
based approach is less commonly used. We also present our algorithm, based on hashtables. For each algorithm, we
describe the addition and removal of subscription constraints, and computing destinations for stream fragments.

3.1 Tree based approach

 The tree-based representation of subscription constraints on
hierarchical content descriptors is the most commonly used approach.
Each “/” separated subscription is first converted into a set of comma
separated<tag=value> tuples. Thus, a constraint of the form
/Streams/Sensors/*/Pressure would be represented as the following:
<Tag1=Streams, Tag2=Sensors, Tag3=*, Tag4=Pressure>. The tree
representation of this subscription constraint, within an existing
subscription tree, is depicted in Figure 1. The Tag# is introduced
because traversal of the graph is based on the values that the edges
take. By representing attribute constraints as edges in the graph, we
can allow multiple edges (each corresponding to a different value of
the attribute) to emerge from a node. Each edge has its own set of
destinations. An edge with a destination indicates that a subscription
constraint has been specified up until that point.

Figure 1: An example subscription tree

3.1.1 Adding and removal of subscription constraints

 When processing subscription constraints the tree traversal is from top-to-bottom. Nodes and edges are reused
when possible. If an edge cannot be reused, new edges and nodes will be created from that point on, resulting in the
addition of a sub-tree to the existing subscriptions tree. The last edge created as a result of processing a subscription
constraint is referred to as a destination edge. When multiple subscriptions reuse a given destination edge, the
corresponding destination info appears in the destination list associated with that edge.
 Each edge maintains a reference count of the number of destination edges that can be reached by traversing it.
The reference count for a destination edge is the size of the destination list that it maintains. Each edge traversed
during the addition (or removal) of subscriptions has its reference count increased (or decreased) by one.

Tag 2

Tag 3

Tag 4

Tag 3

Tag 4

Sensors Results

Fluid Atmospheric
Transform

Tag 4

*

Pressure Pressure PressureDensity Stage 1* *

Tag 1

Streams

Tag 4

Tag 2

 Workflow

4

 Determination of whether edges and nodes need to be pruned from the subscriptions tree are done in a bottom-up
fashion, starting at the destination edge associated with the subscription being removed. An edge is removed if its
reference count is reduced to zero: this signifies that no destinations can be computed by traversing this edge. A
node is removed if the last edge that originated from it is removed. Reference counts associated with edges closer to
the root of the tree is greater than, or equal to, the reference counts associated with the child edges. So, if it is
determined that an edge is not to be removed, pruning of edges and nodes higher-up in the tree is not needed.

3.1.2 Computing destinations

 To compute destinations associated with a stream fragment, the content descriptors associated with stream
fragment is first retrieved. These content descriptors are then used to traverse the subscription tree. At every node at
most 2 edges may be traversed: the edge with matching value and, if present, the wildcard edge. Depending on the
number and location of wildcard edges, there could be multiple traversal paths during this process.
 A given traversal path may include zero or more destination edges. The destination list for a path is the union of
destination lists associated with each of the constituent destination edges. The cumulative destination list for a
stream fragment is the union of the destination lists associated with each of the traversed paths.

3.1.3 Complexity Analysis

 While computing destinations, the worst case occurs when after the first attribute at every subsequent node 2
edges – the value edge and the wildcard edge – are traversed. In the worst case, if the number of attributes is m,
there would be 1+2 + 4 + … + 2m-1 = ∑ 2௜௠ିଵ

௜ୀ଴ operations, each of cost O(1), need to be performed. The complexity
for computing destinations is O(1) where the constant is 2m-1 in the worst-case. In the best case, exactly m operations
would need to be performed, for a complexity of O(1) where the constant is m. Managing subscriptions typically
involves the creation and deletion of nodes and links. In the worst case, for each of the N subscriptions, (m-1) nodes
and m edges would need to be created. The space utilization in the worst case is O(N) where the constant is m.

3.2 Regular expressions

 In our second approach, we make use of regular expressions to compute destinations associated with hierarchical
streaming. We first recast subscription constraints as regular expressions. To do this, we make use of the Kleene star
operator (.*) in the wildcard region demarcated by “/”. In regular expression terms, the (.) corresponds to matching
any single character in that position, while the (*) matches the preceding element zero or more times. In tandem, (.*)
signifies that any set of characters can appear within the wildcard’s scope.

