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Abstract

Systems for modern applications require dynamic computing resources for various workload with a
different type of datasets and a collection of software work together to complete tasks on IaaS, PaasS,
SaaS or FaaS. Building a cluster of virtual machines is inevitable to accelerate computation speed for
these applications but there are challenging tasks to deploy, configure and manage systems in a virtu-
alized environment or high performance computing (HPC). DevOps tools provide automated software
deployment and continuous integration, yet computing environments and resources for applications need
to be prepared manually by system administrator and application developer because of dependency hell.
Template-based infrastructure provisioning permits a repeatable build of a virtual system but the ex-
ecution of applications is separated from the system built which has no trace of workloads. In this
dissertation, we combine these two approaches to fully automate from preparing environments to run-
ning workload of applications in a structured way which results in building software defined sub systems
(SDS) with scripting for automated deployment.

Linux container technologies are introduced to ensure reproducibility using container images stored
in a union filesystem and ”off the shelf” software deployment is offered to automate building an equiv-
alent software environment across various platforms. Compatibility with HPC is examined regarding to
deploying software stacks as well as cloud computing therefore compute environments created by linux
containers are provided in a user space without the system administrative effort. In addition, special
application domains i.e. big data applications with NIST projects and bioinformatics are explored to
demonstrate practical experiences of applying automated software deployments with the philosophy of
software defined systems.

Keywords: Automation, Reproducibility, Software Defined Systems, Big Data, Infrastructure Pro-
visioning, Template Deployment, DevOPs, Linux Containers



1 Introduction

From Infrastructure-as-a-Service to Functions-as-a-Service, many efforts have been made to provide com-
puting resources in virtualized environments but with less complication of building infrastructure and
preparing environments. Lightweight linux containers are widely adopted in supporting interdisciplinary
field of research and collaboration because of its kernel level of an isolated environment. IaaS is a still
best approach to operate fine-grained resource provisioning regarding to CPU, memory, storage and net-
work. This thesis will explore the rapid evolution of virtualization technologies from IaaS to serverless
computing with container technologies to find optimized configuration of systems with a general soft-
ware deployment. The next generation system must utilize DevOps tools for deploying software stacks
on a cluster of virtual machines and infrastructure provisioning for supporting various applications. In
recent years, building big data clusters have become an inevitable task for performing analysis with the
increased computational requirements for large datasets and the anticipated systems will be perfect for
these situations to every dimension of infrastructure provisioning and software deployment.

Supporting big data analytics is more difficult for a few reasons: (1) big data applications run with
large datasets and a collection of software, (2) building and managing big data deployments on clusters
require expertise of infrastructure and (3) Apache Hadoop based big data software stacks are not suitable
for HPC. In an effort to resolve the first two issues, public datasets and data warehouse on the cloud have
offered to ensure instant data access with SQL support and enterprise big data solutions have hosted
by cloud providers e.g. Amazon, Google, and Microsoft to save time on deploying multiple software
stacks without facing installation errors. These services, however, are only available to their customers
and make hard to swtich to another when applications and pipelines are built on top of the services.
Pre-developed infrastructure for big data stacks are only suitable for particular use cases and are unable
to customize or re-define by users. There are efforts to simplify a deployment with a specification such
as automated deployment engines using TOSCA (Wettinger, Breitenbiicher, and Leymann, 2015), but
they do not integrate multiple clouds with a cluster deployment or a workload execution. The bigdata
deployment on clusters require more than single software to install and configure with different roles i.e.
masters and workers. If it is built on virtualized resources, scaling up or down is necessary to maximize
resource utilization but with exceptional performance.

These issues can be resolved using a template deployments for infrastructure and software which uses
YAML or JSON documents to describe installing tools and allocating resources. For example, Amazon
OpsWorks uses Chef to deploy software stacks and Cloudformation uses YAML document to deploy
Amazon resources. Similarly, Microsoft Resource Manager Templates uses JSON document to deploy
Azure resources and Google Cloud deployment Manager uses python or Jinja2 templating language
to deploy Google Cloud platform resources. OpenStack heat is originated from AWS Cloudformation
to deploy resources but extended with the integration among openstack services e.g. Telemetry for
autoscaling. These templates have been used for infrastructure deployment and software installation
with input parameters which enables repeatable provisioning on virtual environments. We extend the
use of a template with workload execution recording to track workflow steps and replicate results and also
a role based deployment for building clusters. This will be beneficial to share scientific pipelines which
typically contain complicated and long-running processes. Our approach is to record status and results
of components in the workflow while it is running and store the execution information in templates for
later use. This allow users to re-run the workflow on different systems but start from where the workflow
stopped without executing whole processes again.

This proposal consists of the following sections. First, background introduces basics of a template
deployment with big data software stacks, binary containers for hpc, template use cases for public clouds
and NIST big data projects. Next, the design section provides a prototype of a template deployment
and checkpoint/restart in user space (CRIU) regards to big data software stacks with clusters. The
implementation section demonstrates plans to apply the big data template deployments towards clouds
and HPC, such as amazon, azure, openstack, google compute and Slurm with integrated specifications.
The schedule section provides to-do lists with estimated timelines to be completed. Last, summary
section outlines this dissertation.



1.1 Thesis Statement

Software defined systems with DevOps and Template infrastructure provisioning is an effective way of
enabling big data software stacks on the cloud and hpc with container technologies.



2 Background

2.1 Software Deployment for dynamic computing environments

Software development has evolved with rich libraries and building a new computing environment (or
execution environment) requires set of packages to be successfully installed with minimal efforts. The
environment preparation on different infrastructure and platforms is a challenging task because each
preparation have individual instructions which build a similar environment, not identical environment.
Traditional method of software deployment is using shell scripts to define installation steps with a system
package manager command such as apt, yum, dpkg, dnf and make but it is not suitable to deal with large
number of packages actively updated and added to community in a universal way. Python Package Index
(PyPI) has almost 95,490 packages (as of 12/26/2016) with 40+ daily new packages and github.com
where most software packages, libraries and tools are stored has 5,776,767 repositories available with
about 20,000 daily added repositories. DevOps tools i.e. Configuration management software supports
automated installation with repeatable executions and better error handling compared to bash scripts
but there is no industry standards for script formats and executions. Puppet, Ansible, Chef, CFEngine
and Salt provide community contributed repositories to automate software installation, for example,
Ansible Galaxy has 9329 roles available, Chef Supermarket has 3,135 cookbooks available although there
are many duplicates. We call this is (automated) software deployment and building dynamic computing
environments on virtual clusters is the main objective of this dissertation. Software defined systems (or
virtual clusters) has discussed (Fox, 2013) to connect distributed big data and computing resources of
Cloud and HPC, which will result in developing a suite of software deployment tools at scale. Note that
this effort is mainly inspired by the previous research activities (Fox, Qiu, and Jha, 2014; Qiu et al.,
2014; Fox and Chang, 2014; Fox et al., 2015; Fox et al., 2015; Fox et al., 2016).

2.2 Template

A template has been used to describe a deployment of software packages and infrastructure on virtual
environments across multiple cloud providers because of its simple instructions as well as content share-
ability. YAML (superset of JSON) is a popular language to serialize data delivery especially as for
configuration files and object persistence along with the template deployment. As an example of infras-
tructure deployments, Amazon Cloudformation, a template deployment service, uses YAML or JSON
specification to describe a collection of Amazon virtual resources, Google Compute Cloud uses YAML
with Jinja2 or Python languages to define a set of google compute resources whereas Microsoft Azure
Resource Manager uses JSON to deploy Azure resources and Topology and Orchestration Specification
for Cloud Applications (TOSCA) uses XML (Wettinger, Breitenbiicher, and Leymann, 2014) to define a
topology and a relationship. Saltstack and Ansible, a software deployment tool written in Python, use
YAML to manage configuration and software installation from instructions defined in YAML text files.

Listing 1: AWS CloudFormation Example

Resources:
EC2Instance:
Type: AWS::EC2::Instance
Properties:
InstanceType:
Ref: InstanceType
SecurityGroups:
- Ref: InstanceSecurityGroup
KeyName:
Ref: KeyName

The code example in Listing 1 is a plain text to deploy a Amazon EC2 instance written in a YAML
format which includes a nested data structure by indentations and key value pairs for lists (starts with
dash) and dictionaries.

Listing 2: Ansible Example



— hosts: opencv

tasks:
- name: compiler package
apt: name=build —essential state=present update_cache=yes

Ansible, automation tool, uses YAML syntax with Jinja2 template to describe instructions of software
installation and the code example in Listing 2 shows a code snippet of Ubuntu’s APT (advanced packaging
tool) installing build-essential Debian package during the OpenCV software installation.

There are several reasons to use a template for a deployment. First, installing software and building
infrastructure typically demand lots of commands to run and additional configurations to setup and a
template is suitable for these tasks with its data structures using key-value pairs, lists and dictionaries to
contain all instructions to reproduce a same environment and to replicate an identical software installation
on different locations at another time. In addition, with the advent of devops, a template deployment
enables cooperation between a template developer and a template operator because a complicated set of
resources and services is simplified by a single template file and delivered to an operator as an automated
means of provisioning a same environment. Moreover, YAML or JSON is a simple text format for storing
data which is easy to share and modify with anyone who interested in a template. There are still plenty
of benefits that we can find when a template deployment is used.

Big Data applications typically require efforts on deploying all of the software prerequisites and
preparing necessary compute resources. A template deployment reduced these efforts by offering an
automated management on both tasks; software deployment and infrastructure provisioning, therefore
we can focus on big data applications to develop.

