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ABSTRACT 
Large-scale iterative computations are common in many 
important data mining and machine learning algorithms needed in 
analytics and deep learning. In most of these applications, 
individual iterations can be specified as MapReduce 
computations, leading to the Iterative MapReduce programming 
model for efficient execution of data-intensive iterative 
computations interoperably between HPC and cloud 
environments. Further one needs additional communication 
patterns from those familiar in MapReduce and we base our initial 
architecture on collectives that integrate capabilities developed by 
the MPI and MapReduce communities. This leads us to the Map-
Collective programming model which here we develop based on 
requirements of a range of applications by extending our existing 
Iterative MapReduce environment Twister. This paper studies the 
implications of large scale Social Image clustering where large 
scale problems study 10-100 million images represented as points 
in a high dimensional (up to 2048) vector space which need to be 
divided into up to 1-10 million clusters. This Kmeans application 
needs 5 stages in each iteration: Broadcast, Map, Shuffle, Reduce 
and Combine, and this paper focuses on collective communication 
stages where large data transfers demand performance 
optimization. By comparing and combining ideas from 
MapReduce and MPI communities, we show that a topology-
aware and pipeline-based broadcasting method gives better 
performance than other MPI and (Iterative) MapReduce systems.  

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: 
Distributed Systems – Distributed applications. 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation. 

Keywords 
Social Images, Data Intensive, High Dimension, Iterative 
MapReduce, Collective Communication 

 

1. INTRODUCTION 
The rate of data generation now exceeds the growth of 
computational power predicted by Moore’s law. Challenges to 
computation are related to mining and analysis of these massive 
data sources for the translation of large-scale data into knowledge-
based innovation. MapReduce frameworks have become popular 
in recent years for their scalability and fault tolerance in large data 
processing and simplicity in programming interface. Hadoop [1], 
an open source implementation following original Google’s 

MapReduce [2] concept, has been widely used in industry and 
academia.   

However Intel’s RMS (Recognition, Mining and Synthesis) 
taxonomy [3] identifies iterative solvers and basic matrix 
primitives as the common computing kernels for computer vision, 
rendering, physical simulation, financial analysis and data mining. 
These and other observations suggest that iterative data processing 
runtime will be important to a spectrum of e-Science or e-
Research applications as the kernel framework for large scale data 
processing. Several new frameworks designed for iterative 
MapReduce have been proposed to solve this problem, including 
Twister [4], Spark [5] and HaLoop [6]. The initial version of 
Twister targeted optimization of data flow and reducing data 
transfer between iterations by caching invariant data in the local 
memory of compute nodes but it did not support the 
communication patterns needed in many applications and we 
observe that a systematic approach to collective communication is 
essential in many iterative algorithms. Thus we generalize the 
(iterative) MapReduce concept to Map-Collective noting that 
large collectives are a distinctive feature of data intensive and data 
mining applications. This is supported by the remarks that 
“MapReduce, designed for parallel data processing, was ill-suited 
for the iterative computations inherent in deep network training” 
[7] from a recent paper on deep learning.  

Social image clustering is such an application which is not only a 
big data problem but also needs an iterative solver. This produces 
challenges for both new algorithms and efficiency of the parallel 
execution which involves very large collective communication 
steps. We are addressing [8] the overall performance with an 
extension of Elkan's algorithm [9] drastically speeding up the 
computing (Map) step of algorithm by use of the triangle 
inequality to remove unnecessary computation. However this 
improvement just highlights the need for efficient communication 
which is a major focus of this paper. Note communication has 
been well studied, especially in MPI, but social image clustering 
stresses different usage modes and message sizes from most 
previous applications. In this paper, we study characteristics of 
large-scale image clustering application and identify performance 
issues of collective communication. Our work is presented in the 
context of Twister but the analysis is applicable to both 
MapReduce and other data-centric computation solutions. 

At this point, let us provide some details on the 7 million image 
feature vectors clustering problem previously mentioned. We 
execute the application on 1000 cores (125 nodes each of which 
has 8 cores) with 10000 Map tasks and 125 Reduce tasks. In 
broadcasting, the root node (driver) broadcasts 512 MB of data to 
all compute nodes therefore the overhead of a sequential 
broadcasting is substantial.  In shuffling, 20 TB of intermediate 
data generated in Map stage are required to be transferred to 



Reduce so that it is not possible to handle such a large amount of 
data in memory. In this paper, we propose a topology-aware 
pipeline-based method to accelerate broadcasting by at least a 
factor of 120 compared with simple algorithm (sequentially 
sending data from root node to each destination node). Our 
findings demonstrate that this strategy outperforms classic MPI 
methods [10] by 20%. We also use local aggregation in Map stage 
to reduce the size of intermediate data by at least 90% and reduce 
the 20 TB intermediate data to 250 GB. These methods provide 
important collective communication capabilities to our new 
iterative Map-Collective framework for data intensive 
applications. Finally we evaluate our new methods on the 
PolarGrid [11] cluster at Indiana University.  

The rest of the paper is organized as follows. Section 2 discusses 
the image clustering application. Section 3 discusses collective 
communication in Twister and other environments Section 4 
presents the design of the broadcast Collective. Section 5 
investigates how the local aggregation mechanism works. Section 
6 details the experiments and results while Section 7 discusses 
related work. Finally in Section 8 we present our conclusions and 
discuss future projects. 

2. IMAGE CLUSTERING APPLICATION 
Areas involving studies of images have recently been 
revolutionized by the Internet that is providing an incredible 
volume of data. For example, there are 500 million images 
uploaded everyday on Facebook, Instagram and Snapchat (such 
sites are what we term social and surprisingly are much larger 
than Flickr) with 100 hours of video (video can be considered as 
several images per second) uploaded to Youtube every minute. 
This is motivating large scale computer vision and deep learning 
studies that need the infrastructure studied here. Our target image 
clustering application groups millions of images into millions of 
clusters each of which contains images with similar visual 
features. Before starting image clustering, the dimensionality 
reduction is done on original images first and each image is 
represented in a much lower space (although retaining dimensions 
of 512-2048) with a set of important visual components which are 
called “feature vectors”. Analogous to the use of “key words” in a 
document retrieval system, these “features vectors” become the 
“key words” of an image. Here we select 5 patches from each 
image and represent each patch by a HOG (Histograms of 
Oriented Gradients) feature vector of 512 dimensions. The basic 
idea of HOG features is to characterize the local object 
appearance and shape by the distribution of local intensity 
gradients or edge directions [12] (See Figure 1). In input data, 
each HOG feature vector is presented as a line of text starting with 
picture ID, row ID and column ID, which are then followed by 
512 numbers f1, f2 …and fdim. 

