
High Performance Clustering of Social Images in a Map-
Collective Programming Model

Bingjing Zhang
Department of Computer Science

Indiana University Bloomington
zhangbj@indiana.edu

Judy Qiu
Department of Computer Science

Indiana University Bloomington
xqiu@indiana.edu

ABSTRACT
Large-scale iterative computations are common in many
important data mining and machine learning algorithms needed in
analytics and deep learning. In most of these applications,
individual iterations can be specified as MapReduce
computations, leading to the Iterative MapReduce programming
model for efficient execution of data-intensive iterative
computations interoperably between HPC and cloud
environments. Further one needs additional communication
patterns from those familiar in MapReduce and we base our initial
architecture on collectives that integrate capabilities developed by
the MPI and MapReduce communities. This leads us to the Map-
Collective programming model which here we develop based on
requirements of a range of applications by extending our existing
Iterative MapReduce environment Twister. This paper studies the
implications of large scale Social Image clustering where large
scale problems study 10-100 million images represented as points
in a high dimensional (up to 2048) vector space which need to be
divided into up to 1-10 million clusters. This Kmeans application
needs 5 stages in each iteration: Broadcast, Map, Shuffle, Reduce
and Combine, and this paper focuses on collective communication
stages where large data transfers demand performance
optimization. By comparing and combining ideas from
MapReduce and MPI communities, we show that a topology-
aware and pipeline-based broadcasting method gives better
performance than other MPI and (Iterative) MapReduce systems.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems – Distributed applications.

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation.

Keywords
Social Images, Data Intensive, High Dimension, Iterative
MapReduce, Collective Communication

1. INTRODUCTION
The rate of data generation now exceeds the growth of
computational power predicted by Moore’s law. Challenges to
computation are related to mining and analysis of these massive
data sources for the translation of large-scale data into knowledge-
based innovation. MapReduce frameworks have become popular
in recent years for their scalability and fault tolerance in large data
processing and simplicity in programming interface. Hadoop [1],
an open source implementation following original Google’s

MapReduce [2] concept, has been widely used in industry and
academia.

However Intel’s RMS (Recognition, Mining and Synthesis)
taxonomy [3] identifies iterative solvers and basic matrix
primitives as the common computing kernels for computer vision,
rendering, physical simulation, financial analysis and data mining.
These and other observations suggest that iterative data processing
runtime will be important to a spectrum of e-Science or e-
Research applications as the kernel framework for large scale data
processing. Several new frameworks designed for iterative
MapReduce have been proposed to solve this problem, including
Twister [4], Spark [5] and HaLoop [6]. The initial version of
Twister targeted optimization of data flow and reducing data
transfer between iterations by caching invariant data in the local
memory of compute nodes but it did not support the
communication patterns needed in many applications and we
observe that a systematic approach to collective communication is
essential in many iterative algorithms. Thus we generalize the
(iterative) MapReduce concept to Map-Collective noting that
large collectives are a distinctive feature of data intensive and data
mining applications. This is supported by the remarks that
“MapReduce, designed for parallel data processing, was ill-suited
for the iterative computations inherent in deep network training”
[7] from a recent paper on deep learning.

Social image clustering is such an application which is not only a
big data problem but also needs an iterative solver. This produces
challenges for both new algorithms and efficiency of the parallel
execution which involves very large collective communication
steps. We are addressing [8] the overall performance with an
extension of Elkan's algorithm [9] drastically speeding up the
computing (Map) step of algorithm by use of the triangle
inequality to remove unnecessary computation. However this
improvement just highlights the need for efficient communication
which is a major focus of this paper. Note communication has
been well studied, especially in MPI, but social image clustering
stresses different usage modes and message sizes from most
previous applications. In this paper, we study characteristics of
large-scale image clustering application and identify performance
issues of collective communication. Our work is presented in the
context of Twister but the analysis is applicable to both
MapReduce and other data-centric computation solutions.

At this point, let us provide some details on the 7 million image
feature vectors clustering problem previously mentioned. We
execute the application on 1000 cores (125 nodes each of which
has 8 cores) with 10000 Map tasks and 125 Reduce tasks. In
broadcasting, the root node (driver) broadcasts 512 MB of data to
all compute nodes therefore the overhead of a sequential
broadcasting is substantial. In shuffling, 20 TB of intermediate
data generated in Map stage are required to be transferred to

Reduce so that it is not possible to handle such a large amount of
data in memory. In this paper, we propose a topology-aware
pipeline-based method to accelerate broadcasting by at least a
factor of 120 compared with simple algorithm (sequentially
sending data from root node to each destination node). Our
findings demonstrate that this strategy outperforms classic MPI
methods [10] by 20%. We also use local aggregation in Map stage
to reduce the size of intermediate data by at least 90% and reduce
the 20 TB intermediate data to 250 GB. These methods provide
important collective communication capabilities to our new
iterative Map-Collective framework for data intensive
applications. Finally we evaluate our new methods on the
PolarGrid [11] cluster at Indiana University.

The rest of the paper is organized as follows. Section 2 discusses
the image clustering application. Section 3 discusses collective
communication in Twister and other environments Section 4
presents the design of the broadcast Collective. Section 5
investigates how the local aggregation mechanism works. Section
6 details the experiments and results while Section 7 discusses
related work. Finally in Section 8 we present our conclusions and
discuss future projects.

2. IMAGE CLUSTERING APPLICATION
Areas involving studies of images have recently been
revolutionized by the Internet that is providing an incredible
volume of data. For example, there are 500 million images
uploaded everyday on Facebook, Instagram and Snapchat (such
sites are what we term social and surprisingly are much larger
than Flickr) with 100 hours of video (video can be considered as
several images per second) uploaded to Youtube every minute.
This is motivating large scale computer vision and deep learning
studies that need the infrastructure studied here. Our target image
clustering application groups millions of images into millions of
clusters each of which contains images with similar visual
features. Before starting image clustering, the dimensionality
reduction is done on original images first and each image is
represented in a much lower space (although retaining dimensions
of 512-2048) with a set of important visual components which are
called “feature vectors”. Analogous to the use of “key words” in a
document retrieval system, these “features vectors” become the
“key words” of an image. Here we select 5 patches from each
image and represent each patch by a HOG (Histograms of
Oriented Gradients) feature vector of 512 dimensions. The basic
idea of HOG features is to characterize the local object
appearance and shape by the distribution of local intensity
gradients or edge directions [12] (See Figure 1). In input data,
each HOG feature vector is presented as a line of text starting with
picture ID, row ID and column ID, which are then followed by
512 numbers f1, f2 …and fdim.

We apply K-means Clustering [13] to cluster the similar HOG
feature vectors as well as using Twister MapReduce framework to
parallelize the computation. We depict K-means Clustering
algorithm as a chain of MapReduce jobs. The input data consists
of a large number of feature vectors each of which contains 512
dimensions and use Euclidean distance calculation to compare the
distances between feature vectors and the cluster center vectors
(centroids). Since the vectors are static over iterations, we
partition (decompose) the vectors and cache each partition in
memory. Afterwards a Map task is assigned to it in the job
configuration. During each iteration execution, the job driver
broadcasts centroids to all Map tasks. Each Map task then assigns
feature vectors to their nearest cluster centers based on Euclidean

Figure 1. Workflow of the image clustering application

distance calculation. Map tasks calculate the sum of vectors
associated with each cluster and count the total number of such
vectors. The Reduce task (to simplify this description, we use only
one Reduce task here but 125 are used in implementation)
processes the output collected from each Map task and calculates
new cluster centers of the iteration by adding all partial sums of
partial cluster center values together, then dividing it by the total
count of the data points in the cluster. By combining these new
centroids from Reduce tasks, the job driver gets all updated
centroids and the control flow enters the next iteration (see Table
1).

One major challenge of this application is the amount of image
data can be very large. Currently we have near 1 TB of data and
we expect problems to grow in size by one to two orders of
magnitude. For such a large amount of input data, we can increase
the number of machines to reduce the data size per node, but the

Figure 2. Image clustering control flow in Twister with new

local aggregation feature in Map stage
total data size (of cluster centers) transferred in broadcasting and
shuffling still grows as the number of centers multiplies.