The concept of serverless computing also applies to deploy applications with templates e.g. Listing 1.
For instance, Amazon serverless compute, AWS Lambda, invokes serverless application code (also called
function) based on the description of the template but uses a specific model e.g. Listing 3 for components
of serverless applications. In detail, there is a main function (Handler), runtime environment (Runtime),
and an actual code in a compressed format (CordUri).

Listing 3: AWS Serverless Application Model (SAM) Example

AWSTemplateFormatVersion: 22010-09-09"°
Transform: ’>AWS::Serverless -2016-10-31"
Resources:
MyFunction:
Type: AWS::Serverless::Function’
Properties:
Handler: hello_python . handler
Runtime: python2 .7
CodeUri: ’s3://my-bucket/function.zip’

2.3 Container technologies

Container technology has brought a lightweight virtualization with a Linux kernel support to enable
a portable and reproducible environment across laptops and HPC systems. Container runtime toolkit
such as Docker (Merkel, 2014), rkt (rkt, 2016) and LXD (Ixd, 2016) has been offered since 2014 which
uses an image file to initiate a container including necessary software packages and libraries without an
hypervisor which creates an isolated environment using a virtual instance but with an isolated names-
pace on a same host operating system using the Linux kernel features such as namespaces, cgroups,
seccomp, chroot and apparmor. Recent research (Felter et al., 2015) shows that containers outperform
traditional virtual machine deployments yet running containers on HPC systems is still an undeveloped
area. Shifter (Jacobsen and Canon, 2015) and Singularity (Kurtzer, 2016) have introduced to support
containers on HPC with a portability and MPI support along with docker images. These efforts will
be beneficial to scientific applications to conduct CPU or GPU intensive computations with easy access
of container images. For example, a neuroimaging pipelines, BIDS Apps (Gorgolewski et al., 2016), is
applied to HPCs using Singularity with existing 20 BIDS application images and Apache Spark on HPC



Cray systems (Chaimov et al., 2016) is demonstrated by National Energy Research Scientific Computing
Center (NERSC) using shifter with a performance data of big data benchmark. Both researches indi-
cate that scientific and big data workloads are supported by container technologies on HPC systems for
reproducibility and portability.

Listing 4: Dockerfile Example
FROM ubuntu:14.04

MAINTAINER Hyungro Lee <lee212@indiana .edu>

RUN apt—get update && apt—get install —y build—essential

Dockerfile uses a custom template to describe installation steps of building docker images in a bash like
simple format. There are certain directives to indicate particular objective of the commands, for example,
FROM indicates a base image to use and RUN indicates actual commands to run.

2.4 Supporting scientific applications

With a rapid increase in the size of data sets and complexity of applications, research community considers
accessibility, reproducibility, resource and data sharing (Grillner et al., 2016) on HPC systems and cloud
computing to process large data sets with parallel and distributed frameworks on a set of compute nodes.
Container technologies are now emerged (Hale et al., 2016) to enable large scale analysis with a minimum
hassle on software deployments and infrastructure provisioning yet there are not many tools available
to fully engage scientific application on containers efficiently. A small number of container images for
scientific applications currently exist and most of the images are dedicated for a standalone mode which
is not suitable for processing large data sets with serious computational workloads. Cluster deployments
using containers are needed for big data applications which provide significant speedups with parallel job
executions in either embarrassingly parallel or message passing interface. A number of scientific pipelines
also require the support from the containers to enable reproducibility (Boettiger, 2015; Leipzig, 2016) in
different platforms because most scientific pipelines have dependency issues from multiple software even
in HPC systems with containers. Listing 5 shows a BLAST tool described by the Common Workflow
Language Specification (CWL; https://github.com/common-workflow-language) which is for running
a tool on a shared platform including cloud computing and Docker.

Listing 5: Common Workflow Language Specication (CWL) Example

cwlVersion: v1.0

class: CommandLineTool

requirements:

— $import: envvar—global .yml

— class: InlineJavascriptRequirement
— class: ShellCommandRequirement

— class: DockerRequirement

— $import: blast —docker .yml

inputs:
db:
type: String
inputBinding:

position: 1
doc: BLAST database name

outputs:
output:
type: File
outputBinding:



glob: $(inputs.out)

baseCommand: blastn



3 Discussion

3.1 Problem: Ansible Roles in Building Compute Environments

Building compute environments needs to ensure reproducibility and constant deployment over time (Gil
et al., 2007; Goodman et al., 2014). Most applications these days run with dependencies and setting up
compute environments for these applications require to install exact version of software and configure
systems with same options. Ansible is a DevOps tool and one of the main features is software deployment
using a structured format, YAML syntax. Writing Ansible code is to describe action items in achieving
desired end state, typically through an independent single unit. Ansible offers self-contained abstractions,
named Roles, by assembling necessary variables, files and tasks in a single directory and an individual
assignment (e.g., installing software A, configuring system B) is described as a role. Compute environ-
ments are usually supplied with several software packages and libraries and selectively combined roles
conduct a software deployment where new systems require environments with needed software packages
and libraries installed and configured. Although the comprehensive roles have instructions stacked with
tasks to successfully finish a software deployment with dependencies, the execution of applications still
need to be verified. In consequence, to preserve identical results from the re-execution of applications, it
is necessary to determine whether environments are fit for the original applications. In certain situations,
Ansible fails in building same environments due to following reasons. First, a variety of operating
systems and diverse source of packages are not able to construct equivalent environments
across different platforms. According to the Gnu/linux distribution timeline 12.10 (Lundqvist and
Rodic, 2013), 480 linux distributions exist and each distribution has more than ten thousands packages
e.g. Ubuntu Xenial 16.04 has 69154 and Debian Jessie 8 has 57062. Many Unix-like variant systems offer
universal package manager e.g. apt on Debian, yum on CentOS, dnf on Fedora and pkg on FreeBSD
to ease software installation, upgrading or removal through a central repository package (See details
in Table 1). Ansible Conditionals can handle these multiple package managers with different package
names e.g. Apache 2 is listed in RedHat as "httpd’ and in Debian as ’apache2’ (see example Listing 6)
but version differences are not considered. Table 2 shows that each distribution has different version of
default packages therefore ansible roles may not install same version of packages when it is executed on
various distributions. While most software packages are provided in official repositories, new and rapidly
changing software are typically available from third-party repositories where reliability and security are
not evaluated. In this situation, the re-executed results of application may differ across platforms al-
though same input data and instructions are given. There are many factors that can cause this problem
such as library versions, compiler options and dependencies but it is a difficult task to trace this low-level
information and fix. Second is conflicts (also known as software rot) among packages including
existing software and libraries. When Ansible runs towards target machines, software installation
may fail due to conflicts between packages or with already installed software and libraries. For exam-
ple, 25 CUDA packages for deep neural networks have dependencies and reverse dependencies (Figure 1).
This may abort further installation or upgrade because of incompatibility issues and missing built-in roll-
back in Ansible makes failure handling more difficult. Compile time is also inevitable which takes
a considerable amount of time to complete, especially when source code files are many and complex to
compile. There are several techniques to minimize the compilation build time but the optimization is
limited and CPU and memories are consumed by compilers.

Listing 6: Example of Apache Installation using Ansible Conditionals

— name: Apache Installation
yum: name=httpd state=installed
when: ansible_os_family == RedHat

— name: Apache Installation
apt: name=apache2 state=installed
when: ansible_os_family == Debian

Configuration drift, which creates divergent in server configuration makes building con-
sistent and identical environments difficult as time goes on. In practice, software version and
repository location may vary at install time although deployments are made from a same template. For
instance, software provides a downloadable link to the latest release without a specific version in the link



Name \ Distribution \ Package Type \ file format \ License \ Language

dpkg Debian Binary .deb GPL C, C++

apt Ubuntu Binary .deb GPL C++

Nix NixOS Binary .hix LGPL C++

RPM RedHat Binary .Ipm GPL C, Perl

dnf Fedora Binary .Ipm GPL v2 | C, Python

yum CentOS Binary .Ipm GPL v2 | Python

zypper | OpenSUSE | Binary .Ipm GPL C++

pacman | ArchLinux Binary .pkg.tar.xz | GPLv2 | C

pkg FreeBSD Binary txz GPL C

Table 1: Package managers of Linux Distributions
Package FreeBSD Debian Ubuntu 16.04 | CentOS Fedora 25 openSUSE Scientific NixOS 16.09
11-STABLE | 8.0 jessie LTS xenial 7-1611 42.2 Linux 7.3