We apply K-means Clustering [13] to cluster the similar HOG 
feature vectors as well as using Twister MapReduce framework to 
parallelize the computation. We depict K-means Clustering 
algorithm as a chain of MapReduce jobs. The input data consists 
of a large number of feature vectors each of which contains 512 
dimensions and use Euclidean distance calculation to compare the 
distances between feature vectors and the cluster center vectors 
(centroids). Since the vectors are static over iterations, we 
partition (decompose) the vectors and cache each partition in 
memory. Afterwards a Map task is assigned to it in the job 
configuration. During each iteration execution, the job driver 
broadcasts centroids to all Map tasks. Each Map task then assigns 
feature vectors to their nearest cluster centers based on Euclidean 

 
Figure 1. Workflow of the image clustering application 

distance calculation. Map tasks calculate the sum of vectors 
associated with each cluster and count the total number of such 
vectors. The Reduce task (to simplify this description, we use only 
one Reduce task here but 125 are used in implementation) 
processes the output collected from each Map task and calculates 
new cluster centers of the iteration by adding all partial sums of 
partial cluster center values together, then dividing it by the total 
count of the data points in the cluster. By combining these new 
centroids from Reduce tasks, the job driver gets all updated 
centroids and the control flow enters the next iteration (see Table 
1). 

One major challenge of this application is the amount of image 
data can be very large. Currently we have near 1 TB of data and 
we expect problems to grow in size by one to two orders of 
magnitude. For such a large amount of input data, we can increase 
the number of machines to reduce the data size per node, but the 

 
Figure 2. Image clustering control flow in Twister with new 

local aggregation feature in Map stage 
total data size (of cluster centers) transferred in broadcasting and 
shuffling still grows as the number of centers multiplies.  

For example, we cluster 7 million vectors to 1 million clusters. In 
one iteration, the execution is done on 1000 cores in 10 rounds 
with a total of 10000 Map tasks. Each task only needs to cache 
700 vectors (358KB) and each node needs to cache 56K vectors, 
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about 30MB in total. But for broadcasting data, the number of 
cluster centers is very large and the total size of 1 million cluster 
centers is about 512MB. Therefore the centroids data per task 
received through broadcasting is much larger than the image 
feature vectors per task. Since each Map task needs a full copy of 
the centroids data, the total data sent through collective 
communication grows as the problem size and number of nodes 
increases. For the example above, the total data broadcasted is 
about 64 GB (because Map tasks are executed on thread level, 
broadcast data can be shared among tasks on one node).  

Table 1. Algorithms and implementation of Image Clustering 
Application (one Reduce task only) 

Algorithm 1 Job Driver 
numLoop ← maximum iterations 
centroids[0] ← initial centroids value 
driver  ← new TwisterDriver(jobConf) 
driver.configureMapTasks(partitionFile) 
 
for(i ← 0;  i < numLoop; i ← i+1) 
    driver.broadcast(centroids[i]) 
    driver.runMapReduceJob() 
    centroids[i+1] ←driver.getCurrentCombiner().getResults() 
Algorithm 2 Map Task 
vectors ← load and cached from files  
centroids ← load from memory cache 
minDis ← new int[numVectors] 
minCentroidIndex ← new int[numVectors] 
 
for (i ← 0; i < numVectors; i ← i+1)  
    for (j ← 0; j < numCentroids; j ← j+1)  
        dis ← getEuclidean(vectors[i], centroids[j]) 
        if (j = 0)  
            minDis[i] ← dis 
            minCentroidIndex[i] ← 0 
        if (dis < minDis[i])   
            minDis[i] ← dis  
            minCentroidIndex[i] ← j 
localSum ← new int[numCentroids][512] 
localCount ← new int[numCentroids] 
for(i ← 0; i < numVectors; i ← i+1)  
     localSum[minCentroidIndex[i]] +← vectors[i] 
     localCount[minCentroidIndex[i]] +← 1 
collect(localSum, localCount) 
Algorithm 3 Reduce Task 
localSums ← collected from Map tasks 
localCounts ← collected from Map tasks 
totalSum ← new int[numCentroids][512] 
totalCount ← new int[numCentroids] 
newCentroids ← new byte[numCentroids][512] 
 
for (i ← 0; i < numLocalSums; i ← i+1) 
    for (j ← 0; j < numCentroids; j← j+1)  
        totalSum[j] = totalSum[j] + localSums.get(i)[j] 
        totalCount[j] = totalCount[j] + localCounts.get(i)[j] 
for (i ← 0; i < numCentroids; i← i+1) 
    newCentroids[i] = totalSum[i]/ totalCount[i] 
collect(newCentroids) 
 
We now reach the shuffling stage. Here each Map task generates 
about 2 GB of intermediate data so that the total intermediate data 
size is about 20 TB. This far exceeds the total memory size of 125 
nodes (each of which has 16 GB memory; 2 TB in total). Besides 
it also makes the computation difficult to scale as the data size 

grows with the number of nodes. In this paper, we successfully 
reduce 20 TB of intermediate data to 250 GB with local 
aggregation in the Map Stage (See Figure 2). But due to the 
memory limitation, 250 GB still cannot be handled by one Reduce 
task. We further divide the chunk size of the output from each 
Map task to 125 blocks (numbered with Block ID from 0 to 124) 
and use 125 reduce tasks (one task per node) to process the 
intermediate data. In this way, each Reduce task only processes 2 
GB of data. Reduce task 0 processes all Block 0 from all Map 
tasks, Reduce task 1 processes all Block 1 from all Map tasks, and 
so on and so forth. The output from each Reduce task is only 
about 4 MB so that the total data on 125 Reduce tasks that needs 
to send back to the driver in Combine stage is about 512 MB 
which is relatively small and easy to handle. 

In Table 2, we give the time complexity of each part of the 
algorithm; we use 𝑝 as the number of nodes, 𝑚 as the number of 
Map tasks and  𝑟 as the number of Reduce tasks. For the data,  𝑘  
is the number of centroids, 𝑛 is the total number of image feature 
vectors, and 𝑙 is the number of dimensions. We note for map, an 
approximate estimate from [8] of the improvement gotten by 
using triangle inequalities. 

 

COLLECTIVE COMMUNICATION IN 
PARALLEL PROCESSING FRAMEWORKS 
In this section, we compare several big data parallel processing 
tools and show how they are applied on big data problems. These 
tools are MPI, Hadoop MapReduce and MapReduce-like tools 
supporting iterative algorithms such as Twister and Spark [5]. 
Furthermore, we analyze the pattern of collective communication 
and how intermediate data is handled in each tool. In future, we 
expect the ideas of these tools to be all converged in a single 
environment for which our new optimal communication is aimed 
in order to serve big data applications. Section 3.1 discusses the 
runtime model of these tools and Section 3.2 talks about collective 
communication and in these tools. 

3.1 Runtime Models 
MPI, Hadoop, Twister and Spark are four tools which have very 
different runtime models, which are aimed at different types of 
applications and data. We classify parallel data processing and 
communication patterns [14] in Figure 3. In the whole data tool 
spectrum, Hadoop and MPI are two tools at opposite ends while 
Twister, Spark and other MapReduce-like tools congregate in the 
middle with mixed features extended from both Hadoop and MPI. 
Here we propose using systematic support of collectives to unify 
these models. 