3.2.1 Addition and Removal of Subscription constraints

 The data structure used to store subscriptions is a hashtable: the subscription identifier is used as the key and the
subscription is stored as the corresponding value. Subscriptions include destination information. Subscription
identifiers are 128-bit UUIDs (Universally Unique Identifier) to ensure system-wide uniqueness, and are used during
the addition and removal of subscriptions to see if a subscription was previously registered.
 Additionally, every regular expression that is specified as a String is first compiled into a pattern, which is then
used to match arbitrary character sequences against the regular expression. The Pattern engine performs traditional
NFA-based (Non-Deterministic Finite-State Automata) matching.

3.2.2 Computing destinations

 To compute destinations associated with a stream fragment, the content descriptors associated with stream
fragment is first retrieved. Every subscription constraint (encapsulating the regular expression query) is then
matched against this identifier to determine if there is a match. In case of match, the destination within the
subscription is added to the destination list associated with the fragment. As an optimization feature, a check is made
to see if the subscription’s destination is already present in the destination list associated with the stream fragment; if
it is, the encapsulated regular expression is not evaluated.

3.2.3 Complexity Analysis

 It has been shown, Ref [3], that the processing complexity for evaluating an NFA-based regular expression of
size n is O(n2). In the worst case, where the registered subscription constraints are all from different destinations, the
entire set, of size N, of subscriptions would need to be evaluated. In this case, the processing complexity would be
O(n2N) when assuming that n is the average size of the regular expression query. The storage overheads in this
scheme correspond to storing the set of subscriptions. If there are N subscriptions, the storage complexity is O(N)
with a fixed small constant that is independent of the number of attributes.

5

3.3 Hashing based

 In our hashing based algorithm, we aim to have the performance of the tree-based scheme for computing
destinations, but the memory utilization profile of the regular expression scheme.

3.3.1 Addition and removal of subscription constraints

 In our algorithm, the data structure used to manage the subscriptions is the hashtable. The subscription constraint
is itself stored as the key, and the value is the destination list associated with the subscription. The algorithm
maintains another hashtable to keep track of wildcards that have been specified. The wildcards-table is indexed
based on the value of the first attribute of the hierarchical descriptors; since a wildcard is disallowed for the first
attribute, all subscriptions will specify this.
 When a new subscription (depicted in Figure 2.a), needs to be processed, the subscription constraint attributes
are processed before the subscription can be added to the subscriptions-table. Based on the value of the first attribute
in the subscription constraint, an attempt is made to retrieve the wildcard counts array from the wildcards-table. If an
entry corresponding to the first attribute is not present in the wildcards-table, a new entry is initialized with the
maximum allowable number of attributes m. Next, we determine the number and location of wildcards that have
been specified within the “/” that demarcate the content descriptor attributes. The wildcard-counts array is
incremented by one at the indices corresponding to the location of wildcards. The wildcard-counts, for the first
attribute of a hierarchical descriptor, thus snapshots the locations at which wildcards have been specified by the set
of related (similar first attribute) subscriptions.
 The first time a subscription is added to the subscriptions-table, the destination list corresponding to this
subscription is the destination associated with the subscription. Additional subscriptions with the same subscription
constraint result in the addition of the corresponding destinations to that subscription’s destination list.
 When a subscription is removed, a check is made to determine the number and location of wildcards that have
been specified for various attributes. If a wildcard is present, the wildcard counts array corresponding to the first
attribute of the subscription constraint is retrieved. The wildcard counts are then decremented by one at the indices
corresponding to the location of the wildcards.
 Since a wildcard cannot be specified for the first attribute, the first element in the wildcard-counts array is
always zero. We use this first index to keep track of the number of subscriptions that have been specified on the first
attribute of the hierarchical descriptor. This is incremented the first time a subscription, with a matching first
attribute, has been specified irrespective of whether the constraint contains wildcard operators or not. Removal of
the subscription will result in a corresponding reduction in the count. When the subscription-count corresponding to
the first attribute is reduced to zero, the space allocated for the wildcard-counts array will be reclaimed.