abiword (3.0.2) 3.0.1 3.0.0 - - - 3.0.1 - 3.0.1
alsa-lib(1.1.3) 1.1.2 1.0.28 1.1.0 LL1 LL1 112 111 LL1
ati-driver(16.40) 14.301.1001
bash(4.4) 44 43 43 42 43 43 42 43
bind(9.11.0-P3) 9.11.0-P3 9.9.5 9.10.3-P4 9.9.4 9.10.4-P3 9.9.9 9.9.4 9.10.4-P3
chromium(57.0.2987.110) | 57.0.2987.110 | 41.0.2272.118 | — - - - - 53.0.2785.116
cups(2.2.2) 2.2.2 175 2.1.3 1.6.3 2.2.0 175 1.6.3 214
dhep(4.3.5) 4.3.5 4.3.1 4.3.3 4.2.5 4.3.5 433 425 434
e2fsprogs(1.43.4) 1.43.4 1.42.12 1.42.13 1.42.9 1.42.13 1.42.11 1.42.9 1.42.13
firefox(52.0.1) 52.0.2 31.6.0 45.0.2 45.4.0 49 49.0.2 45.4.0 49
freetype(2.7.1) 2.7.1 2.5.2 2.6.1 2.4.11 2.6.5 2.6.3 2.4.11 2.6.5
gce(6.3.0) 5.4.0 492 5.3.1 485 6.2.1 48 485 5.4.0
gimp(2.8.20) 2.8.18 2.8.14 - 2.8.16 - 2.8.18 2.8.16 2.8.18
glibe(2.25) - 2.19 2.23 2.17 2.24 2.22 2.17 2.24
gnome-shell(3.24.0) 3.18.4 3.14.2 - 3.14.4 3.22.1 3.20.4 3.14.4 3.20.3
gnucash(2.6.16) 2.6.15 2.6.4 - - - - - 2.4.15
gnumeric(1.12.34) 1.12.28 1.12.18 - - - - - 1.12.32
grub(2.00) 2 2.02beta2 2.02beta2 2.02beta 2.02beta, 2.02beta2 2.02beta, 0.97
gtk+(3.22.11) 3.18.8 3.14.5 3.18.9 3.14.13 3.22.2 3.20.9 3.14.13 3.20.9
httpd(2.4.25) 2.4.25 2.4.10 2.4.18 2.4.6 2.4.23 2.4.23 2.4.6 2.2.31
inkscape(0.92.1) 0.92.0 0.48.5 - 0.91 - 0.91 0.91 0.91
k3b(2.0.3a) 2.0.3 2.0.2 - 2.0.2 - 2.0.3 2.0.2 2.0.3a
kmod(24) - 18 22 20 23 17 20 23
libgnome(2.32.1) 2.32.0 2.32.1 - 2.32.1 - 2.32.1 2.32.1 2.32.1
libreoffice(5.3.1) 5.2.5 433 5.1.2 5.0.6 5.2.3 5.1.5.2 5.0.6 5.1.5
linux(4.10.6) 3.16.7 44 3.1 486 4427 3.1 4423

Table 2: 26 major package versions of eight Linux Distributions (BODNAR, 2013)
(where most common versions are Green and the latest version is Blue)
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Figure 1: Example of Package Dependencies for CUDA Libraries (1-level depth)
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Figure 2: Hadoop Comparison by Server Sizes
(where small has 1vCPU and 2GiB memories, medium has 2vCPUs and 4GiB, large has 4vCPUs and 8GiB
and xlarge has 8vCPUs and 16GiB. GC stands for a garbage collection.)

therefore an unique link is used to download. However, if a link to the latest release is defined in scripts to
download software package, an actual version of the release may not be same when software downloading
occurred at a different time, especially where frequent releases are applied to software development. This
will increase the likelihood of building another environments or getting failure of deployment.

In addition, provisioning proper computing resources for an application is not feasible
because virtual server provisioning by Ansible is not bound by the application deployment. Decoupled
infrastructure and applications may cause an execution failure of the applications or poor performance
due to insufficient compute resources. Applications deployed on virtual environments need to run with
particular computing resources such as GPU support, InfiniteBand options, and Solid State Drive (SSD)
with TRIM support to satisfy performance requirements and ensure same results. Figure 2 shows that a
linear performance increment from small to xlarge instance type for Hadoop and the garbage collection
overhead is observed in the small instance type. Ansible Roles are tailored to application deployment
but it is not for allocating proper hardware resources. Manual provisioning plans are necessary to
meet the application requirements. Vendor lock-in problem in deploying Ansible roles prevents
building a same environment across multiple cloud providers although Ansible provides multi-
cloud functions (called modules in Ansible) to favor portability and agility. For example, Amazon
CloudFormation, Google Compute Instance Templates, Microsoft Azure Templates and OpenStack Heat
have an individual specification that defines properties and resources of the infrastructure. Inter-cloud
standard specification needs to be defined, thereby building a similar environment with vendor free
templates. Software deployment using Ansible may not work in the HPC clusters due to the
restriction of root or superuser privileges which Ansible invokes package managers e.g. apt-
get, yum, dnf or pkg with sudo command. As a workaround, many HPC systems provide a user
environment by modules, the software environment management, or virtualenv, the isolated directory
for Python or RVM for Ruby but system software packages still need admin privileges to setup required
libraries and software globally.

The following approaches are suggested to address these issues: integration Ansible with Linux Con-
tainer, performance roles with the best server size, application-centric deployment, deployment optimiza-
tion with package dependency graph, building environments on HPC with containers, and code analysis
for preparing domain specific dependencies.

3.1.1 Approach: Containerizing Software Deployment

Container image comprises a stack of filesystem layers to build compute environments at a operating-
system-level virtualization. Docker, for example, creates a container image by stacking up layers of
containers to represent a root filesystem when Docker launches an instance of the image. Therefore
the required software, libraries and configurations are preserved like virtual machine images but in a
lighter way. Union filesystem such as aufs or overlayF'S enables a single logical filesystem using merged
contents i.e. files and directories and no duplicates. Also, Docker takes the DevOps principal to provide
transparency of building images in a script i.e. Dockerfile, therefore the blue print of containers is
explained with actual commands to show what is inside of the image (Boettiger, 2015). If a custom
build is necessary for an improvement or a repair of a bug, this script is useful to update the image.
A container image provides an identical environment over time but new images need to be generated
manually when software updates or bug fixes are applied to images. Versioning images helps to choose an
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Figure 3: Creating Container Images from Ansible Roles

ee7...e%e (unionFS unique ID for nano)
bin
nano

rnano -—> nano

etc

nanorc

alternatives

+— editor -> /bin/nano
+— editor.1.gz -> /usr/share/man/manl/nano.l.gz

+— pico -> /bin/nano

»— pico.1l.gz —-> /usr/share/man/manl/nano.l.gz

Figure 4: Directory Tree for Nano Editor Program

specific image with changes made to environments. On the other hand, Ansible roles build environments
at the execution time which means that latest software updates and bug fixes are applied when it is being
run. Tasks in the roles which perform software installation and configuration simplify entire process of
building environments but preserving a same environment is not guaranteed unless specific versions of
all software packages are preserved. Continuous integration tools e.g. Travis or Jenkins are provided to
evaluate equivalence between two environments. We propose containerizing Ansible Roles to deliver
a same environment with deployed software packages via container images (Figure 3). The
use of container images has advantages such as consistency, simplicity and saving of storage due to a
stackable file system. For example, an individual image contains installed software files with a directory
structure (Nano Editor in Figure 4) and multiple images can be merged to build a final environment. In
addition, cloud-init, the initialization script of virtual machines can be invoked to run Ansible
roles thereby applying recent changes. The image of containers is stored and used for the container
runtime e.g. docker, and cloud-init is called after a booting process, in this case, Ansible roles will be
executed to accomplish particular tasks such as software update or bug fixes. This combination ensures
building equivalent compute environments with the latest security patches for vulnerable software, if any.
Snapshot images with versions are still viable to restore environments if the execution of applications
with recent changes is failed or irreproducible.

3.1.2 Approach: Deploying Best Performance Roles with Server Size Recommen-
dation

Paired roles and infrastructure provisioning contain a set of activities to fulfill a perspective in applica-
tion deployments of roles along with compute resources. In simple terms, hardware will be tailored to
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Provider Instance vCPUs Memory Network Storage Score - Sin- | Score - Multi

Type (Mbits/sec) Bandwidth gle

(MBs/sec)

aws t2.micro 1 cores 1.0 GB 300 62.5 2549 2541
aws t1.micro 1 cores 0.613 GB 200 62.5 1046 1325
aws t2.small 1 cores 2.0 GB 300 62.5 2477 2466
aws ml.small 1 cores 1.7 GB 300 62.5 771 763
aws t2.medium 2 cores 4.0 GB 300 62.5 2626 5129
aws m3.medium 1 cores 3.75 GB 300 62.5 1333 1299
aws ml.medium 1 cores 3.75 GB 300 62.5 1472 1467
aws c3.large 2 cores 3.75 GB 500 62.5 2527 3016
aws c4.]large 2 cores 3.75 GB 1000 62.5 3326 3911
aws t2.]large 2 cores 8.0 GB 300 62.5 2986 5676
aws cl.medium 2 cores 1.7 GB 300 62.5 3307
aws m4.large 2 cores 8.0 GB 1000 56.25 2869 3346
aws m3.large 2 cores 7.5 GB 300 62.5 2579 3034
aws r3.large 2 cores 15.25 GB 1000 62.5 2675 3143
aws ml.large 2 cores 7.5 GB 300 62.5 1592 3106
aws c3.xlarge 4 cores 7.5 GB 500 62.5 2866 6620
aws c4.xlarge 4 cores 7.5 GB 1000 93.75 3402 7807
aws m2.xlarge 2 cores 17.1 GB 300 62.5 4485 4485
aws m4.xlarge 4 cores 16.0 GB 1000 93.75 2772 6103
aws m3.xlarge 4 cores 15.0 GB 300 62.5 2237 4894
aws r3.xlarge 4 cores 30.5 GB 1000 62.5 2542 5958
aws ml.xlarge 4 cores 15.0 GB 300 62.5 1560 5428
aws c3.2xlarge 8 cores 15.0 GB 1000 125 2607 11327
aws c4.2xlarge 8 cores 15.0 GB 1000 125 3255 13408
aws m?2.2xlarge 4 cores 34.2 GB 300 62.5 6563