MPI is a computation-centric solution. It mainly serves scientific 
applications which are not only complicated in communication 
patterns but also intensive in computation. It can spawn parallel 
processes to compute nodes, although users need to define the 
computation in each process and handle communications between 

Table 2. Time complexity of each stage 
Stage Simple Improved 

Broadcasting 𝑂(𝑘𝑙𝑝) 𝑂(𝑘𝑙) 
Map 𝑂(𝑘𝑛𝑙/𝑚) 𝑂(𝑘𝑛/𝑚)  [8] 

Shuffle 𝑂(𝑚𝑘𝑙/𝑟) 𝑂(𝑝𝑘𝑙/𝑟) 
Reduce 𝑂(𝑚𝑘𝑙/𝑟) 𝑂(𝑝𝑘𝑙/𝑟) 

Combine 𝑂(𝑘𝑙) 𝑂(𝑘𝑙) 
 



them. MPI is highly optimized in communication performance. It 
not only offers basic point-to-point communication but also 
provides collective communication operations. MPI runs on HPC 
or supercomputers where data is decoupled from computation and 
stored in a separate shared and distributed file system. MPI 
doesn’t have unified data abstraction as Key-Value pairs in 
MapReduce-related tools. In contrast, it is flexible enough to 
organize and process different types of data. MPI doesn’t have 
fixed control flow, endowing it with the flexibility to emulate the 
MapReduce model or other user defined models [15-17].  

 
 

 

On the other hand, Hadoop is a data-centric solution. HDFS [18] 
is used to store and manage big data so that users do not need to 
think about data accessing and loading steps that must be 
presented in MPI programs. In addition, all computations are 
performed in the same place where the data is located, so that this 
framework is scalable when processing big data. Hadoop is 
inefficient for processing data mining algorithms and scientific 
applications served by MPI because its control flow is constrained 
to a Map-Shuffle-Reduce pattern. However, Hadoop is suitable 
for processing records and logs. This kind of data is easy to split 
into small Key-Value pairs with words or lines. Key-Value pairs 
are the core data abstraction in MapReduce. With keys, 
intermediate data values are labeled and regrouped automatically 
without using explicit communication commands. A typical 
records or logs processing includes information extraction and 
regrouping. It can be easily expressed in Map-Reduce: 
intermediate Key-Value pairs are first extracted from records and 
logs in Map tasks then regrouped in shuffling and last processed 
by Reduce tasks.   

The difference of data and application also influences the 
scheduling strategies. In many scientific applications, the 
workload can be evenly distributed on each compute node. As a 
result, MPI uses static scheduling. But for logs and records 
processing, the workload in each task is hard to estimate. Some 
tasks generate more intermediate Key-Value pairs while others 
may do less. Because of this, Hadoop uses dynamic scheduling. 
The purpose of which is to make empty task slots be used for 
unprocessed data in order to balance the workload on each node. 
Hadoop also provides task level fault tolerance for scheduling, a 
feature MPI doesn’t support.  

Twister and Spark reside somewhere between the range of MPI 
and Hadoop. Twister is aimed at providing an easy-to-use and 
data-centric solution to process big data in data mining or 
scientific applications. Twister makes the control flow as 
iterations of MapReduce jobs. The output of each MapReduce 
iteration is collected and sent as the input to the next iteration. The 
data in Twister is also abstracted as Key-Value pairs for 
intermediate data regrouping as per needs of the application. 
Twister uses static scheduling. Data is first pre-split and evenly 
distributed to compute nodes based on the available computing 
slots (the number of cores). Tasks are then sent to where the data 
is located. 

Spark also serves for iterative algorithms but boasts more flexible 
iteration control with separated RDD operations called 
transformations and actions. Here RDD is another layer of data 
abstraction higher than Key-Value pairs. A RDD includes a set of 
Key-Value pairs and describes the distribution of this data in the 
whole environment. Typical operations on RDDs include not only 
MapReduce-like operations such as Map, GroupByKey (close to 
Shuffle but without sort) and ReduceByKey (same as Reduce), 
but also operations related to relational database such as Union, 
Join, and Cartesian-Product. Scheduling in Spark is similar to 
Dryad but with the consideration of the availability in memory of 
RDD partitions. RDD’s lineage graph is examined to build a DAG 
of stages for late execution.   

The data abstraction in MapReduce also requires more work in the 
form of data partition before data loading. This is because the data 
abstracted in computation is usually not organized in the same 
way as the data stored in the file systems. For example, the data in 
the image clustering application is stored in a set of text files. 
Each file contains feature vectors generated from a related set of 
images. The file lengths and the total number of files usually vary. 
However, in computation we make the number of data partitions 
to be the same as the number of cores or the multiple of the 
number of cores so that we can evenly distribute the computation. 
Ultimately we need to convert “raw” data on disks to “cooked” 
data ready for computation. Currently we split original data files 
into evenly sized data partitions. But Hadoop can automatically 
load data from blocks with self-defined InputSplit or InputFormat 
class. At the same time, MPI requires user to split data or use 
special file format HDF5 [19] and NetCDF [20] commonly used 
in scientific applications. 

3.2 Collective Communication and 
Intermediate Data Handling 

In the last few decades, MPI researchers made major progress on 
communication optimization. However as a computation-centric 
application, MPI focuses on low latency communication while for 
example our example is notable for large messages where latency 
less relevant. With the support of high-performance hardware, 
communication is well optimized. Users can communicate in two 
ways. One is to call send/receive APIs to customize 
communication between processes. Another is to invoke libraries 
to do collective communication operations, which is a type of 
communication in which all the workers are required to 
participate.  

Often data-centric problems run on clouds which consist of 
commodity machines, and the cost of transferring big intermediate 
data is high. For example, in the image clustering application 
example of this paper, broadcasting in each iteration is needed and 
the size is about 500MB. Our findings show that this operation 
and the big data can be a great burden to current data-centric 
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technology. This makes it necessary to systematically develop a 
Map-Collective approach with a wide range of collectives and 
with big data not the MPI big simulation optimizations.  

Traditionally, there are 7 collective communication operations 
discussed in MPI [21]. The first four, broadcast, scatter, gather, 
and allgather are called “data redistribution operations” [21]. The 
remaining three, reduce(-to-one), reduce-scatter, all-reduce are 
called “data consolidation operations” [21]. In “data redistribution 
operations”, neither Hadoop, Twister nor Spark covers all 4 
operations. In detail, Hadoop only has “broadcast” with no 
explicit “scatter” or “gather”. Considering that in Hadoop data is 
managed by HDFS, direct memory-to-memory collective 
communication does not in fact exist. Twister has “broadcast”, 
“scatter” and “gather”. Spark has “broadcast” and “gather”. Our 
Twister4Azure system [22] supports “allgather” and “allreduce” 
and in a later paper we will describe the integration of these 
different collectives into a single system that runs interoperably 
on HPC clusters (Twister) or PaaS cloud systems (Twister4Azure) 
changing the implementation to optimize performance for each 
infrastructure. The same high level collective primitive is used on 
each platform with different under-the-hood optimizations. 

Between runtimes, broadcasting data abstraction and methods are 
very different. In MPI, data is abstracted as an array buffer. In 
Hadoop it is a file on HDFS. Twister and Spark treat broadcasting 
data as an object. But in detail, Twister treats the data as a Key-
Value pair unlike Spark which treats it as arbitrary objects. 
Objects are much easier to manipulate compared with files and 
array buffers. 