For example, we cluster 7 million vectors to 1 million clusters. In
one iteration, the execution is done on 1000 cores in 10 rounds
with a total of 10000 Map tasks. Each task only needs to cache
700 vectors (358KB) and each node needs to cache 56K vectors,

99000076

I
99000070

99000070-0

99000432

99000070-4

99000432-0

99000432-5

Clustering
Feature

Extraction

Images Patches HOG Features

II

III

Clusters

99000070

99000076

99000432

Map Map

Local Aggregation

Reduce

Combine to Driver

Local Aggregation

Reduce

Map

Local Aggregation

Reduce

Broadcast from Driver

Worker 1 Worker 2 Worker 3

Shuffle

about 30MB in total. But for broadcasting data, the number of
cluster centers is very large and the total size of 1 million cluster
centers is about 512MB. Therefore the centroids data per task
received through broadcasting is much larger than the image
feature vectors per task. Since each Map task needs a full copy of
the centroids data, the total data sent through collective
communication grows as the problem size and number of nodes
increases. For the example above, the total data broadcasted is
about 64 GB (because Map tasks are executed on thread level,
broadcast data can be shared among tasks on one node).

Table 1. Algorithms and implementation of Image Clustering
Application (one Reduce task only)

Algorithm 1 Job Driver
numLoop ← maximum iterations
centroids[0] ← initial centroids value
driver ← new TwisterDriver(jobConf)
driver.configureMapTasks(partitionFile)

for(i ← 0; i < numLoop; i ← i+1)
 driver.broadcast(centroids[i])
 driver.runMapReduceJob()
 centroids[i+1] ←driver.getCurrentCombiner().getResults()
Algorithm 2 Map Task
vectors ← load and cached from files
centroids ← load from memory cache
minDis ← new int[numVectors]
minCentroidIndex ← new int[numVectors]

for (i ← 0; i < numVectors; i ← i+1)
 for (j ← 0; j < numCentroids; j ← j+1)
 dis ← getEuclidean(vectors[i], centroids[j])
 if (j = 0)
 minDis[i] ← dis
 minCentroidIndex[i] ← 0
 if (dis < minDis[i])
 minDis[i] ← dis
 minCentroidIndex[i] ← j
localSum ← new int[numCentroids][512]
localCount ← new int[numCentroids]
for(i ← 0; i < numVectors; i ← i+1)
 localSum[minCentroidIndex[i]] +← vectors[i]
 localCount[minCentroidIndex[i]] +← 1
collect(localSum, localCount)
Algorithm 3 Reduce Task
localSums ← collected from Map tasks
localCounts ← collected from Map tasks
totalSum ← new int[numCentroids][512]
totalCount ← new int[numCentroids]
newCentroids ← new byte[numCentroids][512]

for (i ← 0; i < numLocalSums; i ← i+1)
 for (j ← 0; j < numCentroids; j← j+1)
 totalSum[j] = totalSum[j] + localSums.get(i)[j]
 totalCount[j] = totalCount[j] + localCounts.get(i)[j]
for (i ← 0; i < numCentroids; i← i+1)
 newCentroids[i] = totalSum[i]/ totalCount[i]
collect(newCentroids)

We now reach the shuffling stage. Here each Map task generates
about 2 GB of intermediate data so that the total intermediate data
size is about 20 TB. This far exceeds the total memory size of 125
nodes (each of which has 16 GB memory; 2 TB in total). Besides
it also makes the computation difficult to scale as the data size

grows with the number of nodes. In this paper, we successfully
reduce 20 TB of intermediate data to 250 GB with local
aggregation in the Map Stage (See Figure 2). But due to the
memory limitation, 250 GB still cannot be handled by one Reduce
task. We further divide the chunk size of the output from each
Map task to 125 blocks (numbered with Block ID from 0 to 124)
and use 125 reduce tasks (one task per node) to process the
intermediate data. In this way, each Reduce task only processes 2
GB of data. Reduce task 0 processes all Block 0 from all Map
tasks, Reduce task 1 processes all Block 1 from all Map tasks, and
so on and so forth. The output from each Reduce task is only
about 4 MB so that the total data on 125 Reduce tasks that needs
to send back to the driver in Combine stage is about 512 MB
which is relatively small and easy to handle.

In Table 2, we give the time complexity of each part of the
algorithm; we use 𝑝 as the number of nodes, 𝑚 as the number of
Map tasks and 𝑟 as the number of Reduce tasks. For the data, 𝑘
is the number of centroids, 𝑛 is the total number of image feature
vectors, and 𝑙 is the number of dimensions. We note for map, an
approximate estimate from [8] of the improvement gotten by
using triangle inequalities.

COLLECTIVE COMMUNICATION IN
PARALLEL PROCESSING FRAMEWORKS
In this section, we compare several big data parallel processing
tools and show how they are applied on big data problems. These
tools are MPI, Hadoop MapReduce and MapReduce-like tools
supporting iterative algorithms such as Twister and Spark [5].
Furthermore, we analyze the pattern of collective communication
and how intermediate data is handled in each tool. In future, we
expect the ideas of these tools to be all converged in a single
environment for which our new optimal communication is aimed
in order to serve big data applications. Section 3.1 discusses the
runtime model of these tools and Section 3.2 talks about collective
communication and in these tools.

3.1 Runtime Models
MPI, Hadoop, Twister and Spark are four tools which have very
different runtime models, which are aimed at different types of
applications and data. We classify parallel data processing and
communication patterns [14] in Figure 3. In the whole data tool
spectrum, Hadoop and MPI are two tools at opposite ends while
Twister, Spark and other MapReduce-like tools congregate in the
middle with mixed features extended from both Hadoop and MPI.
Here we propose using systematic support of collectives to unify
these models.

MPI is a computation-centric solution. It mainly serves scientific
applications which are not only complicated in communication
patterns but also intensive in computation. It can spawn parallel
processes to compute nodes, although users need to define the
computation in each process and handle communications between

Table 2. Time complexity of each stage
Stage Simple Improved

Broadcasting 𝑂(𝑘𝑙𝑝) 𝑂(𝑘𝑙)
Map 𝑂(𝑘𝑛𝑙/𝑚) 𝑂(𝑘𝑛/𝑚) [8]

Shuffle 𝑂(𝑚𝑘𝑙/𝑟) 𝑂(𝑝𝑘𝑙/𝑟)
Reduce 𝑂(𝑚𝑘𝑙/𝑟) 𝑂(𝑝𝑘𝑙/𝑟)

Combine 𝑂(𝑘𝑙) 𝑂(𝑘𝑙)

them. MPI is highly optimized in communication performance. It
not only offers basic point-to-point communication but also
provides collective communication operations. MPI runs on HPC
or supercomputers where data is decoupled from computation and
stored in a separate shared and distributed file system. MPI
doesn’t have unified data abstraction as Key-Value pairs in
MapReduce-related tools. In contrast, it is flexible enough to
organize and process different types of data. MPI doesn’t have
fixed control flow, endowing it with the flexibility to emulate the
MapReduce model or other user defined models [15-17].

On the other hand, Hadoop is a data-centric solution. HDFS [18]
is used to store and manage big data so that users do not need to
think about data accessing and loading steps that must be
presented in MPI programs. In addition, all computations are
performed in the same place where the data is located, so that this
framework is scalable when processing big data. Hadoop is
inefficient for processing data mining algorithms and scientific
applications served by MPI because its control flow is constrained
to a Map-Shuffle-Reduce pattern. However, Hadoop is suitable
for processing records and logs. This kind of data is easy to split
into small Key-Value pairs with words or lines. Key-Value pairs
are the core data abstraction in MapReduce. With keys,
intermediate data values are labeled and regrouped automatically
without using explicit communication commands. A typical
records or logs processing includes information extraction and
regrouping. It can be easily expressed in Map-Reduce:
intermediate Key-Value pairs are first extracted from records and
logs in Map tasks then regrouped in shuffling and last processed
by Reduce tasks.

The difference of data and application also influences the
scheduling strategies. In many scientific applications, the
workload can be evenly distributed on each compute node. As a
result, MPI uses static scheduling. But for logs and records
processing, the workload in each task is hard to estimate. Some
tasks generate more intermediate Key-Value pairs while others
may do less. Because of this, Hadoop uses dynamic scheduling.
The purpose of which is to make empty task slots be used for
unprocessed data in order to balance the workload on each node.
Hadoop also provides task level fault tolerance for scheduling, a
feature MPI doesn’t support.