Table 3: Benchmark Score for AWS EC2 Instances by GeekBench

the system requirements of application deployments. Infrastructure provisioning is expected to deploy
virtual machines with suitable compute resources for the roles prior to the deployments therefore ex-
pectations for infrastructure and platform layers meet in terms of computing performance and resource
utilization as well as reproducibility (Santana-Perez and Pérez-Herndndez, 2015; Nekrutenko and Taylor,
2012). Templates (also called IaaC - Infrastructure as a Code) are the best fit to automate infrastruc-
ture provisioning in this context because templates written in JSON or YAML are easily programmable
in accordance with application deployments. Server types with preferred CPU cores, storage options,
and memory sizes are mainly considered to engage performance and utilization efficiently and additional
resources can be attached to satisfy individual needs regarding to building custom infrastructure. First
plan is pairing roles and infrastructure with a server size recommendation. Listings of infras-
tructure templates are provided to browse and the developers quickly find desired resource groups for the
application deployment. Listing 7 shows a preliminary model of the integration which eliminates details
of infrastructure provisioning but defines a minimal computing power to ensure expected performance for
the application. The roles for software A and B are deployable with the default infrastructure ”medium”
and other options are allowed to choose as an alternative. The hardware details are described in separate
templates with certain hardware components, supported providers and machine types accommodating
the requirements. The abstraction of infrastructure (Listing 8) aims to reduce vendor lock-in issues by
grouping items based on similar properties e.g. number of CPU cores, memory size or disk size and
provider templates (Listing 9) exist beneath it for actual provisioning and configuration. The next phase
is deploying roles through community developed infrastructure. For example, Microsoft Azure
QuickStart Templates provides more than 400 templates to build infrastructure and Simple Azure Python
library provides an interface to search relevant templates with a search keyword of software name or par-
ticular resource type. The last phase is offering an infrastructure by tool profiling (Chard et al.,
2016) or suggesting runtime environments with containers using automated infrastructure
provisioning (Yamato, 2016). To find an optimal computing performance from various cloud server
types, benchmark scores can be used as a requirement of server provisioning. For example, Amazon EC2
has 57 instance types with 13 sub-groups, Google Compute Engine provides 21 instance types with 4
sub-groups and Microsoft Azure offers 51 instance types with 7 sub groups (A, D, F, G, H, L, and N
types) with different combinations of CPUs, memories, storage and networks. CPU Benchmark score e.g
LINPACK, SPECInt, UnixBench, GeekBench, or CoreMark can be used instead of specifying a particular
server types when virtual instances are launched.
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Listing 7: Prototype of Infrastructure Provisioning with Benchmark Score(Table 3)

systems:
roles:
- software A
- software B
infrastructure:
cpu—performance:
- geekbench:=>5000
- medium

Listing 8: Medium Server Template for Multi Cloud Platforms

requirement:
- cpu: 2
- mem: 8gb
- disk: 20gb
provider:
default: aws
options:
- gce
- openstack
- azure
template:
aws: aws—medium . yml
gce: gce —medium . yml
openstack: openstack —medium . yml
azure: azure —medium.yml
machine_code:

aws:
- m4. large
gce:
- nl—-standard —2
azure:

- Standard_D2

- Standard_A5

- Standard_A2m_v2
openstack:

- ml. large

Listing 9: Server Provisioning on OpenStack Heat (openstack-medium.yml from Listing 8)

heat _template_version: 2013-05-23
...(omitted ) ...
resources:
scaling:
type: OS:Heat::ResourceGroup
properties:
resource_def:
type: OS:Nova:Server
properties:
flavor: { get_param: machine_code }

3.1.3 Approach: Application Centric Deployment

Ansible roles are designed to install, configure and manage a software package but applications need be
deployed by combining multiple ansible roles. This may require manual patches to fix conflicts from the
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Figure 5: Procedure Comparison between Traditional Deployment and App-Centric Deployment

merge or rewriting whole ansible roles are necessary to achieve an application deployment on various
platforms. Application-centric deployment (ACD) aims to build a compute environment focusing on
an application without dealing with details of infrastructure provisioning and software conflicts. ACD
describes input and output data of an application with its state rather than managing hardware specifi-
cations and software versions although requirements of them need to be declared for a deployment. The
actual execution and workload of an application is the most important in ACD, therefore application
efficiency is ensured with proper amount of computing resources e.g. number of virtual CPU cores, size
of memories and network bandwidth. There are certain benefits we can expect from ACD compared to
the traditional software-focused deployment e.g. Ansible :

e Agility: ACD abstracts underlying hardware requirements and infrastructure setups across differ-
ent cloud providers. A standardized instruction provides flexibility against various linux distribu-
tions.

e Cost Efficiency: Minimal resource underutilization is expected by suggesting proper server types
and adopting container technologies.

e Simplicity: Separation from preparing software and platforms allows application developers to
meet application requirements such as performance and resilience and avoid a such complexity.

The goal of this approach are reducing the problem of offering proper computing resources for an appli-
cation. The conceptual procedure is depicted in Figure 5.

3.1.4 Approach: Optimizing Software Deployment Using Package Dependency Map

Open source software packages have several dependencies especially if the packages are large and com-
plex. These dependencies are typically libraries and tools that are required for installing and running
an application. For example, web server software needs libraries for parsing, encoding, securing, and
visualizing as well as many other tasks of web services. Sometimes it is better to understand there are
possibilities of duplicates and conflicts among software dependencies. Building dependency graph may
offer efficiencies in deploying software packages by extracting necessary libraries from import modules
of the source code along with the package metadata e.g. pom.xml and setup.py and descriptions e.g.
README. This approach will provide a giant structural view of the relation between software, depen-
dencies, description and relevant data. Visualization is not a main purpose of this approach, collecting
statistical data of dependency information is more emphasized to highlight dependencies with usage and
relevance according to functionality of applications.

16



TensorFl

w (Software)

Machine ng (Subject)

BEGAN - Boundary Equilibrium Ge ive Adversarial Networks (Article

Figure 6: Dependency Map Example for Tensorflow Implementation of "BEGAN: Boundary Equilibrium
Generative Adversarial Networks” (Berthelot, Schumm, and Metz, 2017)

/ Target system
Permission: System wide installation of Checkp Dealing with
Ansible Roles Admin - packages oint/r - Workload failure
Privileges = Shared libraries estore _ Complex deployment
g Containers running in a user space
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3.1.5 Approach: Building Individual Environments on HPC using Unprivileged
Containers

From the user’s perspective, Ansible roles for software deployment on high performance computing (HPC)
systems is infeasible because administrative support (superuser privileges) is required to complete all tasks
defined in the roles such as installing shared libraries and handling dependencies in a shared space of a
multi-user system. The researches (Gamblin et al., 2015; Geimer, Hoste, and McLay, 2014; Devresse,
Delalondre, and Schiirmann, 2015) indicate the difficulty of software management on HPC due to this
reason and propose various tools to resolve such a hassle. Linux containers, with the benefits of a
union file system, i.e. Copy-on-write (COW) and a namespace isolation, allow users to have a personal
environment by a container image with required libraries and software installed, therefore the manual
effort of preparing compute environments on HPC also can be diminished (Kurtzer, 2016; Jacobsen
and Canon, 2015; Priedhorsky and Randles, 2016). In this approach, Ansible roles will be converted to
container scripts and then container runtime tools on HPC e.g. Singularity, Shifter and chroot import the
container images (generated from the scripts) to provide a same runtime environment on HPC as one on
other platforms. In addition to that, fault tolerance is supported for complex deployment and distributed
workload on HPC. Checkpoint/restore in a userspace (CRIU) is available for containers i.e. Docker to
preserve workload and prevent any loss from the failure in enormous systems. The template that
we described earlier for a software deployment will be expanded to capture the building
information of a container image on HPC and the conversion. Another benefit from this
approach is a portability in different platforms because all required libraries and programs are included
and retrieved from a container image running in a user space with unprivileged mode (See Figure 7).
The generalized abstraction on how to convert between ansible roles and container scripts will be defined
in the template specification therefore same functionality of the roles can be ensured through containers.
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3.1.6 Approach: Automated Dependency Manager for Domain Specific Software

The goal of this approach is preparing compute environments on the premises where domain-specific
applications run on Function as a Service (FaaS). Amazon Lambda, Google Functions, Microsoft Azure
Functions and IBM OpenWhisk offer an interface to run code without building servers but the sup-
ported languages are limited as Javascript, C, Python and Java and the policy of preparing development
environments is ’bring-your-own-environment’ (BYOE). In addition, automated infrastructure provi-
sioning for these services does not offer best performance because cost efficiency is mainly considered
by using inexpensive and less reliable server types e.g. AWS spot instances. To reduce complexity of
composing environments but with powerful computing resources, an analysis tool is introduced i.e. Sim-
ple Azure for Microsoft Azure Resource Manager Templates, in demonstrating a concept of automated
server provisioning with a choice of domain specific environments. Application deployment templates
contain dependency information to construct suitable environments and identify requirements of building
proper compute resources to present better performance in computation and data processing compared
to existing services e.g. Azure Functions. In Python, for example, module names (package) are defined
in source code regardless of internal or external modules. When a user submits code to run on FaaS, the
import functions are analyzed to obtain dependency information from the package templates where all
dependencies are described for the modules defined in the import (See Figure 8).
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4 Template Deployment and Orchestration

Template deployment is a means of installing software and building infrastructure by reading a file
written in a templating language such as YAML, JSON, Jinja2 or Python. The goal of a template
deployment is to offer easy installation, repeatable configuration, shareability of instructions for software
and infrastructure on various platforms and operating systems. A template engine or an invoke tool
is to read a template and run actions defined in a template towards target machines. Actions such
as installing software package and setting configurations are described in a template file using its own
syntax. For example, YAML uses spaces as indentation to describe a depth of a dataset along with a
dash as a list and a key-value pair with a colon as a dictionary and JSON uses a curly bracket to enclose
various data types such as number, string, boolean, list, dictionary and null. In a DevOps environment,
the separation between a template writing and an execution helps Continuous Integration (CI) because a
software developer writes deployment instructions in a template file while a system operations professional
executes the template as a cooperative effort. Ansible, SaltStack, Chef or Puppet is one of popular tools
to install software using its own templating language. Common features for those tools are installing and
configuring software based on definitions but with different strategies and frameworks. One observation
is that the choice of implementation languages for those tools influences the use of a template language.
The tools written by Python such as Ansible and SaltStack use YAML and Jinja which are friendly to
a Python language with its library support whereas the tools written by Ruby such as Chef and Puppet
use Embedded Ruby (ERB) templating language. In scientific community, a template has been used to
describe data and processes of pipelines and workflow because a template contains detailed information of
them in writing and assists sharing and connecting between different layers and tools. Parallel execution
on distributed environments is also supported in many tools yet enabling computations in a scalable
manner needs expertise to prepare and build the environments. We propose a template orchestration to
encourage scientists in using distributed compute resources from HPC and cloud computing systems in
which provisioning infrastructure is documented in a template and complicated pipelines and workflows
are packaged by container technologies for reproducibility.