In MPI, several algorithms are used for broadcasting. MST 
(Minimum-Spanning Tree) method is a typical broadcasting 
method used in MPI [21]. In this method, nodes form a minimum 
spanning tree and data is forwarded along the links. In this way, 
the number of nodes which have the data grows in geometric 
progression. Here we use 𝑝 as the number of nodes, 𝑛 as the data 
size, 𝛼 as communication startup time and 𝛽 as data transfer time 
per unit. The performance model can be described by the formula 
below: 

𝑇𝑀𝑆𝑇(𝑝,𝑛) = ⌈𝑙𝑜𝑔2𝑝⌉(𝛼 + 𝑛𝛽)                                             (1)                              

This method is much better than simple broadcasting by changing 
the complexity term  𝑝 to ⌈𝑙𝑜𝑔2𝑝⌉. But it is still insufficient when 
compared with scatter-allgather bucket algorithm. This algorithm 
is used in MPI for long vectors broadcasting which follows the 
style of “divide, distribute and gather” [23]. In “scatter” phase, it 
scatters the data to all the nodes. Then in “allgather” phase, it does 
bucket algorithm. This method views the nodes as a chain. At 
each step, every node sends data to its right neighbor [25]. By 
taking advantage of the fact that messages traversing a link in 
opposite direction do not conflict, “allgather” is done in parallel 
without any network contention. The performance model can be 
established as follow: 

𝑇𝑏𝑢𝑐𝑘𝑒𝑡(𝑝,𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑝⁄ ) + (𝑝 − 1)(𝛼 +
𝑛𝛽 𝑝⁄ )                                                                                          (2)  

In large data broadcasting, assuming α is small, the broadcasting 
time is about  2𝑛𝛽 . This is much better than the MST method 
because the time appears constant. However, it is not easy to set 
global barrier between “scatter” and “allgather” phases in cloud 
system to enable all the nodes to do “allgather” at the same global 

time through software control. As a result, some links will have 
more load than the others and thus we arrive at network 
contention. We implement this algorithm and provide the test 
results on IU PolarGrid (See Table 3). The execution time is 
roughly kept at  2𝑛𝛽 level. But as the number of nodes increase, it 
gets slightly slower.  

There is also the InfiniBand [24] multicast based broadcasting 
method in MPI [25]. Currently many clusters support hardware-
based multicast. But it is not a reliable method, the sending order 
is not guaranteed and the package size of each sending is limited. 
So after the first stage of multicasting, broadcasting is enhanced 
with a chain-like broadcasting, which is reliable enough to make 
sure every process has completed data receiving.  In the second 
stage, the nodes are formed into a virtual ring topology. Each MPI 

process that gets the message via multicast serves as a new “root” 
within the virtual ring topology and exchange data to the 
predecessor and successor in the ring. This is similar to the bucket  
algorithm we discuss above. 

 
Figure 4.  Initial Twister architecture with brokers as main 

communication components 
Though the methods heretofore reviewed are not perfect, they all 
can reduce broadcasting time to a great extent. Still, none of them 
are applied in data-centric solutions. However, simple algorithm is 
commonly used. Hadoop system relies on HDFS to do 
broadcasting. A component named Distributed Cache is used to 
cache data from HDFS to local disk of compute nodes. The API 
addCacheFile and getLocalCacheFiles work together to complete 
the process of broadcasting. There is no special optimization. The 
data downloading speed depends on the number of replicas in 
HDFS [18]. This method generates significant overhead (a factor 
of 𝑝) when handling big data broadcasting. This will be shown in 
later experiments. 

We call this “simple algorithm” because it basically sends data to 
all the nodes one by one. Initially in Twister, a single message 
broker is used to do broadcasting in a similar way (See Figure 4). 
Though using multiple brokers in Twister or using multiple 
replicas in HDFS could contain a simple 2-level broadcasting tree 
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Table 3. Scatter-allgather bucket algorithm performance 
on IU PolarGrid with 1 GB data broadcasting 

Node# 1  25 50 75 100 125 
Seconds 11.4  20.57 20.62 20.68 20.79 21.2 
 



Table 4. Broadcasting programming interface 
Runtime Broadcasting Interface 

MPI MPI_Bcast(bcast_data, total_num_data, 
MPI_CHAR, 0, MPI_COMM_WORLD ); 

Twister driver.addToMemCache(bcastData); 
Spark val barr1 = sparkContext.broadcast(arr1) 

sparkContext.parallelize(1 to 10, slices).foreach 
{ 

i => println(barr1.value.size) 
} 

 

and ease the performance issue, they won’t fundamentally address 
the problem. As a result, to replace the current broadcasting in 
Twister, in the next section, we propose a chain-based 
broadcasting algorithm suitable for cloud systems. 

Meanwhile, other than using simple algorithm, Spark adds 

BitTorrent [26] to enhance broadcasting speed. BitTorrent is a 
well-known technology in internet file sharing. The programming 
interface of broadcasting in Spark is very different from MPI and 
Twister. Due to the mechanism of late execution, broadcasting is 
not finished in a single step but in two stages. When broadcasting 
is invoked, the data is not broadcast until the parallel tasks are 
executed (See Table 4). The code in Table 4 is from Spark 
example code. Broadcasting happens when 10 printing tasks are 
invoked.  So broadcasting doesn’t execute on all the nodes but 
only on the nodes where tasks are located. The performance of 
Spark Broadcasting is discussed with a simple case in Section 6.6. 

For data consolidation operations, “reduce(-to-one)” and “reduce-
scatter” are parallel to a “shuffle-reduce” operation in data-centric 
solutions. “Reduce-(to-one)” can be viewed as using shuffling 
with only one Reducer while “reduce-scatter” can be viewed as 
using shuffling with all workers as reducers. However, these 
operations are fundamentally different in terms of semantics 
because “shuffle-reduce” is based on Key-Value pairs while 
“reduce-(to-one)” and “reduce-scatter” are based on vectors. The 
data abstraction of the former is more flexible than the latter. In 
“shuffle-reduce” the number of keys in one worker can be 
arbitrary. For example, in word count, for a particular word we 
shall call “word1”, one worker could generate multiple Key-Value 
pairs with this “word1” as key and count “1” as the value. 
Alternatively there might even be no such Key-Value pairs if the 
work couldn’t find any examples of “word1”. Furthermore, a 
value can be any arbitrary object which encapsulates many 
different data types. However, “reduce-scatter” requires the size 
of the vectors for reduction to be identical in all workers. Because 
the number of words and counts in each worker is hard to 
estimate, it is difficult to replace “shuffle-reduce” to “reduce-
scatter” in word count.   

Table 5. MPI Shuffling Pseudo Code 

Algorithm 1 MPI shuffling  
for( i←0; i<max_rank; i←i+1) { 

if(my_rank = i) { 
    for(j←0; j<max_rank&&j!=i; j←j+1)  
       MPI_Send(numSendKVpairs[j]);   
       for(k←0; k<numSendKVpairs[j]; k←k+1)  
            MPI_Send(sendKVpairs[j][k]) 
else  
    MPI_Recv(numRecvKVpairs[i]); 
    for(j←0; j<numRecvKVpairs[j]; j←j+1)  

            MPI_Recv(recvKVpairs[i][j]); 

To simulate “shuffle-reduce” in MPI, we cannot use collective 
communication in MPI directly. Instead we have to customize the 
communication with send/receive calls. The following pseudo 
code represents how shuffling may look based on send/receive 
APIs (See Table 5). We simplify the code by using a matrix to 
hold all the Key-Value pairs for send/receive but from the code 
we still can see another weakness of MPI in shuffling: the 
program is not simple and users have to explicitly designate where 
the data goes. By contrast, in data-centric solutions, data is 
managed by the framework, and automatically goes to the 
destination according to their keys.   