Twister and Spark reside somewhere between the range of MPI
and Hadoop. Twister is aimed at providing an easy-to-use and
data-centric solution to process big data in data mining or
scientific applications. Twister makes the control flow as
iterations of MapReduce jobs. The output of each MapReduce
iteration is collected and sent as the input to the next iteration. The
data in Twister is also abstracted as Key-Value pairs for
intermediate data regrouping as per needs of the application.
Twister uses static scheduling. Data is first pre-split and evenly
distributed to compute nodes based on the available computing
slots (the number of cores). Tasks are then sent to where the data
is located.

Spark also serves for iterative algorithms but boasts more flexible
iteration control with separated RDD operations called
transformations and actions. Here RDD is another layer of data
abstraction higher than Key-Value pairs. A RDD includes a set of
Key-Value pairs and describes the distribution of this data in the
whole environment. Typical operations on RDDs include not only
MapReduce-like operations such as Map, GroupByKey (close to
Shuffle but without sort) and ReduceByKey (same as Reduce),
but also operations related to relational database such as Union,
Join, and Cartesian-Product. Scheduling in Spark is similar to
Dryad but with the consideration of the availability in memory of
RDD partitions. RDD’s lineage graph is examined to build a DAG
of stages for late execution.

The data abstraction in MapReduce also requires more work in the
form of data partition before data loading. This is because the data
abstracted in computation is usually not organized in the same
way as the data stored in the file systems. For example, the data in
the image clustering application is stored in a set of text files.
Each file contains feature vectors generated from a related set of
images. The file lengths and the total number of files usually vary.
However, in computation we make the number of data partitions
to be the same as the number of cores or the multiple of the
number of cores so that we can evenly distribute the computation.
Ultimately we need to convert “raw” data on disks to “cooked”
data ready for computation. Currently we split original data files
into evenly sized data partitions. But Hadoop can automatically
load data from blocks with self-defined InputSplit or InputFormat
class. At the same time, MPI requires user to split data or use
special file format HDF5 [19] and NetCDF [20] commonly used
in scientific applications.

3.2 Collective Communication and
Intermediate Data Handling

In the last few decades, MPI researchers made major progress on
communication optimization. However as a computation-centric
application, MPI focuses on low latency communication while for
example our example is notable for large messages where latency
less relevant. With the support of high-performance hardware,
communication is well optimized. Users can communicate in two
ways. One is to call send/receive APIs to customize
communication between processes. Another is to invoke libraries
to do collective communication operations, which is a type of
communication in which all the workers are required to
participate.

Often data-centric problems run on clouds which consist of
commodity machines, and the cost of transferring big intermediate
data is high. For example, in the image clustering application
example of this paper, broadcasting in each iteration is needed and
the size is about 500MB. Our findings show that this operation
and the big data can be a great burden to current data-centric

(a) Map Only
(Pleasingly Parallel)

(b) Classic
MapReduce

(c) Iterative
MapReduce

(d) Loosely
Synchronous

- CAP3 Gene Analysis
- Smith-Waterman

Distances
- Document conversion

(PDF -> HTML)
- Brute force searches in

cryptography
- Parametric sweeps
- PolarGrid Matlab data

analysis

- High Energy Physics
(HEP) Histograms

- Distributed search
- Distributed sorting
- Information retrieval
- Calculation of Pairwise

Distances for
sequences (BLAST)

- Expectation
maximization
algorithms

- Linear Algebra
- Data mining include K-

means clustering
- Deterministic

Annealing Clustering
- Multidimensional

Scaling (MDS)
- PageRank

Many MPI scientific
applications utilizing
wide variety of
communication
constructs including
local interactions
- Solving Differential

Equations and
- particle dynamics with

short range forces

Pij

Collective Communication MPI

Input

Output

map

Input
map

reduce

Input
map

iterations

No Communication

reduce

Figure 3: Classification of Applications and
Communication Patterns

technology. This makes it necessary to systematically develop a
Map-Collective approach with a wide range of collectives and
with big data not the MPI big simulation optimizations.

Traditionally, there are 7 collective communication operations
discussed in MPI [21]. The first four, broadcast, scatter, gather,
and allgather are called “data redistribution operations” [21]. The
remaining three, reduce(-to-one), reduce-scatter, all-reduce are
called “data consolidation operations” [21]. In “data redistribution
operations”, neither Hadoop, Twister nor Spark covers all 4
operations. In detail, Hadoop only has “broadcast” with no
explicit “scatter” or “gather”. Considering that in Hadoop data is
managed by HDFS, direct memory-to-memory collective
communication does not in fact exist. Twister has “broadcast”,
“scatter” and “gather”. Spark has “broadcast” and “gather”. Our
Twister4Azure system [22] supports “allgather” and “allreduce”
and in a later paper we will describe the integration of these
different collectives into a single system that runs interoperably
on HPC clusters (Twister) or PaaS cloud systems (Twister4Azure)
changing the implementation to optimize performance for each
infrastructure. The same high level collective primitive is used on
each platform with different under-the-hood optimizations.

Between runtimes, broadcasting data abstraction and methods are
very different. In MPI, data is abstracted as an array buffer. In
Hadoop it is a file on HDFS. Twister and Spark treat broadcasting
data as an object. But in detail, Twister treats the data as a Key-
Value pair unlike Spark which treats it as arbitrary objects.
Objects are much easier to manipulate compared with files and
array buffers.

In MPI, several algorithms are used for broadcasting. MST
(Minimum-Spanning Tree) method is a typical broadcasting
method used in MPI [21]. In this method, nodes form a minimum
spanning tree and data is forwarded along the links. In this way,
the number of nodes which have the data grows in geometric
progression. Here we use 𝑝 as the number of nodes, 𝑛 as the data
size, 𝛼 as communication startup time and 𝛽 as data transfer time
per unit. The performance model can be described by the formula
below:

𝑇𝑀𝑆𝑇(𝑝,𝑛) = ⌈𝑙𝑜𝑔2𝑝⌉(𝛼 + 𝑛𝛽) (1)

This method is much better than simple broadcasting by changing
the complexity term 𝑝 to ⌈𝑙𝑜𝑔2𝑝⌉. But it is still insufficient when
compared with scatter-allgather bucket algorithm. This algorithm
is used in MPI for long vectors broadcasting which follows the
style of “divide, distribute and gather” [23]. In “scatter” phase, it
scatters the data to all the nodes. Then in “allgather” phase, it does
bucket algorithm. This method views the nodes as a chain. At
each step, every node sends data to its right neighbor [25]. By
taking advantage of the fact that messages traversing a link in
opposite direction do not conflict, “allgather” is done in parallel
without any network contention. The performance model can be
established as follow:

𝑇𝑏𝑢𝑐𝑘𝑒𝑡(𝑝,𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑝⁄) + (𝑝 − 1)(𝛼 +
𝑛𝛽 𝑝⁄) (2)

In large data broadcasting, assuming α is small, the broadcasting
time is about 2𝑛𝛽 . This is much better than the MST method
because the time appears constant. However, it is not easy to set
global barrier between “scatter” and “allgather” phases in cloud
system to enable all the nodes to do “allgather” at the same global

time through software control. As a result, some links will have
more load than the others and thus we arrive at network
contention. We implement this algorithm and provide the test
results on IU PolarGrid (See Table 3). The execution time is
roughly kept at 2𝑛𝛽 level. But as the number of nodes increase, it
gets slightly slower.

There is also the InfiniBand [24] multicast based broadcasting
method in MPI [25]. Currently many clusters support hardware-
based multicast. But it is not a reliable method, the sending order
is not guaranteed and the package size of each sending is limited.
So after the first stage of multicasting, broadcasting is enhanced
with a chain-like broadcasting, which is reliable enough to make
sure every process has completed data receiving. In the second
stage, the nodes are formed into a virtual ring topology. Each MPI

process that gets the message via multicast serves as a new “root”
within the virtual ring topology and exchange data to the
predecessor and successor in the ring. This is similar to the bucket
algorithm we discuss above.

Figure 4. Initial Twister architecture with brokers as main

communication components
Though the methods heretofore reviewed are not perfect, they all
can reduce broadcasting time to a great extent. Still, none of them
are applied in data-centric solutions. However, simple algorithm is
commonly used. Hadoop system relies on HDFS to do
broadcasting. A component named Distributed Cache is used to
cache data from HDFS to local disk of compute nodes. The API
addCacheFile and getLocalCacheFiles work together to complete
the process of broadcasting. There is no special optimization. The
data downloading speed depends on the number of replicas in
HDFS [18]. This method generates significant overhead (a factor
of 𝑝) when handling big data broadcasting. This will be shown in
later experiments.