4.1 Template deployment for Big Data Applications

Software installations and configurations for particular domains have become hard to maintain because
of an increased number of software packages and complexity of configurations between them to connect.
Template deployment for installing and provisioning systems across from a single machine to large num-
ber of compute nodes is proposed to achieve consistent and reliable software deployment and system
provisioning.

First, we plan to implement a deployment tool with default components for big data software such
as Apache Hadoop, Spark, Storm, Zookeeper, etc. therefore a software deployment can be achieved by
loading existing templates instead of starting from scratch. The software deployment intends to support
various linux distribution with different versions, therefore the software stacks are operational state in
many environments without a failure.

Listing 10: Template Deployment for Big Data

stacks:
- software A
- software B

Each item i.e. software indicates a single template file to look up deployment instructions. Depen-
dencies indicates that related items to complete a deployment and the environment variables are shared
while dependencies are deployed. If container image is available on the web, container image deployment
is expected using the URI location to save compile time.

Listing 11: Sample of software template

instruction:
- install package A
- download data B
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location:

<URI>
dependency:

- software A

- library B

environment_variables:
- HOMEDIR=/opt/software_a

Infrastructure deployment is provisioning of cloud computing which includes virtual machine images,
server types, network groups, etc. in preparation of virtual resources for the software stacks. Infrastruc-
ture deployment for multiple cloud platforms includes Microsoft Azure Resource Manager Templates,
Amazon CloudFormation Templates, and Google Compute Instance Templates. Each cloud provider
owns individual models for their services therefore a template of the deployment is solely executable in
each provider although similar infrastructure is necessary for the software stacks.

Listing 12: Support for cloud providers

infrastructure:
- default: aws
- options:
- aws
- gce
- azure
- openstack
aws:
services:
image:
- image A
- image B
- image B version 2
server:
- server type A
network:
- network interface a
- network ip address a

We plan to integrate container based deployments with popular tools such as Docker therefore im-
age based software deployment is also supported to enhance reproducibility and mobility on different
environments.

Listing 13: Template Deployment with Containers

format:
- default: docker
- options:
- docker
- ansible
- shell
- rkt

Template has been used to document instructions for particular tasks such as software installation
and configuration or infrastructure provisioning on cloud computing, however, shareability of templates
is not improved which requires for better productivity and reusability. We plan to design a template hub
to collect, share, search and reuse well written templates with a common language e.g. yaml or json,
therefore building software stacks and provisioning infrastructure both are repeatable in any place at any
time.

In addition, provenance data and process state will be reserved.
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4.2 Infrastructure Provisioning on Clouds

Infrastructure provisioning has supported with templates in many cloud platforms i.e. Amazon Cloudfor-
mation, Microsoft Azure Resource Manager, OpenStack Heat and Google Compute Instance Templates.
Infrastructure described in a template will be created for simple tasks running in a standalone machine
or multiple tasks in clusters.

4.2.1 Simple Azure - Python Library for Template Deployment on Windows Azure

Implementation of infrastructure provisioning is provided with Azure use case. Simple Azure is a Python
library for deploying Microsoft Azure Services using a Template. Your application is deployed on Mi-
crosoft Azure infrastructure by Azure Resource Manager (ARM) Templates which provides a way of
building environments for your software stacks on Microsoft Azure cloud platform. Simple Azure in-
cludes 407 community templates from Azure QuickStart Templates to deploy software and infrastructure
ranging from a simple linux VM deployment (i.e. 101-vm-simple-linux) to Azure Container Service clus-
ter with a DC/OS orchestrator (i.e. 101-acs-dcos). It supports to import, export, search, modify, review
and deploy these templates using the Simple Azure library and retrieve information about deployed
services in resource groups. Initial scripts or automation tools can be triggered after a completion of
deployements therefore your software stacks and applications are installed and configured to run your
jobs or start your services. Starting a single Linux VM with SSH key from Azure QuickStart Template
is described in listing 14:

Listing 14: Simple Azure

>>> from simpleazure import SimpleAzure
>>> saz = SimpleAzure ()

# aqst is for Azure QuickStart Templates
>>> vm_sshkey_template = saz.aqst.get_-template (’101—vm—sshkey ”)

# arm is for Azure Resource Manager

>>> saz.arm.set_template (vim_sshkey_template)

>>> saz.arm.set_parameter (”sshKeyData” , ”"ssh—rsa.AAAB... _hrlee@quickstart”)
>>> saz.arm.deploy ()

4.3 Semantics

Advances in big data ecosystem will require to connect scattered data sources, applications and software in
meaningful semantics. It is necessary to develop structured semantics as an effort of support in discovering
big data tools, datasets and applications all connected because semantics is more understandable to both
human and machine with a standard syntax for expressing contents in RDF (Resource Description
Framework) model or JSON-LD (Linked Data using JSON) (Labrinidis and Jagadish, 2012; Bizer et
al., 2012; Simmbhan et al., 2013). It also provides a guideline to construct big data software stacks to
community in which preparing development environments is complicated with newly introduced software
and datasets. This is particularly useful given the increasing number of tools, libraries and packages for
further development of big data software stacks. One example in the listing 15 shows two applications,
C++ Parser for MNIST Dataset and a Python package to convert IDX file format provided by Yann
LeCun’s dataset, are available for MNIST database of handwritten digits on github. There are couple of
tasks to implement semantics for template deployment:

1. collect big data software, applications, and datasets
2. produce JSON-LD documents

3. derive Rest API to search, list and register

4

. implement a library to explore documents about big data ecosystem
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Listing 15: Sample of linked data between dataset and software

"Q@context": "http://schema.org/",
"Qtype": "Dataset",
"distribution":
"workExample": [
{
"@type": "SoftwareSourceCode",
"description": "C++ Parser for MNIST Dataset",
"dateModified": "Sep 1, 2014",
"programminglanguage": "C++"
|
{
"Q@type": "SoftwareSourceCode",
files to and from IDX format",
"dateModified": "Sep 16, 2016",
"programminglLanguage": "Python"
}

"http://yann.lecun.com/exdb/mnist/",

"codeRepository": "https://github.com/ht4n/CPPMNISTParser",

"codeRepository": "https://github.com/ivanyu/idx2numpy",
"description": "A Python package which provides tools to

convert
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5 Container Technology

With the increased attention of Docker container software and reproducibility, the use of virtualization
has been moved from the hypervisor to a linux container technology which shares kernel features but in
a separated name space on a host machine with a near native performance (Felter et al., 2015). The
recent researches (Benedicic et al., 2016) indicate that the HPC community takes account of container
technologies to engage scientists in solving domain problems with less complication of deploying workflows
or pipelines on multiple nodes as new implementations have been introduced (Kurtzer, 2016; Jacobsen and
Canon, 2015; Priedhorsky and Randles, 2016). Container technology with HPC, however, is focused on
supporting compute-intensive applications i.e. Message Passing Interface (MPI) although many scientific
problems are evaluated with big data software and applications. Investigation on container technology
with big data ecosystem is necessary to nurture the data-intensive software development on HPC with a
rich set of data analysis applications.

Modern container software run with container images to create isolated user space based on pre-
configured environments. Authoring container image definition is a first step to prepare custom envi-
ronments via containers and to share with others. Dockerfile is a text file to create a docker container
image with instructions for package installation, command executions, and environment variable settings.
Definition File of Singularity also contains similar instructions to build container images. Application
Container Image (ACI) of CoreOS rkt is generated by a shell script and acbuild command line tool
but building container images is similar to docker. The main objective of using these container image
definitions (formats?) is to reveal user commands and settings explicitly therefore the development envi-
ronment can be shared easily and conversion between other platforms is doable. The initial goal of using
container technology in this dissertation is building a container-based big data ecosystem by offering a
template-based deployment for container images. It would also enable a concise and descriptive way
to launch complex and sophisticated scientific pipelines using existing container images or deployment
scripts. Performance tests are followed to demonstrate efficiency of the deployments with big data ap-
plications on modern container technologies. We desire to measure overhead introduced by container
software i.e. shifter, singularity on HPC environments with comparison of CPU, memory, filesystem, and
network usages.

Template based deployment is adopted in container technologies, for example, Singularity uses a
custom syntax, SpecFile to describe the creation of a container image with directives which are similar to
Dockerfile. Listing 16 shows an example of Caffe Deep Learning Framework Singularity image creation.

Listing 16: Singularity Example

DistType ”debian”
MirrorURL ”http://us.archive.ubuntu.com/ubuntu/”
OSVersion ”trusty”

Setup
Bootstrap

...(suppressed)...