MANAGESUBSCRIPTIONADDITION(A, consumerDest)
 INITIALIZEWILDCARDCOUNTSARRAY(A1)
 wcounts = GETWILDCARDCOUNTSARRAY(A1)

 for i 2 to SIZE(A)
 if Ai = *
 then wcounts[i] wcounts[i] + 1

 ADDSUBSCRIPTION(A, consumerDest)
 wcounts[1] wcounts[1] + 1

ADDSUBSCRIPTION(A, consumerDest)
 if subscription A in dictionary
 then dest get destinations from subscription dictionary
 dest dest U consumerDest
 else put (A, consumerDest) into subscription dictionary

INITIALIZEWILDCARDCOUNTSARRAY(attribute)
 if attribute in wildcard dictionary
 then return
 else wcounts = ALLOCATE(maxAttributeDepth)
 put (attribute, wcounts) into wildcard dictionary

GETWILDCARDCOUNTSARRAY(attribute)
 return retrieved counts from wildcard dictionary

(a)

COMPUTEDESTINATIONS(A)
 dest -NIL, level 1
 wcounts GETWILDCARDCOUNTSARRAY(A1);
 if (wcounts = NIL)
 then return dest

 dest GETDESTINATIONFOR(A1);
 dest dest U FINERRECURSION (dest, A, wcounts, A1, level)

FINERRECURSION (dest, A, wcounts, coarserSub, level)
 if (level > SIZE(A))
 then return dest

 level level + 1
 finerSub coarserSub + “/” + Alevel
 dest GETDESTINATIONFOR (finerSub)
 dest dest U FINERRECURSION (dest, A, wcounts, finerSub, level)

 if (wcounts[level] > 0)
 then finerWCSub coarserSub + “/*”
 dest GETDESTINATIONFOR (finerWCSub)
 dest dest U FINERRECURSION(dest, A, wcounts, finerWCSub,level)

 return dest

GETDESTINATIONFOR (subscription)
 Perform dictionary operation to retrieve destination

(b)
Figure 2: Algorithm for adding subscriptions and computing destinations

6

3.3.2 Computing destinations

 To compute destinations ((depicted in Figure 2.b)) associated with a stream fragment, the content descriptors
associated with stream fragment is first retrieved. Next, the wildcard counts array corresponding to the first attribute
in the content descriptor retrieved. If such a wildcard counts array is not available, no subscriptions that could
potentially match the content descriptor have been specified, and no further processing is performed. If, on the other
hand, the wildcard counts array exists for the first attribute, processing continues.
 The content descriptors along with indices, where the wildcards have been specified, are used to construct the set
of subscriptions that would match the content descriptor. Consider the case where A/B/C/D is the content descriptor,
and wildcard counts indicate that wildcards have been specified for the second and third attribute. In this case, the
set of subscriptions that would be constructed are: A/B/C/D, A/*/C/D, A/B/C/* and A/*/C/* in addition to A and A/B.
 These constructed subscriptions are then used to compute destinations associated with the stream fragment. For
every subscription, a simple lookup of the subscriptions table yields the corresponding destination list. The
destination list for the stream fragment is the union of the destination lists associated with each of the constructed
subscriptions.

3.3.3 Complexity Analysis

 The complexity of supporting dictionary operations for a hashtable on the average is O(1). Thus, the lookup,
addition and retrieval times for a hashtable is O(1). When computing destinations, in the best case, only one such
access would be needed to retrieve the destinations list for the subscription constraint. In the worst case, for
hierarchical descriptors with a maximum of the m attributes and wild card operators for every attribute except the
first one, 2m-1 accesses (each with a cost of O(1)) would need to be made. Please note that the O(1) costs in our
hashtable scheme would be slightly higher than the corresponding O(1) costs in the tree-based scheme: our
benchmarks also confirm this. The memory consumption is O(N) in the worst case, when all the N subscription
constraints are unique. The constant for the space-complexity would depend on the implementation strategy: the
Google Sparse Hash, for example is extremely memory-efficient with only a 2 bit overhead per entry. In our
implementation and benchmarks we used the hashtable that is available as part of the Java libraries.