We call this “simple algorithm” because it basically sends data to
all the nodes one by one. Initially in Twister, a single message
broker is used to do broadcasting in a similar way (See Figure 4).
Though using multiple brokers in Twister or using multiple
replicas in HDFS could contain a simple 2-level broadcasting tree

Worker Node

Local Disk

Worker Pool

Twister Daemon

Master Node

Twister
Driver

Main Program

B B BB

Pub/Sub
Broker Network and
Collective
Communication
Service

Worker Node

Local Disk

Worker Pool

Twister Daemon

Scripts perform:
Data distribution, data collection,
and partition file creation

map

reduce Cacheable tasks

Table 3. Scatter-allgather bucket algorithm performance
on IU PolarGrid with 1 GB data broadcasting

Node# 1 25 50 75 100 125
Seconds 11.4 20.57 20.62 20.68 20.79 21.2

Table 4. Broadcasting programming interface
Runtime Broadcasting Interface

MPI MPI_Bcast(bcast_data, total_num_data,
MPI_CHAR, 0, MPI_COMM_WORLD);

Twister driver.addToMemCache(bcastData);
Spark val barr1 = sparkContext.broadcast(arr1)

sparkContext.parallelize(1 to 10, slices).foreach
{

i => println(barr1.value.size)
}

and ease the performance issue, they won’t fundamentally address
the problem. As a result, to replace the current broadcasting in
Twister, in the next section, we propose a chain-based
broadcasting algorithm suitable for cloud systems.

Meanwhile, other than using simple algorithm, Spark adds

BitTorrent [26] to enhance broadcasting speed. BitTorrent is a
well-known technology in internet file sharing. The programming
interface of broadcasting in Spark is very different from MPI and
Twister. Due to the mechanism of late execution, broadcasting is
not finished in a single step but in two stages. When broadcasting
is invoked, the data is not broadcast until the parallel tasks are
executed (See Table 4). The code in Table 4 is from Spark
example code. Broadcasting happens when 10 printing tasks are
invoked. So broadcasting doesn’t execute on all the nodes but
only on the nodes where tasks are located. The performance of
Spark Broadcasting is discussed with a simple case in Section 6.6.

For data consolidation operations, “reduce(-to-one)” and “reduce-
scatter” are parallel to a “shuffle-reduce” operation in data-centric
solutions. “Reduce-(to-one)” can be viewed as using shuffling
with only one Reducer while “reduce-scatter” can be viewed as
using shuffling with all workers as reducers. However, these
operations are fundamentally different in terms of semantics
because “shuffle-reduce” is based on Key-Value pairs while
“reduce-(to-one)” and “reduce-scatter” are based on vectors. The
data abstraction of the former is more flexible than the latter. In
“shuffle-reduce” the number of keys in one worker can be
arbitrary. For example, in word count, for a particular word we
shall call “word1”, one worker could generate multiple Key-Value
pairs with this “word1” as key and count “1” as the value.
Alternatively there might even be no such Key-Value pairs if the
work couldn’t find any examples of “word1”. Furthermore, a
value can be any arbitrary object which encapsulates many
different data types. However, “reduce-scatter” requires the size
of the vectors for reduction to be identical in all workers. Because
the number of words and counts in each worker is hard to
estimate, it is difficult to replace “shuffle-reduce” to “reduce-
scatter” in word count.

Table 5. MPI Shuffling Pseudo Code

Algorithm 1 MPI shuffling
for(i←0; i<max_rank; i←i+1) {

if(my_rank = i) {
 for(j←0; j<max_rank&&j!=i; j←j+1)
 MPI_Send(numSendKVpairs[j]);
 for(k←0; k<numSendKVpairs[j]; k←k+1)
 MPI_Send(sendKVpairs[j][k])
else
 MPI_Recv(numRecvKVpairs[i]);
 for(j←0; j<numRecvKVpairs[j]; j←j+1)

 MPI_Recv(recvKVpairs[i][j]);

To simulate “shuffle-reduce” in MPI, we cannot use collective
communication in MPI directly. Instead we have to customize the
communication with send/receive calls. The following pseudo
code represents how shuffling may look based on send/receive
APIs (See Table 5). We simplify the code by using a matrix to
hold all the Key-Value pairs for send/receive but from the code
we still can see another weakness of MPI in shuffling: the
program is not simple and users have to explicitly designate where
the data goes. By contrast, in data-centric solutions, data is
managed by the framework, and automatically goes to the
destination according to their keys.

A a result, shuffling can be viewed as a unique collective
communication in data-centric solutions. The implementation is
also different between runtimes. Hadoop manages intermediate
data on disk, so data is first partitioned, sorted and spilled to disk,
then transferred, merged and sorted again at Reducer side.
However, shuffling in Twister is much simpler than it is in
Hadoop. Data is only regrouped by keys and transferred in
memory and there is no sorting [4]. So shuffling in Twister has
much better performance than in Hadoop. Though it is well
optimized, it is still not scalable in handling large intermediate
data. Then we use local aggregation across Map threads at Map
stage. Since each worker in Twister runs on the thread level and
data generated by each worker can be shared, we are able to
optimally shrink the intermediate data size on each compute node
and accelerate shuffling.

In Spark, there are two APIs related to shuffling. One is
“groupByKey”, and another is “sort”. Remembering that “shuffle”
in Hadoop includes “regroup” and “sort”. Since “shuffle” in
Twister only contains “regroup”, it seems that “shuffle” operation
is not well defined. So is “sort” necessary in “shuffle”? The
answer is no. Firstly, in Twister, all the intermediate data is
managed in memory so that keys can be regrouped through a large
hash map. But for Hadoop, since merging is done on disk, sorting
becomes a required step to put keys with the same hash code
together. Secondly, many applications such as word count and
image clustering applications mentioned above, it is sufficient that
the data is regrouped without being sorted. The ranking of each
key is not important to the application. As a result, we view
“shuffle” as only “regroup”.

In summary, we notice that collective communication is not well
studied in the context of MapReduce and data-centric solutions.
Furthermore it may not be optimally implemented in the current
runtimes. Though collective communication operations have been
used in MPI for decades, they are still missing in MapReduce
despite still being required by the applications. In the image
clustering application, “broadcast” and “shuffle” are two
important operations involved. With optimization, we introduce
new Twister control flow with optimized broadcasting and local
aggregation feature (See Figure 2).

We note that our collectives are implemented asynchronously but
the broadcast step of Kmeans naturally synchronizes the algorithm
at each iteration

3. BROADCAST COLLECTIVE
COMMUNICATON

To address the need for high performance broadcasting in the
image clustering application, we replace the original broker
methods in Twister with a new chain method based on TCP
sockets to provide customized control of the message routing in
broadcasting.

4.1 Chain Broadcasting Algorithm
Here we propose chain method, an algorithm based on pipelined
broadcasting [28]. In this method, compute nodes in Fat-Tree
topology [29] are treated as a linear array and data is forwarded
from one node to its neighbor chunk-by-chunk. Performance is
enhanced by dividing the data into many small chunks and
overlapping the transmission of data on nodes. For example, the
first node would send a data chunk to the second node. Then,
while the second node sends the data to the third node, the first
node would send another data chunk to the second node, and so
on and so forth [28]. This kind of pipelined data forwarding is
called “a chain”. It is particularly suitable for the large data sizes
in our communication problem.

The performance of pipelined broadcasting depends on the
selection of chunk size. In an ideal case, if every transfer can be
overlapped seamlessly, the theoretical performance is as follows:

𝑇𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑝, 𝑘,𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑘⁄) + (𝑘 − 1)(𝛼 +
𝑛𝛽 𝑘⁄) (3)

Here 𝑝 is the number of nodes, 𝑘 is the number of data chunks, 𝑛
is the data size, 𝛼 is communication startup time and 𝛽 is data
transfer time per unit. In large data broadcasting, assuming 𝛼 is
small and 𝑘 is large, the main term of the formula
is (𝑝 + 𝑘 − 1)𝑛𝛽 𝑘⁄ ≈ 𝑛𝛽 which is close to constant. From the
formula, the best number of chunks is 𝑘𝑜𝑝𝑡 = �(𝑝 − 1)𝑛𝛽/𝛼
when 𝜕𝑇 𝜕𝑘⁄ = 0 [28]. However, in practice, the actual chunk
size per sending is decided by the system and the speed of data
transfers on each link could vary as network congestion might
occur when data is continuously forwarded into the pipeline. As a
result, formula (3) cannot be applied directly to predict real
performance of our chain broadcasting implementation. But the
experiment results we will present later still show that as 𝑝
increases, the broadcasting time remains constant and close to the
bandwidth limit.