RunCmd git clone —b master ——depth 1 https://github.com/BVLC/caffe.git
RunCmd sh —c¢ "cd_caffe && _mkdir_build &&._cd_build L&._.cmake —DCPUONLY=1....”
RunCmd sh —c ”cdocaffe/build &&._make _—j1”

RunCmd In —s /caffe /opt/caffe
RunScript python

5.1 Common Installed Packages

One of the benefits of using template deployment is that a list of installed software packages is included
in the instruction, therefore common packages are revealed for particular collections. Table 4 is an
example of debian packages described in Dockerfiles related to NIST collection and dpkg, debian package
command, has been used to collect package information.
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Name Description \ Dependencies \ Size (Kb) Priority
build- Informational list of build- | dpkg-dev, libc6-dev, | 20 (14464) optional
essential essential packages gce, g++, make
python-dev header files and a static li- | python, python2.7- | 45 (1024) optional
brary for Python (default) dev, libpython-dev
autoconf automatic configure script | m4, debianutils, perl 1890 (17956) optional
builder
software- manage the repositories that | python3-dbus, 184 (3125) optional
properties- you install software from | python-apt-common,
common (common) python3-software-
properties, girl.2-glib-
2.0, ca-certificates,
python3:any, python3-
gi, python3
python interactive high-level object- | libpython-stdlib, 630 (384) standard
oriented language (default | python2.7
version)
automake Tool for generating GNU | autoconf, autotools- | 1484 (2074) optional
Standards-compliant Make- | dev
files
zliblg-dev compression library - devel- | libc6-dev, zliblg 416 (12516) optional
opment
apt-utils package management related | libgecl, libapt-instl.7, | 688 (21070) important
utility programs libstde++6, apt,
libdb5.3, libc6, libapt-
pkg4.16
g++ GNU C++ compiler cpp, gee, g++-5, gee-5 | 16 (51922) optional
binutils GNU assembler, linker and | zliblg, libc6 12728 (10924) | optional
binary utilities
gce GNU C compiler cpp, gee-5 44 (22199) optional
python- Numerical Python adds a fast | python, python2.7:any, | 8667 (17873) optional
numpy array facility to the Python | libblas3,  liblapack3,
language libc6
nodejs evented I/O for V8 javascript | libssl1.0.0, libc6, lib- | 3043 (20625) | extra
stdc++6, zliblg, 1libv8-
3.14.5, libc-ares2
pkg-config manage compile and link flags | libglib2.0-0, dpkg-dev, | 140 (17322) optional
for libraries libc6
python- Python Imaging Library com- | python-pil, python:any | 45 (1248) optional
imaging patibility layer

Table 4: Top 15 Debian-based Packages used in Dockerfiles for the NIST collection on Github, size with

parenthesis indicates total size including dependency packages
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Figure 9: Accelerated Common Package Installation using Software Package Proxy
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Table 5: Cache Efficiency for Software Package Installation measured by apt-cacher-ng

5.2 Evaluation

As a part of dissertation, performance tests of container technologies with big data applications from
NIST Collection. There are six applications in the collection: Fingerprint Matching, Human and Face
Detection, Twitter Live Analysis, Data Warehousing, Healthcare Information, and Geospatial informa-
tion. Performance data on CPU, memory, storage and network will be measured on HPC and cloud
computing with container software i.e. docker, rkt, singularity and shifter.

Preloading common packages shows possible optimization for the template deployment according to
the figure 9. With a considerable reduce on network traffic for downloading packages, 10x speedup is
approximately observed over multiple access to Debian software package mirror sites. Statistics for the
cache reuse (Table 5) indicates that the most benefit of the speedup is gained from the cached packages.
In addition, standard deviation for download speed is higher in using remote mirrors than cached proxy
server in which network consistency and reliability are ensured with low standard deviation for download
speed.

5.3 Docker Terminologies

e aufs is Advanced multi-layered Unification FileSystem which implements a union mount for Linux
file systems

e Container is an isolated userspace created in operating-system-level virtualization
e COW Copy-On-Write is a resource management technique to share the original over multiple copies
e CRIU is a fault tolerant technique to provide checkpoint and restore in userspace

e Docker is an implementation of operating-system-level virtualization using kernel features and
union mount filesystems

e Dockerfile is a plain text file that contains instructions to build a new image, and Dockerfile is
similar to scripts but provides commands with Docker Directives

e Layer in a union mount filesystem, each layer is a change instructed by Dockerfile.

e overlayfs is a overlay filesystem which is the result over overlaying one filesystem on top of the
other, and overlayfs is supported in the upstream mainline Linux kernel
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6 Bioinformatics

Bioinformatics pipeline frameworks have used templating languages to describe workflow processes with
input and output parameters, for example, Common Workflow Language Specification (CWL)(cwl, 2016)
uses YAML syntax and JSON format parameter files to define workflow logics with its required tools
and parameters from command line interface (CLI). There are several implementations supporting the
CWL such as Rabix(Kaushik et al., 2016), Arvados(arv, 2016), Galaxy, Taverna and Kronos(Taghiyar
et al., 2016) to use templating languages in their workflow engines with ease accommodation of tool
dependencies. In our case, we have a plan to use templating language to enable parallel processing on
the cloud and HPC per independent component of workflows with expectation of better performance on
computation and higher resource utilization on shared resource pool.

A few efforts have been made (Lee et al., 2012; Chae et al., 2013; Lee et al., 2016) to apply bioin-
formatics systems to cloud computing and HPC. Template deployment for bioinformatics frameworks
would be developed with these work to extend existing tools with new technologies.
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7 Case Studies: NIST Big Data Projects

NIST Big Data Public Working Group (NBD-PWG) (Technology. et al., 2015; Fox and Chang, 2014)
reported 51 use cases across nine application domains including Government Operation, commercial,
Defense, Healthcare and Life Sciences, Deep Learning and Social Media, The Echosystem for Research,
Astronomy and Physics, Earth, Envionmental and Polar Science and Energy to understand Big Data
requirements and advance the development of big data framework. We ought to keep up the same effort
to support scientific community in regard to analyzing data with modern technologies and the part of
this dissertation is gathering more use cases and requirements by reviewing publicly available big data
applications.

7.1 Fingerprint Recognition

Fingerprint matching software (Flanagan, 2010; Flanagan, 2014) has been developed by National Institute
of Standards and Technology (NIST) with special databases to identify patterns of fingerprint. NIST
Biometric Image Software (NBIS) includes MINDTCT, a fingerprint minutiae detector and BOZORTH3,
a minutiae based fingerprint matching program to process biometric analysis. MINDTCT program
extracts the features of fingerprint such as ridge ending, bifurcation, and short ridge from the FBI’s
Wavelet Scalar Quantization (WSQ) images and BOZORTHS3 runs fingerprint matching algorithm with
the images generated by MINDTCT as part of fingerprint identification processing (Wegstein, 1982). In
this use case, Apache Spark runs fingerprint matching on the Hadoop cluster with NIST Fingerprint
Special Database 4 (Watson and Wilson, 1992) and stores results in HBase with the support of NoSQL
database, Apache Drill. Addtional dataset from FVC2004 can be used as well with 1440 fingerprint
impressions (Maio et al., 2004). Individual software represents a stack or a role in the context in which
a set of tasks to complete a software deployment is included. Suggested software stacks (roles) for
Fingerprint matching are:

e Apache Hadoop
e Apache Spark
e Apache HBase
Apache Drill

Scala

7.2 Human and Face Detection with OpenCV

Human and face detection have been studied during the last several years and models for them have
improved along with Histograms of Oriented Gradients (HOG) for Human Detection (Dalal and Triggs,
2005a). OpenCV is a Computer Vision library including the SVM classifier and the HOG object detector
for pedestrian detection and INRIA Person Dataset (Dalal and Triggs, 2005b) is one of popular samples
for both training and testing purposes. In this use case, Apache Spark on Mesos clusters are deployed
to train and apply detection models from OpenCV using Python API. Individual software represents a
stack or a role in this context in which a set of tasks to complete a software deployment is included.
Suggested software stacks (Roles) for human and face detection with OpenCV are:

e Apache Mesos

e Apache Spark

e OpenCV

e Zookeeper

e INRIA Person Dataset

e Python Analytics with HOG and Haar Cascades
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7.3 Twitter Live Analysis

Social messages generated by Twitter have been used with various applications such as opinion mining,
sentiment analysis (Pak and Paroubek, 2010), stock market prediction (Bollen, Mao, and Zeng, 2011),
and public opinion polling (Cody et al., 2016) with the support of natual language toolkits e.g. nltk (Bird,
2006), coreNLP (Manning et al., 2014) and deep learning systems (Kim, 2014). Services for streaming
data processing are important in this category. Apache Storm is widely used with the example of twitter
sentiment analysis, and Twitter Heron, Google Millwheel, LindkedIn Samza, and Facebook Puma, Swift,
and Stylus are available as well (Chen et al., 2016). Suggested software stacks (roles) for Twitter Live
Analysis are:

Apache Hadoop

Twitter Heron

e Apache Storm

Apache Flume
Natural Language Toolkit (NLTK)

7.4 Big Data Analytics for Healthcare Data and Health Informatics

Several attempts have been made to apply Big Data framework and analytics in health care with various
use cases. Medical image processing, signal analytics and genome wide analysis are addressed to provide
efficient diagnostic tools and reduce healthcare costs (Belle et al., 2015) with big data software such as
Hadoop, GPUs, and MongoDB. Open source big data ecosystem in healthcare is introduced (Raghupathi
and Raghupathi, 2014) with examples and challenges to satisfy big data characteristics; volume, velocity,
and variety (Zikopoulos, Eaton, and others, 2011). Cloud computing framework in healthcare for security
is also discussed with concerns about privacy (Stantchev, Colomo-Palacios, and Niedermayer, 2014).
Suggested software stacks (roles) for Big Data Analytics for Healthcare Data and Health Informatics are:

Apache Hadoop

Apache Spark
Apache Mahout
Apache Lucene/Solr
MLIlib

7.5 Spatial Big Data, Spatial Statistics and Geographic Information
Systems

The broad use of geographic information system (GIS) has been increased over commercial and scientific
communities with the support of computing resources and data storages. For example, Hadoop-GIS (Aji
et al., 2013), a high performance spatial data warehousing system with Apache Hive and Hadoop, offers
spatial query processing in parallel with MapReduce, and HadoopViz (Eldawy, Mokbel, and Jonathan,
2016), a MapReduce framework for visualizing big spatial data, supports various visualization types of
data from satellite data to countries borders. Suggested software stacks (roles) for Spatial Big Data,
Spatial Statistics and Geographic Information Systems are:

e Apache Hadoop

Apache Spark
GIS-tools
Apache Mahout
e MLIlib
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7.6 Data Warehousing and Data Mining

Researches in data warehousing, data mining and OLAP have investigated current challenges and future
directions over big data software and applications (Cuzzocrea, Bellatreche, and Song, 2013) due to the
rapid increase of data size and complexity of data models. Apache Hive, a warehousing solution over
a hadoop (Thusoo et al., 2009), has introduced to deal with large volume of data processing with the
other research studies (Chen, 2010; He et al., 2011) and NoSQL platforms (Chevalier et al., 2015) have
discussed with data warehouse ETL pipeline (Goodhope et al., 2012). Suggested software stacks (roles)
for Data Warehousing and Data Mining are:

e Apache Hadoop

e Apache Spark

e MongoDB

e Hive

e Pig

e Apache Mahout

e Apache Lucene/Solr
e MLIlib

7.6.1 Big Data Statistics from GitHub Repositories

Github.com has been used to provide version control and manage source code development along with
diverse collaborators across countries. The popularity of github as a collaboration tool has been sig-
nificantly increased and 4,995,050 repositories exist as of 12/27/2016 with 20-30 thousands daily added
repositories. Therefore we report a repository statistics to understand software development related to
big data applications and tools and to create a list of most common tools regarding to big data deploy-
ments. A development language distribution, most common libraries and packages, observations over
a certain period and detection on recently added projects and tools are main part of the queries using
github search API. We defined a set of keywords for projects to retrieve related github repositories, for
example, fingerprint matching, fingerprint recognition, fingerprint verification, and biometric fingerprint
are used to search github projects related to fingerprint recognition. Python and Java are most common
languages among the six NIST projects (Table 6), although matlab is dominant in the fingerprint project.
We also noticed that scientific python packages are commonly used to enable numerical computation,
data analysis and visualization for these big data applications (Figure 10), whereas there are dependent
packages for each project (Table 7). Tweepy, twitter API, is used in the twitter live analysis cases with
NLTK, the natural language processing toolkit to complete sentiment analysis with tweets. Similarly,
GIS projects use particular libraries for spatial analysis such as geopy and shapely. We observe that deep
learning python packages e.g. caffe have recently added to github repositories. Statistics (tables 8 to 13)
show that popular github repository examples related to the six nist projects started in 2016. Each
github project has different language preferences with various libraries and packages therefore recent
activities can be observed, for example, deep learning software such as Keras, Theano, mxnet and Caffe
is adopted among multiple projects.

7.7 Datasets

Finding relevant datasets for particular applications is another challenge for the big data ecosystem be-
cause of its difficulty of collecting data from different sources (Kim, Trimi, and Chung, 2014), complexity
and diversity (Hashem et al., 2015). Community contributed lists of public datasets (Cohen and Lo,
2014) provide structured information with a specific location to access data and a category to describe
itself. We intend to generate linked json data for datasets and applications in big data ecosystem based on
these lists because it connects scattered data and software in an organized way. Table 14 shows the data
source from different sectors, academia(.edu or .ac.), government(.gov), organization(.org), industry(.com
or .net), and international(country suffix), among the seven categories of the lists. Entire categories are
available online: https://github.com/lee212/bd_datasets. Listing 15 also shows a example of the
linked data between MNIST dataset and two software available on github.com.
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Topic | CH++ | Python | Java, | Matlab | JS | C# | C | R | Ruby | Scala | Count”
Fingerprint (7.1) | 15% | 11% 13% | 20% 3% | 16% | 8% | 0% | 1% 5% 43
Face (7.2) 26% | 21% 12% | 9% % | 5% | 2% | 2% | 1% .02% | 538
Twitter (7.3) 2% 35% 15% | .6% 9% | 2% | 1% | 10% | 3% 1% 1429
Warehousing (7.6) | 3% 27% 18% | 2% 10% | 3% | 1% | 10% | 4% 1% 3435
Geographic (7.5) | 5% 15% 2% | 4% 15% | 3% | 5% | ™% | 3% 16% | 6487
Healthcare (7.4) 2% 13% 19% | 2% 14% | 5% | 1% | 10% | 6% 2% 132

Table 6: Language Distribution of Topics related to those in the NIST collection on Github

* Count: average number of github.com repositories.

Figure 10: Scientific Python Packages used in NIST Projects (collected from Github)
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Python Package | Description L E| B |E|O|T
cv2 OpenCV |/
skimage Image Processing v
PIL Python Imaging Library v
caffe Deep Learning v
nltk Natural Language Toolkit v
tweepy Twitter for Python v
BeautifulSoup Screen-scraping library v |/
gensim Topic Modelling a4
geopy Geocoding library v
shapely Geometric Analysis v
django Web framework v v
Table 7: Additional Python packages found in NIST Collection
Title ‘ Description ‘ Language ‘ Start Date ‘ Popularity ‘ Dependency
OpenFace an open source facial behavior | c++ March, 2016 725 (305) OpenCV, dlib,
analysis toolkit boost, TBB
Picasso face | An Android image transforma- | Java July, 2016 528(56) Square Picasso
detection tion library providing cropping
transforma- | above Face Detection (Face Cen-
tion tering) for Picasso
MTCNN Joint Face Detection and Align- | Matlab September, 2016 | 226(162) Caffe, Pdollar tool-
face de- | ment using Multi-task Cascaded box
tection Convolutional Neural Networks
alignment
facematch Facebook  Face  Recognition | JavaScript | January, 2016 132 (41) fbgraph,  request,
wrapper body-parser, ex-
press
mxnet MTCNN face detection Python October, 2016 99 (47) OpenCV, mxnet
mtenn  face
detection
Table 8: Example Projects Recently Created Regarding to Face Detection
Title ‘ Description ‘ Language ‘ Start Date ‘ Popularity ‘ Dependency
CNN finger- | fingerprint verification using con- | Python December, 2016 | 0 (1) Keras, Theano
print volution neural networks
fingerprint Web app for human finger- | JavaScript | December, 2016 | 0 (1) jimp
recognizer print recognition with math on
Node.JS 7
neurodactyl | C++ software tool for finger- | CH++ November, 2016 | 0 (0) OpenCV, Bo-
print recognition based on neural zorth3, FANN
networks

Table 9: Example Projects Recently Created Regarding to Fingerprint Matching
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Title Description Language ‘ Start Date ‘ Popularity ‘ Dependency
tidytext Text mining using dplyr, gg- | R March, 2016, 310 (42) dplyr, geplot2,
plot2, and other tidy tools tidyr, broom
Bayesian Pragmatic & Practical Bayesian | Kotlin August, 2016 213 (19) Apache Lucene
sentiment Sentiment Classifier
analysis
Hotel review | Sentiment analysis and aspect | Python April, 2016 154 (34) Scrapy, Elastic-
analysis classification for hotel reviews Search, Kibana,
using machine learning models nltk, pandas
with MonkeyLearn
Sentiments Sentiments is an iOS app writ- | Swift February, 2016 | 146 (8) Alamofire, SwiftyJ-
ten in Swift that analyzes text SON, HPE Haven
for positive or negative sentiment OnDemand
Sentiment We use different feature sets and | Python October, 2016 | 139 (42) twitter, mdp
Analysis machine learning classifiers to
Twitter determine the best combination
for sentiment analysis of twitter
Table 10: Example Projects Recently Created Regarding to Twitter Analysis
Title ‘ Description ‘ Language ‘ Start Date ‘ Popularity ‘ Dependency
gpq A collection of tools for mining | Jupyter June, 2016 128 (10) Google BigQuery
government data Notebook
reair a collection of easy-to-use tools | Java March, 2016 91 (42) Hadoop, Hive
for replicating tables and parti-
tions between Hive data ware-
houses
SpawnTracker| Probably the most efficient large | Protocol | July, 2016 34 (9) s2sphere, GeolJ-
area long duration tracker for | Buffer, SON, protobuf,
pokemon go data mining Python pgoapi
idbr An R interface to the US Census | R January, 2016 | 23 (12) dplyr, ggplot2,
Bureau International Data Base ggthemes
API
get-tiger Make workflow for downloading | Makefile | February, 2016 | 20 (0) GDAL
Census geodata and joining it to
survey data