A a result, shuffling can be viewed as a unique collective 
communication in data-centric solutions. The implementation is 
also different between runtimes. Hadoop manages intermediate 
data on disk, so data is first partitioned, sorted and spilled to disk, 
then transferred, merged and sorted again at Reducer side.  
However, shuffling in Twister is much simpler than it is in 
Hadoop. Data is only regrouped by keys and transferred in 
memory and there is no sorting [4]. So shuffling in Twister has 
much better performance than in Hadoop. Though it is well 
optimized, it is still not scalable in handling large intermediate 
data. Then we use local aggregation across Map threads at Map 
stage. Since each worker in Twister runs on the thread level and 
data generated by each worker can be shared, we are able to 
optimally shrink the intermediate data size on each compute node 
and accelerate shuffling. 

In Spark, there are two APIs related to shuffling. One is 
“groupByKey”, and another is “sort”. Remembering that “shuffle” 
in Hadoop includes “regroup” and “sort”. Since “shuffle” in 
Twister only contains “regroup”, it seems that “shuffle” operation 
is not well defined. So is “sort” necessary in “shuffle”? The 
answer is no. Firstly, in Twister, all the intermediate data is 
managed in memory so that keys can be regrouped through a large 
hash map. But for Hadoop, since merging is done on disk, sorting 
becomes a required step to put keys with the same hash code 
together. Secondly, many applications such as word count and 
image clustering applications mentioned above, it is sufficient that 
the data is regrouped without being sorted.  The ranking of each 
key is not important to the application. As a result, we view 
“shuffle” as only “regroup”. 

In summary, we notice that collective communication is not well 
studied in the context of MapReduce and data-centric solutions. 
Furthermore it may not be optimally implemented in the current 
runtimes. Though collective communication operations have been 
used in MPI for decades, they are still missing in MapReduce 
despite still being required by the applications. In the image 
clustering application, “broadcast” and “shuffle” are two 
important operations involved. With optimization, we introduce 
new Twister control flow with optimized broadcasting and local 
aggregation feature (See Figure 2). 

We note that our collectives are implemented asynchronously but 
the broadcast step of Kmeans naturally synchronizes the algorithm 
at each iteration 

3. BROADCAST COLLECTIVE 
COMMUNICATON 

To address the need for high performance broadcasting in the 
image clustering application, we replace the original broker 
methods in Twister with a new chain method based on TCP 
sockets to provide customized control of the message routing in 
broadcasting. 



4.1 Chain Broadcasting Algorithm 
Here we propose chain method, an algorithm based on pipelined 
broadcasting [28]. In this method, compute nodes in Fat-Tree 
topology [29] are treated as a linear array and data is forwarded 
from one node to its neighbor chunk-by-chunk. Performance is 
enhanced by dividing the data into many small chunks and 
overlapping the transmission of data on nodes. For example, the 
first node would send a data chunk to the second node. Then, 
while the second node sends the data to the third node, the first 
node would send another data chunk to the second node, and so 
on and so forth [28]. This kind of pipelined data forwarding is 
called “a chain”.  It is particularly suitable for the large data sizes 
in our communication problem. 

The performance of pipelined broadcasting depends on the 
selection of chunk size. In an ideal case, if every transfer can be 
overlapped seamlessly, the theoretical performance is as follows: 

𝑇𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑝, 𝑘,𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑘⁄ ) + (𝑘 − 1)(𝛼 +
𝑛𝛽 𝑘⁄ )                                                                                          (3)                                                                     

Here 𝑝 is the number of nodes, 𝑘 is the number of data chunks, 𝑛 
is the data size, 𝛼  is communication startup time and 𝛽  is data 
transfer time per unit. In large data broadcasting, assuming 𝛼 is 
small and 𝑘  is large, the main term of the formula 
is (𝑝 + 𝑘 − 1)𝑛𝛽 𝑘⁄ ≈ 𝑛𝛽  which is close to constant. From the 
formula, the best number of chunks is 𝑘𝑜𝑝𝑡 = �(𝑝 − 1)𝑛𝛽/𝛼 
when  𝜕𝑇 𝜕𝑘⁄ = 0  [28]. However, in practice, the actual chunk 
size per sending is decided by the system and the speed of data 
transfers on each link could vary as network congestion might 
occur when data is continuously forwarded into the pipeline. As a 
result, formula (3) cannot be applied directly to predict real 
performance of our chain broadcasting implementation. But the 
experiment results we will present later still show that as 𝑝 
increases, the broadcasting time remains constant and close to the 
bandwidth limit.  

4.2 Rack-Awareness 
This chain method is suitable for racks of machines with Fat-Tree 
topology connection, which is a commonly used network 
topology in clusters or in data centers [30]. Since each node only 
has two links, which is less than the number of links per node in 
Mesh/Torus [31] topology, chain broadcasting can maximize the 
utilization of the links per node. We also make the chain 
topology-aware by allocating nodes within the same rack nearby 
in the chain. Assuming the racks are numbered as  𝑅1 ,  𝑅2  and 
𝑅3…, the nodes in 𝑅1 are put at the beginning of the chain, then 
the nodes in 𝑅2  follow the nodes in  𝑅1 , and then nodes in 𝑅3 
follow nodes in 𝑅2 , etc. Otherwise, if the nodes in  𝑅1  are 
intertwined with nodes in  𝑅2  in the chain sequence, the chain 
flow will jump between switches, which overburdens the core 
switch.  

To support rack-awareness, as seen in Hadoop, we write and save 
configuration information on each node. Each node can discover 
its predecessor and successor by loading this information when 
starting. In the future, we are also looking into supporting 
automatic topology detection to replace the static specification of 
topology information. 

4.3 Buffer Management 
Another important factor affecting broadcasting speed is buffer 
management. The cost of buffer allocation and data copying 
between buffers is not included in formula (3). There are 2 levels 

of buffers used in data transmission. The first level is the system 
buffer and the second level is the application buffer. System 
buffer is used by TCP socket to hold the partial data transmitted 
from the network. The application buffer is created by the user to 
integrate the data from the socket buffer.  Usually the socket 
buffer size is much smaller than the application buffer size. The 
default buffer size setting of Java socket object in IU PolarGrid is 
128KB while the application buffer we chose for broadcasting is 
the total size of the data required to be broadcasted. 

We observed performance degradation caused by buffer usage. 
One issue is that if the socket buffer is smaller than 128 KB, the 
broadcasting performance can be slowed down due to the TCP 
window being unable to open up fully, which results in throttling 
of the sender. Further large-sized user buffer allocation during the 
pipeline forwarding can also slightly slow-down the overall 
performance. To make a clean comparison with MPI, which does 
buffer initialization before broadcasting, we initialize a pool of 
free buffers once the receiver program starts instead of allocating 
buffers during the broadcasting. 