4 Performance Evaluation
 We first start-off by presenting results outlining the communication latencies in a simplified setting involving
one producer and consumer. The communication latencies will be reported for stream fragments with different
payload sizes, each of which has a one-attribute content descriptor. The reported communication latencies include
the time spent in computing destinations. Readers interested in NaradaBrokering benchmarks in settings involving
broker networks are referred to [1,2].
 To benchmark the three algorithms for hierarchical streaming we profile several aspects related to its
performance, ability to cope with flux and memory utilization. To measure the performance of the algorithms, we
vary both the number of attributes in the content descriptors and the also the number of subscription constraints that
are managed by each algorithm. Under these conditions, we report the costs involved in computing destinations for a
given stream fragment. These computational costs reveal the suitability of each algorithm for real-time streaming.
 To determine the ability of the algorithms to cope with flux, we compute the costs involved in adding and
removing subscriptions when the size of the managed subscription vary.
 We also profiled the tree-based approach for its memory utilization: specifically, we track the number of nodes
and edges that are created for different number of attributes as the size of the managed subscriptions varies.

4.1 Streaming in Cluster Settings

 Our first set of benchmarks relate to measuring stream communication latencies in cluster settings. We
benchmarked the simplest case involving one producer, one consumer, and a content distribution network that
comprises one broker. There is just one subscription being maintained, and it is specified on a content descriptor
with exactly one attribute. This setting will reveal the lowest possible latencies for streaming in LAN settings. For
real-time streaming, in multimedia settings, the acceptable latencies are typically about 10-30 milliseconds in LAN
settings, and around 100-200 milliseconds in WAN settings depending on the quality of the underlying network.
 The two cluster machines (4 CPU, 2.4GHz, 2GB RAM)) involved in the benchmark were hosted on 100 Mbps
LAN. The producer and consumer were hosted on the same machine to obviate the need to account for clock drifts
while measuring latencies for streams issued by the producer, and routed by the broker (hosted on the second
machine) to the consumer. All processes executed within version 1.6 of Sun’s JVM.

7

 The results, depicted in Figure 3, report the mean
communication delays for different payload sizes
encapsulated within the stream fragments. The reported
delay is the average of 50 samples for a given payload
size; the standard deviation for these samples also being
reported. For stream fragment payload sizes, the delays
are around a millisecond for payloads up to a 10 KB,
and increasing to 20 milliseconds for 1 MB payload size.
It must be noted that in WAN settings the
communication latencies are in the order of 50-200
milliseconds per hop

4.2 Performance of the algorithms
Figure 3: Streaming overheads in cluster settings

 The remainder of the benchmarks, pertain to the three algorithms presented in this paper, and were performed on
a standalone machine (4 CPU, 2.4GHz, 2GB RAM) with processes executing within version 1.6 of Sun’s JVM. We
also used a high-resolution timer to report most of our measurements in microseconds.

4.2.1 Computational Performance

 To measure the computational performance of the algorithms, we vary the number of attributes in the content
descriptors and also the number of managed subscriptions in each algorithm from 104 to 105 subscriptions. The
subscriptions are generated randomly, with every attribute being randomly assigned one of 50 possible values. For
each subscription, except for the first attribute, wildcards will be specified on one of the other attributes.

Figure 4: Overheads for tree-based scheme

Figure 5: Overheads for the Hashing scheme

Figure 6: Overheads for Regular expressions

Figure 7: Cumulative overhead comparisons
 Figure 4, Figure 5 and Figure 6 depict the overheads for computing destinations in tree-based, hashing and
regular expressions scheme respectively. In general, the matching overheads increase as the number of subscriptions
and the number of attributes within the subscriptions increase. Given the large number, and random generation, of
subscriptions, a wildcard eventually appears for almost every other attribute in a set of related subscriptions (based
on the first attribute). This in turn causes the hashing-based scheme – Figure 5 – to approach its worst-case
performance wherein the number of sweeps of the Hashtable becomes proportional to the number of specified
attributes. In the regular expressions case, Figure 6, the costs (in milliseconds) do not depart significantly from their
high base costs as the number of attributes increase.