4.2 Rack-Awareness
This chain method is suitable for racks of machines with Fat-Tree
topology connection, which is a commonly used network
topology in clusters or in data centers [30]. Since each node only
has two links, which is less than the number of links per node in
Mesh/Torus [31] topology, chain broadcasting can maximize the
utilization of the links per node. We also make the chain
topology-aware by allocating nodes within the same rack nearby
in the chain. Assuming the racks are numbered as 𝑅1 , 𝑅2 and
𝑅3…, the nodes in 𝑅1 are put at the beginning of the chain, then
the nodes in 𝑅2 follow the nodes in 𝑅1 , and then nodes in 𝑅3
follow nodes in 𝑅2 , etc. Otherwise, if the nodes in 𝑅1 are
intertwined with nodes in 𝑅2 in the chain sequence, the chain
flow will jump between switches, which overburdens the core
switch.

To support rack-awareness, as seen in Hadoop, we write and save
configuration information on each node. Each node can discover
its predecessor and successor by loading this information when
starting. In the future, we are also looking into supporting
automatic topology detection to replace the static specification of
topology information.

4.3 Buffer Management
Another important factor affecting broadcasting speed is buffer
management. The cost of buffer allocation and data copying
between buffers is not included in formula (3). There are 2 levels

of buffers used in data transmission. The first level is the system
buffer and the second level is the application buffer. System
buffer is used by TCP socket to hold the partial data transmitted
from the network. The application buffer is created by the user to
integrate the data from the socket buffer. Usually the socket
buffer size is much smaller than the application buffer size. The
default buffer size setting of Java socket object in IU PolarGrid is
128KB while the application buffer we chose for broadcasting is
the total size of the data required to be broadcasted.

We observed performance degradation caused by buffer usage.
One issue is that if the socket buffer is smaller than 128 KB, the
broadcasting performance can be slowed down due to the TCP
window being unable to open up fully, which results in throttling
of the sender. Further large-sized user buffer allocation during the
pipeline forwarding can also slightly slow-down the overall
performance. To make a clean comparison with MPI, which does
buffer initialization before broadcasting, we initialize a pool of
free buffers once the receiver program starts instead of allocating
buffers during the broadcasting.

4.4 Object Serialization and De-serialization
In memory-to-memory broadcasting, data is stored as an object in
memory. So we need to serialize the object to byte array before
broadcasting and de-serialize byte array back to an object
afterwards. We observe that object serialization and de-
serialization can be slow for large data sizes. As a result, the
serialization speed depends on the data type. Our experiments
show that serializing 1 GB “double” data is much faster than
serializing 1 GB “byte” data. Moreover, de-serializing 1 GB
“byte” data demands even greater time than serializing it. Since it
is local operation and can be optimized at a cost in portability, we
measure these overheads and separate them from the core
broadcasting operation.

4.5 Fault Tolerance
Communication fault tolerance intrinsic to Collective, should be
considered in chain broadcasting. When large data is transmitted
among a vast number of nodes, communication failures become
likely. Several strategies are applied here in our approach. Firstly
if there are failures in establishing connection from node-to-node,
a retry is issued. Alternatively one can try other destinations.
Secondly, if the chain is seriously broken the whole broadcasting
will restart. Finally, at the end of broadcasting, the root waits and
checks if all the nodes have received all the data blocks. If the root
doesn’t get the ACK from the last node in the chain within a time
window, it restarts the whole broadcasting.

4.6 Implementation
We implement the chain broadcasting algorithm in the following
way: it starts with a request from the root to the first node in the
topology-aware chain sequence. Then the root keeps sending a
small portion of the data to the next node. In the meantime, for the
nodes in the chain, each node creates a connection to the
successor node in the chain. Next each node receives a partial data
from the socket stream, store it into the application buffer and
forward it to the next node (See Table 6).

Table 6. Broadcasting algorithm
Algorithm 1 root side “send” method
nodeID ← 0
connection ← connectToNextNode(nodeID)
dout ← connection.getDataOutputStream()
bytes ← byte array serialized from the broadcasting object
totalBytes ← total size of bytes

SEND_UNIT ← 8192
start ← 0

dout.write(totalBytes)
while (start + SEND_UNIT < totalBytes)
 dout.write(bytes, start, SEND_UNIT)
 start ← start + SEND_UNIT
 dout.flush()
if (start < totalBytes)
 dout.write(bytes, start, totalBytes - start)
 dout.flush()
waitForCompletion()
Algorithm 2 Compute node side “receive” method
connection ← serverSocket.accept()
dout ← connection.getDataOutputStream()
din ← connection.getDataInputStream()
nodeID ← this.nodeID + 1
connNextN ← connectToNextNode(nodeID)
doutNextN ←connToNextN.getDataOutputStream()
dinNextN ← connToNextN.getDataInputStream()

totalBytes ← din.readInt()
doutNextN.writeInt(totalBytes)
doutNextN.flush()
bytesBuffer ← getFromBufferPool(totalBytes)
RECV_UNIT ← 8192
recvLen ← 0
while ((len ← din.read(bytesBuffer, recvLen, RECV_UNIT)) > 0)
 doutNextN.write(bytesBuffer, recvLen, len)
 doutNextN.flush()
 recvLen ← recvLen + len
 if (recvLen = totalBytes) break
notifyForCompletion()

4. LOCAL AGGREGATION IN MAP
STAGE

We already discussed the difference between shuffling in Twister
and other runtimes in Section 3.2. Based on the facts presented in
Section 2, the performance of shuffling depends on the size of
intermediate data. Since the data transferred is very large and the
number of links available for data transmission is limited, the cost
of shuffling is very high and the whole process is unstable.

Some solutions try to use Weighted Shuffle Scheduling (WSS)
[27] to balance the data transfers by using the data size to
determine scheduling. However this strategy will not help for this
image clustering application, because the data size generated for
each Map task is the same.

We reduce the intermediate data size by using local aggregation
across Map tasks in Map stage. To support local aggregation, we
provide appropriate interface to help users define the aggregation
operation.

We notice that each Key-Value pair in intermediate data is a
partial sum of the components of data points associated with a
particular cluster. Since addition is an operation with both
commutative and associative properties, for any two values
belonging to the same key, we can do addition on them and merge
them to a single Key-Value pair, which has no effect on the final
result. This property can be illustrated by the following formula:

𝑓�𝑘𝑣1,⋯ , 𝑘𝑣𝑖 ,⋯ , 𝑘𝑣𝑗 ,⋯ , 𝑘𝑣𝑛� = 𝑓�𝑘𝑣1,⋯ , �𝑘𝑣𝑖 ⊕
𝑘𝑣𝑗�,⋯ , 𝑘𝑣𝑛� =
𝑓�𝑘𝑣1,⋯ , �𝑘𝑣𝑗 ⊕ 𝑘𝑣𝑖�,⋯ ,𝑘𝑣𝑛� ∀ 𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (4)

Here ⊕ represents a set of operations which are similar to
addition operation that can be applied on any two Key-Value
pairs. This will then generate a new Key-Value pair by operating,
𝑓 is the Reduce function and 𝑛 is the number of Key-Value pairs
belonging to the same key. In our image clustering application, ⊕
is the addition of two partial sums. In other applications, we can
also find an appropriate operator. In Word Count [2], ⊕ is the
addition of two partial counts of the same word and can be
operations other than addition, such as multiplication and
max/min value selection, or just simple logical combination of the
two values.

With ⊕ operation and also noting that Map tasks work at thread
level on compute nodes, we do local aggregation in the memory
shared by Map tasks. Once a Map task is finished, it doesn’t send
data out immediately but instead caches the data to a shared
memory pool. When the key conflict happens, the program
invokes a user-defined operation to merge two Key-Value pairs
into one. A barrier is set so that the data in the pools are not
transferred until all the Map tasks in a node are finished. By
trading communication time with computation time, the data
necessary to be transferred can be significantly reduced.