4.4 Object Serialization and De-serialization 
In memory-to-memory broadcasting, data is stored as an object in 
memory. So we need to serialize the object to byte array before 
broadcasting and de-serialize byte array back to an object 
afterwards. We observe that object serialization and de-
serialization can be slow for large data sizes. As a result, the 
serialization speed depends on the data type. Our experiments 
show that serializing 1 GB “double” data is much faster than 
serializing 1 GB “byte” data. Moreover, de-serializing 1 GB 
“byte” data demands even greater time than serializing it. Since it 
is local operation and can be optimized at a cost in portability, we 
measure these overheads and separate them from the core 
broadcasting operation.  

4.5 Fault Tolerance 
Communication fault tolerance intrinsic to Collective, should be 
considered in chain broadcasting. When large data is transmitted 
among a vast number of nodes, communication failures become 
likely. Several strategies are applied here in our approach. Firstly 
if there are failures in establishing connection from node-to-node, 
a retry is issued. Alternatively one can try other destinations. 
Secondly, if the chain is seriously broken the whole broadcasting 
will restart. Finally, at the end of broadcasting, the root waits and 
checks if all the nodes have received all the data blocks. If the root 
doesn’t get the ACK from the last node in the chain within a time 
window, it restarts the whole broadcasting. 

4.6 Implementation 
We implement the chain broadcasting algorithm in the following 
way: it starts with a request from the root to the first node in the 
topology-aware chain sequence. Then the root keeps sending a 
small portion of the data to the next node. In the meantime, for the 
nodes in the chain, each node creates a connection to the 
successor node in the chain. Next each node receives a partial data 
from the socket stream, store it into the application buffer and 
forward it to the next node (See Table 6). 

Table 6. Broadcasting algorithm 
Algorithm 1 root side “send” method 
nodeID ← 0 
connection ← connectToNextNode(nodeID) 
dout ← connection.getDataOutputStream() 
bytes ← byte array serialized from the broadcasting object 
totalBytes ← total size of bytes 



SEND_UNIT ← 8192  
start ← 0 
 
dout.write(totalBytes) 
while (start +  SEND_UNIT <  totalBytes) 
    dout.write(bytes, start, SEND_UNIT) 
    start ← start + SEND_UNIT  
    dout.flush() 
if (start < totalBytes) 
    dout.write(bytes, start, totalBytes - start) 
    dout.flush() 
waitForCompletion() 
Algorithm 2 Compute node side “receive” method 
connection ← serverSocket.accept() 
dout ← connection.getDataOutputStream() 
din ← connection.getDataInputStream() 
nodeID ← this.nodeID + 1 
connNextN ← connectToNextNode(nodeID) 
doutNextN ←connToNextN.getDataOutputStream() 
dinNextN ← connToNextN.getDataInputStream() 
 
totalBytes ← din.readInt() 
doutNextN.writeInt(totalBytes) 
doutNextN.flush() 
bytesBuffer ← getFromBufferPool(totalBytes) 
RECV_UNIT ← 8192  
recvLen ← 0 
while ((len ← din.read(bytesBuffer, recvLen, RECV_UNIT)) > 0)  
    doutNextN.write(bytesBuffer, recvLen, len) 
    doutNextN.flush() 
    recvLen ← recvLen + len 
    if (recvLen = totalBytes) break 
notifyForCompletion() 
 

4. LOCAL AGGREGATION IN MAP 
STAGE 

We already discussed the difference between shuffling in Twister 
and other runtimes in Section 3.2. Based on the facts presented in 
Section 2, the performance of shuffling depends on the size of 
intermediate data. Since the data transferred is very large and the 
number of links available for data transmission is limited, the cost 
of shuffling is very high and the whole process is unstable.  

Some solutions try to use Weighted Shuffle Scheduling (WSS) 
[27] to balance the data transfers by using the data size to 
determine scheduling. However this strategy will not help for this 
image clustering application, because the data size generated for 
each Map task is the same. 

We reduce the intermediate data size by using local aggregation 
across Map tasks in Map stage. To support local aggregation, we 
provide appropriate interface to help users define the aggregation 
operation.  

We notice that each Key-Value pair in intermediate data is a 
partial sum of the components of data points associated with a 
particular cluster. Since addition is an operation with both 
commutative and associative properties, for any two values 
belonging to the same key, we can do addition on them and merge 
them to a single Key-Value pair, which has no effect on the final 
result. This property can be illustrated by the following formula: 

𝑓�𝑘𝑣1,⋯ , 𝑘𝑣𝑖 ,⋯ , 𝑘𝑣𝑗 ,⋯ , 𝑘𝑣𝑛� = 𝑓�𝑘𝑣1,⋯ , �𝑘𝑣𝑖 ⊕
𝑘𝑣𝑗�,⋯ , 𝑘𝑣𝑛� =
𝑓�𝑘𝑣1,⋯ , �𝑘𝑣𝑗 ⊕ 𝑘𝑣𝑖�,⋯ ,𝑘𝑣𝑛� ∀ 𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛         (4)   

Here ⊕  represents a set of operations which are similar to 
addition operation that can be applied on any two Key-Value 
pairs. This will then generate a new Key-Value pair by operating, 
𝑓 is the Reduce function and 𝑛 is the number of Key-Value pairs 
belonging to the same key. In our image clustering application, ⊕ 
is the addition of two partial sums.  In other applications, we can 
also find an appropriate operator. In Word Count [2], ⊕ is the 
addition of two partial counts of the same word and can be 
operations other than addition, such as multiplication and 
max/min value selection, or just simple logical combination of the 
two values. 

With ⊕ operation and also noting that Map tasks work at thread 
level on compute nodes, we do local aggregation in the memory 
shared by Map tasks. Once a Map task is finished, it doesn’t send 
data out immediately but instead caches the data to a shared 
memory pool. When the key conflict happens, the program 
invokes a user-defined operation to merge two Key-Value pairs 
into one. A barrier is set so that the data in the pools are not 
transferred until all the Map tasks in a node are finished. By 
trading communication time with computation time, the data 
necessary to be transferred can be significantly reduced. 

 

 
 

5. Experiments 
To evaluate performance of the new proposed broadcasting 
method and local aggregation mechanism, we conducted 
experiments about broadcasting and shuffling on IU PolarGrid in 
the context of both kernel and application benchmarking. The 
results demonstrate that chain method achieves the best 
performance on big data broadcasting compared with the other 
MapReduce and MPI methods. In addition, shuffling with local 
aggregation can out-perform the original shuffling significantly. 

6.1 IU PolarGrid Cluster 
IU PolarGrid cluster [11] uses a Fat-Tree topology to connect 
compute nodes. The nodes are split into sections of 42 nodes 
which are then tied together with 10 GigE to a Cisco Nexus core 
switch.  For each section, nodes are connected with 1 GigE to an 
IBM System Networking Rack Switch G8000. This forms a 2-
level Fat-Tree structure with the first level of 10 GigE connections 
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Rack Switch
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Compute Node

node1- node42
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Compute Node

Rack Switch

Compute Node

Compute Node
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Compute Node
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Figure 5. Fat-Tree topology in IU PolarGrid 



and the second level of 1 GigE connections (See Figure 5). For 
computing capacity, each compute node in PolarGrid uses a 4-
core 8-thread Intel Xeon CPU E5410 2.33 GHz processor. The L2 
cache size per core is 12 MB. Each compute node has 16 GB total 
memory.  