 0

 10

 20

 30

 40

 50

 60

 100 1000 10000 100000 1e+006
 0

 2

 4

 6

 8

 10

 12

 14

M
e
a
n
 t

ra
n
si

t
d
e
la

y

(M

ill
is

e
co

n
d
s)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

M
ill

is
e
co

n
d
s)

Content Payload Size (Bytes)

Streaming overheads for different
 payload sizes (100B - 1MB)

 Delay
 Standard Deviation

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50 60 70 80 90 100M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

Tree based hierarchical descriptors

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50 60 70 80 90 100

M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

10

100

10 20 30 40 50 60 70 80 90 100

M
at

ch
in

g
O

ve
rh

ea
d

(M
ill

is
ec

on
ds

)

Number of Subscriptions (Thousands)

Regular expressions based hierarchical descriptors

9 Attributes
8 Attributes
7 Attributes
6 Attributes
5 Attributes

 10

 100

 1000

 10000

 100000

 1e+006

10 20 30 40 50 60 70 80 90 100M
at

ch
in

g
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Number of Subscriptions (Thousands)

Contrasting performance for different algorithms
with 7 attributes in the hierarchical descriptors

 Regular expressions
Hashing

Tree-based

8

 Figure 7 contrasts the matching overheads for the three algorithms for varying number of subscriptions, each of
which have 7 attributes. It is clear that the matching overheads are the best in the case of the tree-based scheme, with
slightly higher overheads for the hashing-based scheme. The overheads introduced by the regular expressions
scheme are several orders of magnitude higher than that of the other two.

4.2.2 Space Utilization in the Tree-based scheme

 Perhaps the biggest drawback of the tree-based
scheme is the memory requirements associated with
maintaining the set of subscriptions. Figure 8 depicts the
memory allocation costs associated with the tree-based
scheme. As the number of attributes and subscriptions
increase, the number of nodes and edges needed to
represent the set of managed subscriptions also increase
substantially. Case in point is the fact that in the tree-
based case, managing 100000 subscriptions, each with 10
attributes, results in the creation of 798188 nodes and
898187 edges: approximately 2 million objects. During
the benchmarks, the heap size allocated for the JVM had
to be set to more than 1 GB for the tree-based scheme. Figure 8: Node allocation costs in tree-based scheme

4.2.3 Coping with flux

We also performed benchmarks to determine the ability of the algorithms to cope with flux, wherein subscriptions
are being added and removed at high rates. Figure 9 and Figure 10 depict the cost associated with adding and
removing one subscription for each of the algorithms. The regular expressions scheme delivers the best
performance, with the hashing-based performance quite close to this. The additional overhead in the hashing scheme
is introduced by the need to maintain the wildcard-counts array. The higher costs in the tree-based scheme pertain to
the creation or removal of nodes and edges.

Figure 9: Costs for adding a subscription

Figure 10: Costs for removing a subscription

Standard Deviation
Each point in our graphs (figures 4,5,6,7, 9 and 10) corresponds to the average of a 100 runs on a dedicated machine
on which no other user jobs were executing. The standard deviations involved in these measurements were low: for
computing destinations, in the tree-based case it was around 1 microsecond while in the hashing scheme it was
around 4-10 microseconds. One reason we did not plot these standard deviations was because of space constraints.

5 Related Work
 Support for tree-based <tag,value> tuples with equality checks and wildcards in the values was first used in the
Gryphon [6] system. Gryphon’s matching scheme provides a time-complexity that is sub-linear in the number of
subscriptions. However, even though their complexity of space consumption is linear in the number of subscriptions,
the constant is high enough that the costs become prohibitive as the number of attributes increase. An optimization
to their matching algorithm based on successor nodes, reduces the matching time even further by 20%, but at the
expense of increased space complexity. Their suggested space optimization involves collapsing chains of *-edges
will not have a significant effect: in our benchmarks, where we randomly generated constraints, there were no
subscription constraints that lead to such * chains and the space costs were still very high (Figure 8).

Tree-based Nodes

 4 5 6 7 8 9 10Number of
Descriptor Attributes

0
20

40
60

80
100

Number of
Subscriptions

 (1000s)

 10000

 100000

 1e+006

Number of
Tree Nodes

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30 40 50 60 70 80 90 100Ad
di

tio
n

O
ve

rh
ea

ds
 (M

ic
ro

se
co

nd
s)

Number of Subscriptions (Thousands)

Costs for adding 1 subscription in different algorithms
with 7 attributes in the hierarchical descriptors

Tree-based
Hashing

 Regular expressions

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30 40 50 60 70 80 90 100R
em

ov
al

 O
ve

rh
ea

ds
 (M

ic
ro

se
co

nd
s)

Number of Subscriptions (Thousands)