5. Experiments
To evaluate performance of the new proposed broadcasting
method and local aggregation mechanism, we conducted
experiments about broadcasting and shuffling on IU PolarGrid in
the context of both kernel and application benchmarking. The
results demonstrate that chain method achieves the best
performance on big data broadcasting compared with the other
MapReduce and MPI methods. In addition, shuffling with local
aggregation can out-perform the original shuffling significantly.

6.1 IU PolarGrid Cluster
IU PolarGrid cluster [11] uses a Fat-Tree topology to connect
compute nodes. The nodes are split into sections of 42 nodes
which are then tied together with 10 GigE to a Cisco Nexus core
switch. For each section, nodes are connected with 1 GigE to an
IBM System Networking Rack Switch G8000. This forms a 2-
level Fat-Tree structure with the first level of 10 GigE connections

Core Switch

Compute Node

Rack Switch

Compute Node

Compute Node

node1- node42

1 Gbps Connection

10 Gbps Connection

Compute Node

Rack Switch

Compute Node

Compute Node

node43-node84

Compute Node

Rack Switch

Compute Node

Compute Node

node295–node312

Figure 5. Fat-Tree topology in IU PolarGrid

and the second level of 1 GigE connections (See Figure 5). For
computing capacity, each compute node in PolarGrid uses a 4-
core 8-thread Intel Xeon CPU E5410 2.33 GHz processor. The L2
cache size per core is 12 MB. Each compute node has 16 GB total
memory.

The bottleneck of this topology is that inter-switch
communication is through the one and only core switch and the
connection is limited to 10 GigE. As a result, reducing the number
of inter-switch communication times is considered the highest
priority in design of efficient collective communication
algorithms for a fat-tree topology.

6.2 Broadcasting
We test the following methods: chain method in Twister,
MPI_BCAST in Open MPI 1.4.1 [32], and the broadcasting
method in MPJ Express 0.38 [33]. We also compare the current
Twister chain broadcasting method with other designs such as
chain method without topology awareness and simple
broadcasting as a means to show the efficiency of the new

method.

We measure the broadcasting time from the start of calling the
broadcasting method to the end of the calling return. We test the
performance of broadcasting from a small scale to a medium large
scale. The range includes 1 node, 25 nodes with 1 switch, 50

nodes under 2 switches, 75 nodes with 3 switches, 100 nodes with
4 switches, 125 nodes with 5 switches, and 150 nodes with 5
switches. The tests are for different data size, including 0.5 GB
(500MB), 1 GB, and 2 GB. Each result is the average of 10
executions. There are only milliseconds of differences between
execution times therefore we omit the error in the following
charts.

Figure 6 shows the comparison between chain method and
MPI_BCAST method in Open MPI. The time cost of the new
chain method is stable as the number of processes increases. This
matches the broadcasting formula (3) and we can conclude that
with proper implementation, the actual performance of the chain
method can achieve near constant execution time. Besides, the
new method achieves 20% better performance than MPI_BCAST
in Open MPI.

Figure 7 shows the comparison between Twister chain method
and broadcasting method in MPJ. Due to exceptions, we couldn’t
launch MPJ broadcasting on 2GB data. So we draw a dashed line

to mark the prediction. Since 1GB MPJ broadcasting uses twice
the time of 0.5GB MPJ broadcasting, we assume 2 GB MPJ
broadcasting also costs double the time of 1 GB MPJ
broadcasting. MPJ broadcasting method is also stable as the
number of processes grows, but is four times slower than our Java

Figure 6. Performance comparison of
Twister chain method and Open MPI
MPI_Bcast

Figure 7. Performance comparison of
Twister chain method and MPJ
broadcasting method (MPJ 2GB is
prediction only)

Figure 8. Chain method with/without
topology-awareness

Figure 9. Comparison between shuffling
with and without local aggregation

Figure 10. Communication cost per
iteration of the image clustering
application

Figure 11. Spark broadcasting
performance of 500MB data (Twister
Chain results are also provided as
reference)

0

5

10

15

20

25

1 25 50 75 100 125 150

Bc
as

t T
im

e
(S

ec
on

ds
)

Number of Nodes
Twister 0.5GB MPI 0.5GB
Twister 1GB MPI 1GB
Twister 2GB MPI 2GB

0

10

20

30

40

50

60

70

80

1 25 50 75 100 125 150

Bc
as

t T
im

e
(S

ec
on

ds
)

Number of Nodes
Twister 0.5GB MPJ 0.5GB
Twister 1GB MPJ 1GB
Twister 2GB MPJ 2GB

0

20

40

60

80

100

1 25 50 75 100 125 150

Bc
as

t T
im

e
(S

ec
on

ds
)

Number of Nodes
0.5GB 0.5GB W/O TA
1GB 1GB W/O TA
2GB 2GB W/O TA

0 200 400 600

Sh
uf

fli
ng

w
ith

 lo
ca

l…
Sh

uf
fli

ng
w

ith
ou

t…

Average Iteration Time (Seconds)
Broadcast (include serialization & de-serialization)
Shuffle and Reduce (include Reduce task)
Combine

0 50 100 150 200

Average Iteration Time (Seconds)
Broadcast (include serialization & de-serialization)
Shuffle and Reduce (include Reduce task)
Combine

0

50

100

1 25 50 75 100 125 150

Bc
as

t T
im

e
(S

ec
on

ds
)

Number of Nodes
1 receiver
#receivers = #nodes
#receivers = #cores (#nodes*8)
Twister Chain

implementation. Further there is a significant gap between 1-node
broadcasting and 25-node broadcasting in MPJ.

However if the chain sequence is randomly generated but not
topology-aware, the performance degrades quickly as the scale
grows. Figure 8 shows that chain method with topology-
awareness is 5 times faster than that of the chain method without
topology-awareness. For broadcasting within a single switch, we
see that as expected, there is not much difference between the two
methods. However, as the number of nodes and the number of
racks increase, the execution time increases significantly. When
there are more than 3 switches, the execution time become stable
and doesn’t change much. Because there are many inter-switch
communications, the performance is constrained by the 10 Gb
bandwidth and the throughput ability of the core switch.

In Table 7, we show the performance of simple broadcasting and
compare it with Twister chain method. Since simple broadcasting
takes a great deal of time, we won’t present a chart here. The
purpose is to show the baseline of broadcasting performance in IU
PolarGrid. Owing to 1 Gb connection on each node, we see the
transmission speed is about 8 seconds per GB which matches the
setting of the bandwidth. With our new algorithm, we successfully
reduce the cost by about a factor of 𝑝 from 𝑂(𝑝𝑛) to 𝑂(𝑛). Here
𝑝 is the number of compute nodes and 𝑛 is data size.

Table 7. Performance comparison between chain broadcasting
and simple broadcasting (in seconds)

Node# Twister Chain Simple Broadcasting
0.5 GB 1 GB 2 GB 0.5 GB 1 GB 2 GB

1 4.04 8.09 16.17 4.04 8.08 16.16
25 4.13 8.22 16.4 101 202 441.64
50 4.15 8.24 16.42 202.01 404.04 882.63
75 4.16 8.28 16.43 303.04 606.09 1325.63

100 4.18 8.28 16.44 404.08 808.21 1765.46
125 4.2 8.29 16.46 505.14 1010.71 2021.3
150 4.23 8.3 16.48 606.14 1212.21 2648.6

Table 8. Chain method performance under different socket

buffer sizes
Buffer Size (KB) 8 16 32 64
Time (seconds) 65.5 45.46 17.77 10.8

Buffer Size (KB) 128 256 512 1024
Time (seconds) 8.29 8.27 8.27 8.27

By looking inside the chain method, we also examine the potential
impact from socket buffer size. As we mentioned in Section 4.3, a
small socket buffer could cause slow-down of the sender. We take
broadcasting 1 GB data on 125 nodes as an example and increase
the socket buffer size gradually from 8KB to 1MB. We find that
when buffer size is 8 KB, the performance is terrible, then as the
buffer size grows the time cost gets lower. When the buffer size is
larger than 128 KB, we get the best performance and stable
execution time. The experiment shows that the socket buffer size
can affect the performance greatly because the TCP window
cannot open up fully when the buffer size is small. With a proper
buffer size, the broadcasting performance can be improved by
almost an order of magnitude from small to large buffer sizes (see
Table 8).