The bottleneck of this topology is that inter-switch 
communication is through the one and only core switch and the 
connection is limited to 10 GigE. As a result, reducing the number 
of inter-switch communication times is considered the highest 
priority in design of efficient collective communication 
algorithms for a fat-tree topology. 

6.2 Broadcasting 
We test the following methods: chain method in Twister, 
MPI_BCAST in Open MPI 1.4.1 [32], and the broadcasting 
method in MPJ Express 0.38 [33]. We also compare the current 
Twister chain broadcasting method with other designs such as 
chain method without topology awareness and simple 
broadcasting as a means to show the efficiency of the new 

method.  

We measure the broadcasting time from the start of calling the 
broadcasting method to the end of the calling return. We test the 
performance of broadcasting from a small scale to a medium large 
scale. The range includes 1 node, 25 nodes with 1 switch, 50 

nodes under 2 switches, 75 nodes with 3 switches, 100 nodes with 
4 switches, 125 nodes with 5 switches, and 150 nodes with 5 
switches. The tests are for different data size, including 0.5 GB 
(500MB), 1 GB, and 2 GB. Each result is the average of 10 
executions. There are only milliseconds of differences between 
execution times therefore we omit the error in the following 
charts.  

Figure 6 shows the comparison between chain method and 
MPI_BCAST method in Open MPI. The time cost of the new 
chain method is stable as the number of processes increases. This 
matches the broadcasting formula (3) and we can conclude that 
with proper implementation, the actual performance of the chain 
method can achieve near constant execution time. Besides, the 
new method achieves 20% better performance than MPI_BCAST 
in Open MPI.  

Figure 7 shows the comparison between Twister chain method 
and broadcasting method in MPJ. Due to exceptions, we couldn’t 
launch MPJ broadcasting on 2GB data. So we draw a dashed line 

to mark the prediction. Since 1GB MPJ broadcasting uses twice 
the time of 0.5GB MPJ broadcasting, we assume 2 GB MPJ 
broadcasting also costs double the time of 1 GB MPJ 
broadcasting. MPJ broadcasting method is also stable as the 
number of processes grows, but is four times slower than our Java 

   

Figure 6. Performance comparison of 
Twister chain method and Open MPI 
MPI_Bcast 

Figure 7. Performance comparison of 
Twister chain method and MPJ 
broadcasting method (MPJ 2GB is 
prediction only) 

Figure 8. Chain method with/without 
topology-awareness 

 

  

  

  

   

   

   

   

Figure 9. Comparison between shuffling 
with and without local aggregation 

Figure 10. Communication cost per 
iteration of the image clustering 
application 

Figure 11. Spark broadcasting 
performance of 500MB data (Twister 
Chain results are also provided as 
reference) 
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implementation. Further there is a significant gap between 1-node 
broadcasting and 25-node broadcasting in MPJ. 

However if the chain sequence is randomly generated but not 
topology-aware, the performance degrades quickly as the scale 
grows. Figure 8 shows that chain method with topology-
awareness is 5 times faster than that of the chain method without 
topology-awareness.  For broadcasting within a single switch, we 
see that as expected, there is not much difference between the two 
methods. However, as the number of nodes and the number of 
racks increase, the execution time increases significantly. When 
there are more than 3 switches, the execution time become stable 
and doesn’t change much. Because there are many inter-switch 
communications, the performance is constrained by the 10 Gb 
bandwidth and the throughput ability of the core switch. 

In Table 7, we show the performance of simple broadcasting and 
compare it with Twister chain method. Since simple broadcasting 
takes a great deal of time, we won’t present a chart here.  The 
purpose is to show the baseline of broadcasting performance in IU 
PolarGrid. Owing to 1 Gb connection on each node, we see the 
transmission speed is about 8 seconds per GB which matches the 
setting of the bandwidth. With our new algorithm, we successfully 
reduce the cost by about a factor of 𝑝 from  𝑂(𝑝𝑛) to 𝑂(𝑛). Here 
𝑝 is the number of compute nodes and  𝑛 is data size. 

Table 7. Performance comparison between chain broadcasting 
and simple broadcasting (in seconds) 

Node# Twister Chain Simple Broadcasting 
0.5 GB 1 GB 2 GB 0.5 GB 1 GB 2 GB 

1 4.04 8.09 16.17 4.04 8.08 16.16 
25 4.13 8.22 16.4 101 202 441.64 
50 4.15 8.24 16.42 202.01 404.04 882.63 
75 4.16 8.28 16.43 303.04 606.09 1325.63 

100 4.18 8.28 16.44 404.08 808.21 1765.46 
125 4.2 8.29 16.46 505.14 1010.71 2021.3 
150 4.23 8.3 16.48 606.14 1212.21 2648.6 

 
Table 8. Chain method performance under different socket 

buffer sizes 
Buffer Size (KB) 8 16 32 64 
Time (seconds) 65.5 45.46 17.77 10.8 

Buffer Size (KB) 128 256 512 1024 
Time (seconds) 8.29 8.27 8.27 8.27 

 

By looking inside the chain method, we also examine the potential 
impact from socket buffer size. As we mentioned in Section 4.3, a 
small socket buffer could cause slow-down of the sender. We take 
broadcasting 1 GB data on 125 nodes as an example and increase 
the socket buffer size gradually from 8KB to 1MB. We find that 
when buffer size is 8 KB, the performance is terrible, then as the 
buffer size grows the time cost gets lower. When the buffer size is 
larger than 128 KB, we get the best performance and stable 
execution time. The experiment shows that the socket buffer size 
can affect the performance greatly because the TCP window 
cannot open up fully when the buffer size is small. With a proper 
buffer size, the broadcasting performance can be improved by 
almost an order of magnitude from small to large buffer sizes (see 
Table 8). 

6.3 Shuffling and Local Aggregation 
To benchmark the performance of shuffling using local 
aggregation, we choose the following settings to run the image 

clustering application. For job settings, we choose 125 nodes to 
run the application with 1000 Map tasks (each node with 8 Map 
tasks) and 125 reduce tasks (each node with 1 Reduce task). For 
data settings, we restrict the number of centroids to 500K and 
focus on testing the performance of collective communication. 
Since 500K centroids can generate about 1 GB of intermediate 
data per task, the overhead from shuffling is significant. We 
measure the total time from the start of shuffling to the end of the 
Reduce phase noting that reducers start asynchronously (a reducer 
starts once it gets all the data). Time costs on Reduce tasks are 
included but on average it is just around 1 second and is negligible 
compared with the data transfer time.  

Figure 9 shows the time difference of shuffling with or without 
local aggregation in Map stage in the settings above. Without 
using local aggregation, the output per node is 8 GB and the total 
data for shuffling is about 1 TB. After using local aggregation, the 
output per node is reduced to 1 GB and the total data for shuffling 
is only about 125 GB and the time cost on shuffling is only 10% 
of the original time; an improvement from about 8 minutes to only 
40 seconds. To reduce intermediate data from 1 TB data to 125 
GB data, we only need an extra 20 seconds in local aggregation. 