Costs for removing 1 subscription in different algorithms
with 7 attributes in the hierarchical descriptors

Tree-based
Hashing

 Regular expressions

9

 The WS-Topics [5] specification incorporates support for organizing topics and also for maintaining aliases
associated with these topics. While wildcards are not explicitly supported, subscribers can navigate the topic
hierarchy to determine the topics to subscribe to. WS-Topics is part of the Web Service Resource Framework
(WSRF) suite of specifications that are used to build Grid systems. WSRF is a realignment of the dominant Open
Grid Service Infrastructure [6] to be more in line with the emerging consensus within the Web Services community.
 Ref [7] outlines a strategy to convert each subscription in Elvin into a deterministic finite state automaton. This
conversion, and the matching solutions, nevertheless can lead to an combinatorial explosion in the number of states
for a small number of subscriptions. Systems such as SonicMQ [8] and TIBCO [9] incorporate support for
hierarchical “/”-separated topic spaces. However, to the best of our knowledge, they do not seem to include support
for implicit wildcard operators.
 The Java Message Service (JMS) [10] specification from Sun defines a set of Java interfaces that enables the
development of publish/subscribe applications. Individual messages have properties associated with them;
constraints based on SQL queries can specified on the values that these properties take. SQL query evaluation in
general tends to be just as compute intensive as the evaluation of regular expressions.
 The Event Service [11] approach adopted by the OMG is one of establishing channels and subsequently
registering suppliers and consumers to the event channels. The approach could entail clients (consumers) to be
aware of a large number of event channels.

6 Conclusions
Hierarchical descriptors provide a flexible, lightweight scheme for content description and also for the specification
of constraints on these content descriptors. In this paper we presented algorithms that could be utilized for enabling
hierarchical streaming.
 Regular expressions provide a rich language for the specification of constraints through various operators that
enable specification of patterns, partial matches, placeholders, and case independence among others. However, the
computational costs introduced by the regular expressions scheme can be prohibitive as the number of subscription
constraints increase.
 The tree-based approach provides excellent performance, but the memory costs associated with maintaining the
nodes and edges associated with individual subscription constraints increase substantially as the number of the
attributes and subscriptions increase. In our benchmarks, for 105 subscriptions each with 10 attributes, about 2
million elements (edges and nodes combined) were created.
 The hashing-based scheme provides performance approaching that of the tree-based scheme while at the same
time providing excellent memory utilization performance.
 In general, all three algorithms coped reasonably well in their ability to cope with the flux in their set of managed
subscriptions.
 As part of our future work, we will investigate the use of hierarchical streaming in map-reduce style
computations both in the single-phase and iterative modes. This will be the subject of our future papers in this area.

Bibliography
1. S Pallickara et al. A Framework for Secure End-to-End Delivery of Messages in Publish/Subscribe Systems.

Proceedings of the 7th IEEE/ACM International Conference on Grid Computing (GRID 2006). Barcelona, Spain.
2. S Pallickara and G Fox. NaradaBrokering: A Middleware Framework and Architecture for Enabling Durable Peer-to-

Peer Grids. Proceedings of the ACM/IFIP/USENIX International Middleware Conference Middleware-2003. pp 41-61.
3. F. Yu, Z. Chen, Y. Diao, T. Lakshman and R. Katz. Fast and memory-efficient regular expression matching for deep

packet inspection. Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking and
communications systems.

4. Marcos Aguilera et al. Matching events in a content-based subscription system. In Proceedings of the 18th ACM
Symposium on Principles of Distributed Computing Systems.1999.

5. Web Services Topics (WS-Topics). IBM, Globus, Akamai et al.
ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-Topics.pdf

6. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration.” Open Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.

7. Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps. Content based routing with Elvin4. In
Proceedings AUUG2K, Canberra, Australia, June 2000.

8. SonicMQ: Enterprise Messaging System: www.sonicsoftware.com/
9. P Maheshwari, M Pang: Benchmarking message-oriented middleware: TIB/RV versus SonicMQ. Concurrency -

Practice and Experience 17(12): 1507-1526 (2005)
10. M. Happner, R Burridge and R Sharma. Sun Microsystems. Java Message Service Specification. 2000.
11. The Object Management Group (OMG). OMG’s CORBA Event Service. Available from http://www.omg.org/