6.3 Shuffling and Local Aggregation
To benchmark the performance of shuffling using local
aggregation, we choose the following settings to run the image

clustering application. For job settings, we choose 125 nodes to
run the application with 1000 Map tasks (each node with 8 Map
tasks) and 125 reduce tasks (each node with 1 Reduce task). For
data settings, we restrict the number of centroids to 500K and
focus on testing the performance of collective communication.
Since 500K centroids can generate about 1 GB of intermediate
data per task, the overhead from shuffling is significant. We
measure the total time from the start of shuffling to the end of the
Reduce phase noting that reducers start asynchronously (a reducer
starts once it gets all the data). Time costs on Reduce tasks are
included but on average it is just around 1 second and is negligible
compared with the data transfer time.

Figure 9 shows the time difference of shuffling with or without
local aggregation in Map stage in the settings above. Without
using local aggregation, the output per node is 8 GB and the total
data for shuffling is about 1 TB. After using local aggregation, the
output per node is reduced to 1 GB and the total data for shuffling
is only about 125 GB and the time cost on shuffling is only 10%
of the original time; an improvement from about 8 minutes to only
40 seconds. To reduce intermediate data from 1 TB data to 125
GB data, we only need an extra 20 seconds in local aggregation.

6.4 Image Clustering Application
Finally we present a full execution of the image clustering
application here. We successfully cluster 7.42 million vectors into
1 million cluster centers. We create 10000 map tasks on 125
nodes. Each node has 80 tasks. Each task caches 742 vectors. For
1 million centroids, broadcasting data size is about 512 MB.
Shuffling data is 20 TB, while the data size after local aggregation
is about 250 GB. Since the total memory size on 125 nodes is 2
TB, we even cannot execute the program unless local aggregation
is performed. Figure 10 presents the collective communication
cost per iteration, which is 169 seconds (less than 3 minutes).
Note that we are currently in development of a new faster Kmeans
algorithm [8][9] that will drastically reduce the current hour-long
computation time in Map stage by up to a factor of factor of l (the
dimension which is currently 512 to 2048) and so the improved
communication time is highly relevant.

6.5 Analysis of Spark Broadcasting
Here we look at the performance of the BitTorrent

broadcasting in Spark, which is reported as a method which has
excellent performance [27]. In our testing however, the current
Spark version 0.7.0 shows that the performance is good in a small
number of nodes but degrades quickly as the number of nodes
increases (See Figure 11). Because broadcasting is related to
nodes as well as tasks, we designed the following experiments.
We start with testing on 500MB data broadcasting. Firstly, we
execute only 1 task after invoking broadcasting. The result is
stable as the number of nodes grows. However, when we set the
number of the receivers equal to the number of nodes,
performance issues emerge. On 25 nodes with 25 tasks, the
performance is still same as with 1 receiver. But on 50 nodes with
50 tasks, broadcasting time increases three-fold. We also try to
execute broadcasting from 75 nodes to 150 nodes, but none of the
tests are executed successfully. The third test we have is to
increase the number of receivers to the number of cores. The
result is similar. So broadcasting in Spark can only scale to 50
nodes in our tests. We also try 1 GB and 2 GB broadcasting but
these cases do not scale to 25 nodes.

Since broadcasting topology in BitTorrent is built
dynamically, It is unknown if the broadcasting topology follows
the patterns in MPI broadcasting such as minimum spanning tree.

Also important in broadcasting topology is that this topology
follows rack-awareness. A special dynamic topology detection
technique is mentioned [27] but from the experiments it may not
be applied to the current version. For chunk size in sending, it is
mentioned in [27] 4 MB is good for performance but without any
further analysis. In Scatter-allgather bucket algorithms, data is
also split based on the number of the receivers.

6. RELATED WORK
In Section 3 we discussed the runtime of several data processing
tools and compared the collective communication within them.
Here we summarize the analysis and add other observations.
Collective communication algorithms are well studied in MPI
runtime although the Java implementations are less well
optimized. Each communication operation has several different
algorithms based on message size and network topology such as
linear array, mesh and hypercube [21]. Basic algorithms are
pipeline broadcast method [28], minimum-spanning tree method,
bidirectional exchange algorithm, and bucket algorithm [21].
Since these algorithms have different advantages, algorithm
combination (polymorphism) is widely used to improve the
communication performance [21]. Furthermore some solutions
also provide auto algorithm selection [34].

Other papers have a different focus than our work. Some of them
only study small data transfers up to megabytes level [21] [35]
while some solutions rely on special hardware support [23]. The
data type is typically vectors and arrays whereas we are
considering objects. Many algorithms such as “allgather” operate
under the assumption that each node has the same amount of data
[21] [23], which is uncommon in a MapReduce model. As a
result, although shuffling can be viewed as a Reduce-Scatter
operation, its algorithm cannot be applied directly on shuffling
since the data amount generated by each Map task is unbalanced
in most MapReduce applications.

There are several solutions to improve the performance of data
transfers in MapReduce. Orchestra [27] is one such global control
service and architecture to manage intra- and inter-transfer
activities in the Spark system, where we gave some test results in
section 3.1. It not only provides control, scheduling and
monitoring on data transfers, but also optimization on
broadcasting and shuffling. For broadcasting, it uses an optimized
BitTorrent-like protocol called Cornet, augmented by topology
detection. For shuffling, Orchestra employs weighted shuffle
scheduling (WSS) to set the weight of the flow as proportional to
the data size; we noted earlier this optimization is not relevant in
our application.

Hadoop-A [36] provides a pipeline to overlap the shuffle, merge
and reduce phases and uses an alternative Infiniband RDMA
based protocol to leverage RDMA inter-connects for fast data
shuffling. MATE-EC2 [37] is a MapReduce like framework for
EC2 [38] and S3 [39]. For shuffling, it uses local aggregation and
global aggregation. This strategy is similar to what we did in
Twister but as it focuses on EC2 cloud environment, the design
and implementation are totally different. iMapReduce [40] and
iHadoop [41] are iterative Mapreduce frameworks that optimize
the data transfers between iterations asynchronously, where there
exists no barrier between two iterations. However, this design
doesn’t work for applications which need broadcast data in every
iteration because all the outputs from Reduce tasks are needed for
every Map task.

Microsoft Daytona [45] is a recently announced iterative
MapReduce runtime developed by Microsoft Research for

Microsoft Azure Cloud Platform that builds on some of the ideas
of the earlier Twister system. Currently Excel DataScope is
presented as an application of Daytona. Users can upload data in
their Excel spreadsheet to the DataScope service or select a
dataset already in the cloud, then select an analysis model from
the Excel DataScope research ribbon to run against the selected
data. The results can be returned to the Excel client or remain in
the cloud for further processing and visualization. Daytona is
available as a “Community Technology Preview” for academic
and non-commercial use.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated the first steps towards a high
performance Map-Collective programming model and runtime
using the requirements of a large scale clustering algorithm. We
replaced broker-based methods and designed and implemented a
new topology-aware chain broadcasting algorithm. Compared
with the simple broadcast algorithm, the new algorithm reduces
the time burden of broadcasting by at least a factor of 120 over
125 nodes. It gives 20% better performance than best C/C++ MPI
methods (and four times faster than Java MPJ) and a factor of 5
improvements over non-optimized (for topology) pipeline-based
method over 150 nodes. The shuffling cost after using local
aggregation is only 10% of the original time. In particular,
collective communication has significantly improved the
intermediate data transfer for large scale image clustering
problems.

In future work, we will improve the Kmeans algorithm [8][9][42]
and apply the Map-Collective framework to other iterative
applications [43] including Multi-Dimensional Scaling where the
allgather primitive is needed. We will also extend current work to
include an allreduce collective that is an alternative approach to
Kmeans. The resultant Map-Collective model that captures the
full range of traditional MapReduce and MPI features will be
evaluated on Azure [22] as well as IaaS/HPC environments. We
will integrate Twister with Infiniband RDMA based protocol and
compare various communication scenarios. Initial observation
suggests a different performance profile from that of the Ethernet
network evaluated here. Furthermore we will integrate topology
and link speed detection services and utilize services such as
ZooKeeper [44] to provide coordination and fault detection.

8. ACKNOWLEDGEMENT
The authors would like to thank Prof. David Crandall at Indiana
University for providing the social image data. This work is in
part supported by National Science Foundation Grant OCI-
1149432

9. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.
[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. Sixth Symp. on Operating System Design and
Implementation, pp. 137–150, December 2004.