6.4 Image Clustering Application 
Finally we present a full execution of the image clustering 
application here. We successfully cluster 7.42 million vectors into 
1 million cluster centers. We create 10000 map tasks on 125 
nodes. Each node has 80 tasks. Each task caches 742 vectors. For 
1 million centroids, broadcasting data size is about 512 MB.  
Shuffling data is 20 TB, while the data size after local aggregation 
is about 250 GB. Since the total memory size on 125 nodes is 2 
TB, we even cannot execute the program unless local aggregation 
is performed. Figure 10 presents the collective communication 
cost per iteration, which is 169 seconds (less than 3 minutes).  
Note that we are currently in development of a new faster Kmeans 
algorithm [8][9] that will drastically reduce the current hour-long 
computation time in Map stage by up to a factor of factor of l (the 
dimension which is currently 512 to 2048) and so the improved 
communication time is highly relevant. 

6.5 Analysis of Spark Broadcasting 
Here we look at the performance of the BitTorrent 

broadcasting in Spark, which is reported as a method which has 
excellent performance [27]. In our testing however, the current 
Spark version 0.7.0 shows that the performance is good in a small 
number of nodes but degrades quickly as the number of nodes 
increases (See Figure 11). Because broadcasting is related to 
nodes as well as tasks, we designed the following experiments. 
We start with testing on 500MB data broadcasting. Firstly, we 
execute only 1 task after invoking broadcasting. The result is 
stable as the number of nodes grows.  However, when we set the 
number of the receivers equal to the number of nodes, 
performance issues emerge.  On 25 nodes with 25 tasks, the 
performance is still same as with 1 receiver. But on 50 nodes with 
50 tasks, broadcasting time increases three-fold. We also try to 
execute broadcasting from 75 nodes to 150 nodes, but none of the 
tests are executed successfully. The third test we have is to 
increase the number of receivers to the number of cores. The 
result is similar. So broadcasting in Spark can only scale to 50 
nodes in our tests. We also try 1 GB and 2 GB broadcasting but 
these cases do not scale to 25 nodes. 

Since broadcasting topology in BitTorrent is built 
dynamically, It is unknown if the broadcasting topology follows 
the patterns in MPI broadcasting such as minimum spanning tree. 



Also important in broadcasting topology is that this topology 
follows rack-awareness. A special dynamic topology detection 
technique is mentioned [27] but from the experiments it may not 
be applied to the current version. For chunk size in sending, it is 
mentioned in [27] 4 MB is good for performance but without any 
further analysis. In Scatter-allgather bucket algorithms, data is 
also split based on the number of the receivers.   

6. RELATED WORK 
In Section 3 we discussed the runtime of several data processing 
tools and compared the collective communication within them. 
Here we summarize the analysis and add other observations. 
Collective communication algorithms are well studied in MPI 
runtime although the Java implementations are less well 
optimized. Each communication operation has several different 
algorithms based on message size and network topology such as 
linear array, mesh and hypercube [21]. Basic algorithms are 
pipeline broadcast method [28], minimum-spanning tree method, 
bidirectional exchange algorithm, and bucket algorithm [21]. 
Since these algorithms have different advantages, algorithm 
combination (polymorphism) is widely used to improve the 
communication performance [21]. Furthermore some solutions 
also provide auto algorithm selection [34].  

Other papers have a different focus than our work. Some of them 
only study small data transfers up to megabytes level [21] [35] 
while some solutions rely on special hardware support [23]. The 
data type is typically vectors and arrays whereas we are 
considering objects. Many algorithms such as “allgather” operate 
under the assumption that each node has the same amount of data 
[21] [23], which is uncommon in a MapReduce model. As a 
result, although shuffling can be viewed as a Reduce-Scatter 
operation, its algorithm cannot be applied directly on shuffling 
since the data amount generated by each Map task is unbalanced 
in most MapReduce applications.  

There are several solutions to improve the performance of data 
transfers in MapReduce. Orchestra [27] is one such global control 
service and architecture to manage intra- and inter-transfer 
activities in the Spark system, where we gave some test results in 
section 3.1. It not only provides control, scheduling and 
monitoring on data transfers, but also optimization on 
broadcasting and shuffling. For broadcasting, it uses an optimized 
BitTorrent-like protocol called Cornet, augmented by topology 
detection. For shuffling, Orchestra employs weighted shuffle 
scheduling (WSS) to set the weight of the flow as proportional to 
the data size; we noted earlier this optimization is not relevant in 
our application.  

Hadoop-A [36] provides a pipeline to overlap the shuffle, merge 
and reduce phases and uses an alternative Infiniband RDMA 
based protocol to leverage RDMA inter-connects for fast data 
shuffling. MATE-EC2 [37] is a MapReduce like framework for 
EC2 [38] and S3 [39]. For shuffling, it uses local aggregation and 
global aggregation. This strategy is similar to what we did in 
Twister but as it focuses on EC2 cloud environment, the design 
and implementation are totally different. iMapReduce [40] and 
iHadoop [41] are iterative Mapreduce frameworks that optimize 
the data transfers between iterations asynchronously, where there 
exists no barrier between two iterations. However, this design 
doesn’t work for applications which need broadcast data in every 
iteration because all the outputs from Reduce tasks are needed for 
every Map task.  

Microsoft Daytona [45] is a recently announced iterative 
MapReduce runtime developed by Microsoft Research for 

Microsoft Azure Cloud Platform that builds on some of the ideas 
of the earlier Twister system. Currently Excel DataScope is 
presented as an application of Daytona. Users can upload data in 
their Excel spreadsheet to the DataScope service or select a 
dataset already in the cloud, then select an analysis model from 
the Excel DataScope research ribbon to run against the selected 
data. The results can be returned to the Excel client or remain in 
the cloud for further processing and visualization. Daytona is 
available as a “Community Technology Preview” for academic 
and non-commercial use. 

  

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we have demonstrated the first steps towards a high 
performance Map-Collective programming model and runtime 
using the requirements of a large scale clustering algorithm. We 
replaced broker-based methods and designed and implemented a 
new topology-aware chain broadcasting algorithm. Compared 
with the simple broadcast algorithm, the new algorithm reduces 
the time burden of broadcasting by at least a factor of 120 over 
125 nodes. It gives 20% better performance than best C/C++ MPI 
methods (and four times faster than Java MPJ) and a factor of 5 
improvements over non-optimized (for topology) pipeline-based 
method over 150 nodes. The shuffling cost after using local 
aggregation is only 10% of the original time. In particular, 
collective communication has significantly improved the 
intermediate data transfer for large scale image clustering 
problems. 
 
In future work, we will improve the Kmeans algorithm [8][9][42] 
and apply the Map-Collective framework to other iterative 
applications [43] including Multi-Dimensional Scaling where the 
allgather primitive is needed. We will also extend current work to 
include an allreduce collective that is an alternative approach to 
Kmeans. The resultant Map-Collective model that captures the 
full range of traditional MapReduce and MPI features will be 
evaluated on Azure [22] as well as IaaS/HPC environments. We 
will integrate Twister with Infiniband RDMA based protocol and 
compare various communication scenarios. Initial observation 
suggests a different performance profile from that of the Ethernet 
network evaluated here. Furthermore we will integrate topology 
and link speed detection services and utilize services such as 
ZooKeeper [44] to provide coordination and fault detection.  
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