[3] Dubey, Pradeep. A Platform 2015 Model: Recognition, Mining and
Synthesis Moves Computers to the Era of Tera. Compute-Intensive,
Highly Parallel Applications and Uses. Volume 09 Issue 02. ISSN
1535-864X. February 2005.

[4] Jaliya.Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,
Seung-Hee Bae, Judy Qiu, Geoffrey Fox. Twister: A Runtime for
iterative MapReduce, in Proceedings of the First International
Workshop on MapReduce and its Applications of ACM HPDC 2010
conference June 20-25, 2010. 2010, ACM: Chicago, Illinois.

http://hadoop.apache.org/

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster Computing with Working Sets. In HotCloud, 2010.

[6] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.
Haloop: Efficient Iterative Data Processing on Large Clusters.
Proceedings of the VLDB Endowment, 3, September 2010.

[7] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, A. Ng, Large Scale
Distributed Deep Networks, in proceedings of NIPS 2012: Neural
Information Processing Systems Conference.

[8] Judy Qiu, Bingjing Zhang, "Mammoth Data in the Cloud: Clustering
Social Images", to appear in the book on "Clouds, Grids and Big
Data" to be published in the series "Advances in Parallel
Computing" by IOS Press publishers, 2013. Book Editors: Charlie
Catlett, Wolfgang Gentzsch, Lucio Grandinetti, Gerhard Joubert, and
Jose Vasquez-Polett

[9] Charles Elkan, Using the triangle inequality to accelerate k-means, in
TWENTIETH INTERNATIONAL CONFERENCE ON MACHINE
LEARNING, Tom Fawcett and Nina Mishra, Editors. August 21-24,
2003. Washington DC. pages. 147-153.

[10] MPI Forum, “MPI: A Message Passing Interface,” in Proceedings of
Supercomputing, 1993.

[11] PolarGrid. http://polargrid.org/.
[12] N. Dalal, B. Triggs. Histograms of Oriented Gradients for Human

Detection. CVPR. 2005
[13] J. B. MacQueen, Some Methods for Classification and Analysis of

MultiVariate Observations, in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability. vol. 1, L. M.
L. Cam and J. Neyman, Eds., ed: University of California Press,
1967.

[14] Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, Geoffrey Fox,
Scott Beason, Jong Youl Choi, Yang Ruan, Seung-Hee Bae, and Hui
Li, Applicability of DryadLINQ to Scientific Applications. January
30, 2010, Community Grids Laboratory, Indiana University.

[15] S. Plimpton, K. Devine, MapReduce in MPI for Large-scale Graph
Algorithms, Parallel Computing, 2011

[16] X. Lu, B. Wang, L. Zha, and Z. Xu, Can MPI Benefit Hadoop and
MapReduce Applications? International Conference on Parallel
Processing Workshops, 2011

[17] T. Hoefler, A. Lumsdaine1, J. Dongarra, Towards Efficient
MapReduce Using MPI, Proceedings of the 16th European
PVM/MPI Users' Group Meeting, 2009

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The Hadoop
Distributed File System. IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010

[19] HDF5, http://www.hdfgroup.org/HDF5/whatishdf5.html
[20] NetCDF, http://www.unidata.ucar.edu/software/netcdf/
[21] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn.

Collective communication: theory, practice, and experience.
Concurrency and Computation: Practice and Experience, 2007, vol
19, pp. 1749–1783.

[22] Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, and Judy Qiu,
"Scalable Parallel Computing on Clouds Using Twister4Azure
Iterative MapReduce ", Future Generation Computer Systems vol.
29, pp. 1035-1048, 2013.

[23] Nikhil Jain, Yogish Sabharwal, Optimal Bucket Algorithms for
Large MPI Collectives on Torus Interconnects, ICS '10 Proceedings
of the 24th ACM International Conference on Supercomputing, 2010

[24] Infiniband Trade Association. http://www.infinibandta.org.

[25] T. Hoefler, C. Siebert, and W. Rehm. Infiniband Multicast A
practically constant-time MPI Broadcast Algorithm for large-scale
InfiniBand Clusters with Multicast. Proceedings of the 21st IEEE
International Parallel & Distributed Processing Symposium. 2007

[26] BitTorrent. http://www.bittorrent.com.
[27] Mosharaf Chowdhury et al. Managing Data Transfers in Computer

Clusters with Orchestra, Proceedings of the ACM SIGCOMM 2011
conference, 2011

[28] Watts J, van de Geijn R. A pipelined broadcast for multidimensional
meshes. Parallel Processing Letters, 1995, vol.5, pp. 281–292.

[29] Charles E. Leiserson, Fat-trees: universal networks for hardware
efficient supercomputing, IEEE Transactions on Computers, vol. 34 ,
no. 10, Oct. 1985, pp. 892-901.

[30] Radhika Niranjan Mysore, PortLand: A Scalable Fault-Tolerant
Layer 2 Data Center Network Fabric, SIGCOMM, 2009

[31] S. Kumar, Y. Sabharwal, R. Garg, P. Heidelberger, Optimization of
All-to-all Communication on the Blue Gene/L Supercomputer, 37th
International Conference on Parallel Processing, 2008

[32] Open MPI, http://www.open-mpi.org
[33] MPJ Express, http://mpj-express.org/
[34] H. Mamadou T. Nanri, and K. Murakami. A Robust Dynamic

Optimization for MPI AlltoAll Operation, IPDPS’09 Proceedings of
IEEE International Symposium on Parallel & Distributed Processing,
2009

[35] P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk. Toward
message passing for a million processes: Characterizing MPI on a
massive scale Blue Gene/P. Computer Science - Research and
Development, vol. 24, pp. 11-19, 2009.

[36] Yangdong Wang et al. Hadoop Acceleration Through Network
Levitated Merge, International Conference for High Performance
Computing, Networking, Storage and Analysis (SC'11), 2011

[37] T. Bicer, D. Chiu, and G. Agrawal. MATE-EC2: A Middleware for
Processing Data with AWS, Proceedings of the 2011 ACM
international workshop on Many task computing on grids and
supercomputers, 2011

[38] EC2. http://aws.amazon.com/ec2/.
[39] S3. http://aws.amazon.com/s3/.
[40] Y. Zhang, Q. Gao, L. Gao, and C. Wang. imapreduce: A distributed

computing framework for iterative computation. In DataCloud '11,
2011.

[41] E. Elnikety, T. Elsayed, and H. Ramadan. iHadoop: Asynchronous
Iterations for MapReduce, Proceedings of the 3rd IEE International
conference on Cloud Computing Technology and Science
(CloudCom), 2011

[42] Jonathan Drake and Greg Hamerly, Accelerated k-means with
adaptive distance bounds, in 5th NIPS Workshop on Optimization
for Machine Learning. Dec 8th, 2012. Lake Tahoe, Nevada, USA.

[43] Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam Hughes,
Geoffrey Fox. Applying Twister to Scientific Applications,
Proceedings of the 2nd IEE International conference on Cloud
Computing Technology and Science (CloudCom), 2010

[44] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ZooKeeper: wait-
free coordination for internet-scale systems, in USENIXATC’10:
USENIX conference on USENIX annual technical conference, 2010,
pp. 11–11.

[45] Microsoft Daytona. Retrieved Feb 1, 2012
http://research.microsoft.com/en-us/projects/daytona/.

http://polargrid.org/polargrid
http://www.hdfgroup.org/HDF5/whatishdf5.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.infinibandta.org/
http://www.bittorrent.com/
http://www.open-mpi.org/
http://mpj-express.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://research.microsoft.com/en-us/projects/daytona/

	1. INTRODUCTION
	2. IMAGE CLUSTERING APPLICATION
	3.1 Runtime Models
	3.2 Collective Communication and Intermediate Data Handling

	3. BROADCAST COLLECTIVE COMMUNICATON
	4.1 Chain Broadcasting Algorithm
	4.2 Rack-Awareness
	4.3 Buffer Management
	4.4 Object Serialization and De-serialization
	4.5 Fault Tolerance
	4.6 Implementation

	4. LOCAL AGGREGATION IN MAP STAGE
	5. Experiments
	6.1 IU PolarGrid Cluster
	6.2 Broadcasting
	6.3 Shuffling and Local Aggregation
	6.4 Image Clustering Application
	6.5 Analysis of Spark Broadcasting

	6. RELATED WORK
	7. CONCLUSIONS AND FUTURE WORK
	8. ACKNOWLEDGEMENT
	9. REFERENCES