Table 11: Example Projects Recently Created Regarding to Data Warehousing
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Title ‘ Description Language ‘ Start Date ‘ Popularity ‘ Dependency
Pokemon Go | Pokemon GO GPS Emu- | Python July, 2016 401 (74) geopy, s2sphere
Move lator with  Built-In  Poke-
mon/Pokestop/Gym Map
d3-geo Geographic projections, spher- | Javascript | March, 2016 112 (35) d3-array
ical shapes and  spherical
trigonometry
Geospatial Geospatial messenger applica- | Kotlin March, 2016 105 (22) Spring Boot, Post-
messenger tion written with Spring Boot + greSQL
Kotlin 4+ PostgreSQL
DotSpatial Geographic information system | C# April, 2016 94 (52)
library written for NET
geo.lua A helper library for Redis | Lua February, 2016 | 74 (7)
geospatial indices
Table 12: Example Projects Recently Created Regarding to Geographic Information Systems
Title | Description | Language | Start Date | Popularity | Dependency
Temperate a healthcare application that | JavaScript, January, 2016 91 (7) MySQL
aims to make healthcare more | PHP
accessible to everyone, every-
where
Computational Analyze large healthcare | Python December, 2016 | 41 (15)
Healthcare datasets & build machine
learning models using Tensor-
Flow
healthcareai | R tools for healthcare machine | R June, 2016 24 (10) SQL Server
learning
datasus An Interface for the Brazilian | R June, 2016 11 (6)
Public Healthcare Data Reposi-
tory (DATASUS) for the R Lan-
guage
RETAIN Interpretable Predictive Model | Python August, 2016 6 (2) Theano, CUDA
in Healthcare using Reverse
Time Attention Mechanism
Table 13: Example Projects Recently Created Regarding to Healthcare Data
Category \ Academia \ Government \ Organization \ Industry \ International \ Total
GIS 1 3 5 9 5 23
Healthcare 0 6 3 1 1 11
Image Processing | 11 0 4 2 5 18
Natural Language | 7 0 8 7 6 26
Social Networks 8 0 7 5 5 24
Climate/Weather | 2 6 3 2 4 16
Energy 2 2 b) 1 b) 15

Table 14: Public Dataset sectors of acamedia, government, organization, industry and international
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Task Completion
Application & Infrastructure Deployment

Case Study: NIST Project December 2016
Proposal March, 2017
Integrating Ansible with Container Images

- ICA3PP 2017 March 2017
Pairing Ansible Roles and Infrastructure Provisioning

- HPCS 2017 March 2017
Automated Deployments with NIST Big Data

- ICCAC 2017 May 2017
Scientific Applications

Bioinformatics Integration June 2017

- BIBM 2017

Case Study: Containerized tool deployment of Galaxy Workflow July 2017
Dissertation

Writing August 2017
Defense October 2017

Table 15: Timeline for completion of this thesis

8 Research Plan

Table 15 provides a summary of the remaining tasks and their expected completion date. Some comments
and risk assessments follow.

ICA3PP, HPCS, ICCAC The target proceedings are addressed

9 Dissertation Chapters

Introduction

Background

Template-based Infrastructure Provisioning

DevOps Software Deployment

Event-driven Computing with CRIU

NIST Use Cases

Curated Package Recommender for Dynamic Computing Environment

Integration with Bioinformatics

© 2 N e g W e

Software Defined Systems with Serverless Paradigm

—_
e

Conclusions
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10 Summary

Software defined systems presents manageable, dynamic and flexible computing resources with the server-
less paradigm to ensure simplicity of data processing but guaranteed performance of computation through
infrastructure provisioning. The combination of DevOps tools and Templates removes a barrier of using
systems from complicated software stacks and the shareability and elasticity are inherited to the software
defined systems on both HPC and Clouds.
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11 Related Work
11.1 Template deployment

Several infrastructure provisioning tools have emerged to offer transparent and simple management of
cloud computing resources over the last few years. Templates which are structured documents in a YAML
or JSON format define infrastructure with required resources to build and ensure identical systems to
create over time. A collection of Amazon cloud services are provisioned through Cloudformation (clo,
2010) templates which is an Amazon infrastructure deployment service. OpenStack Heat (osh, 2012)
was started with similar template models to Amazon but has extended with other OpenStack services
e.g. Telemetry, monitoring and autoscaling service to build multiple resources aa a single unit. The
Topology and Orchestration Specification for Cloud Applications (TOSCA) (Wettinger, Breitenbiicher,
and Leymann, 2014; Binz et al., 2014) proposes standardization over different cloud platforms with XML-
based language and several studies have been made with TOSCA (Kopp et al., 2013; Breiter et al., 2014;
Qasha, Cala, and Watson, 2015). These tools have been addressed with issues in a few studies (Yamato
et al., 2014; Fox et al., 2015) and one of identified issues is that individual specification of supported
resources, functions, type names, and parameters prevents building and sharing infrastructure blueprints
across cloud platforms.

11.2 DevOps Tools

In the DevOps phase, configuration management tools automates software deployment to provide fast
delivery process between development and operations (Ebert et al., 2016). Instructions to manage sys-
tems and deploy software are written in scripts although different formats i.e. YAML, JSON, and
Ruby DSL and various terminologies i.e. recipes, manifests, and playbooks are used. There are notable
tools available to achieve automated software deployment. Puppet and Chef are identified configuration
management tools written in Ruby and these tools manage software on target machines regarding to
installation, execution in a different state e.g. running, stopping or restarting, and configuration through
the client/server mode (also called master/agent). Ansible is also recognized as a configuration man-
agement tool but more focusing on software deployment using SSH and no necessity of agents on target
machines. With the experience from class projects and NIST use cases, a few challenging tasks are
identified in DevOps tools, a) offering standard specification of scripts to ease script development with
different tools, and b) integrating container technologies towards microservices.

11.3 Container technology

While existing container software, e.g. docker, rkt, 1xd, offers various features with outstanding perfor-
mance there are number of new tools recently developed with the support on HPC. Shifter from NERSC
on Cray XC30 with GPU (Benedicic et al., 2016) has introduced and singularity from LBNL (Kurtzer,
2016) as well. These new implementations are typically for heavy workloads which requires check-
point /restart for long running applications and easy deployment of required software stacks in a user
space.
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11.4 TOSCA Ecosystem - (Topology and Orchestration Specification
for Cloud Applications)

TOSCA is a standardized management of cloud services with applications using workflow technologies
and the specification (OASIS, 2013) to ensure reproducibility.

One of goals that TOSCA aims is to provide portability of cloud service management along with
their environments (Binz et al., 2012), There are a few terminologies in this context. A service template
contains all information about operation and management including a topology of cloud services at a top
level of abstraction. Plans, Nodes and Relations are included in the service template. A service topology
is a description of service components (nodes) and its relations to others therefore the structure of systems
to build is represented. Plans have instructions about operations and managements through workflow
technology. Orchestration of service operation and management is described in plans with WSDL, REST
or scripts. In addition verification (inspection) of the topology and retrieval or modification of service
instance information are supported by plans. With BPMN and BPEL workflow languages, TOSCA plans
are portable in differement management envrionments to adopt.

OpenTOSCA is a runtime supporting imperative processing of TOSCA-based cloud applications (Binz
et al., 2013). The core components of OpenTOSCA are implementation artifact engine, plan engine, con-
tainer API and plan portability API where build plan conducts management operations and deployment
of applications with OASIS TOSCA packaging format CSAR.

Eclipse Winery is a graph based modeling tool for TOSCA-based cloud applications using HTML
and Eclipse environment (Kopp et al., 2013). The frontend components with GUI of Winery are divided
by the DevOps paradigm to ease collaboration between developers and operators. Topology Modeler
provides visual topology modeling to operators with seven elements; relationship template, relationship
constraint, node template, deployment artifact, requirement, capability and policy. Element Manager
provides controls of technical details to system experts such as types, implementations, policy templates
and configurations. BPMN4TOSCA Modeler is added later to support in creating BPMN elements and
structures used in TOSCA plans through web-based graphical user interface. Winery uses databases
(called repository) to store TOSCAL models in CSAR format which is a TOSCA Cloud Service ARchive
application package.

Visual notation for TOSCA (named Vino4dTOSCA) (Breitenbiicher et al., 2012) has introduced with
explicit design principles and requirements. Nine requirements for desigining effective visual notations
are defined as: R1 Semiotic Clarity, R2 Perceptual Discriminability, R3 Semantic Transparency, R4 Com-
plexity Management, R5 Cognitive Integration, R6 Visual Expressiveness, R7 Dual Coding, R8 Graphic
Economy, and R9 Cognitive Fit. The requirements for constructing TOSCA-specific notations are: R10
Completeness, R11 Semantic Correctness, R12 Extensibility, and R13 Compact Representation. The
requirements for usability and use experience are: R14 Suitability for the Task, R15 Self-descriptiveness,
R16 Simplicity, and R17 User Satisfaction.

Automated provisioning of cloud infrastructure is described with the TOSCA topology template and
the plan where the structure of cloud applications is defined in the template and an executable provi-
sioning workflow ( called plan ) is generated based on the template (Breitenbiicher et al., 2014a). In
practical terms, Winery, topology modeling GUI tool, creates a service template with nodes and relation-
ships to depict a system structure in CSAR format and OpenTOSCA, a TOSCA runtime environment,
executes the plans after the process of generating provisioning order graph, provisioning plan skeleton
and executable provisioning plan in workflow languages i.e. BPEL and BPMN.

There are additional tools supporting the TOSCA ecosystem. Vinothek (Breitenbiicher et al., 2014b)
is a web interface of application manager on the TOSCA runtimes using Java Server Pages and HTMLS5.
It accepts user inputs for launching applications on the web such as input parameters and runtime-
specific information. TOSCAMART (TOSCA-based Method for Adapting and Reusing application
Topologies) (Soldani et al., 2016) offers a method to build desired environments on any cloud provider by
assembling fragments of existing TOSCA topologies. This approach includes finding reusable fragments
of the topology from repositories, choosing candidates by rates and filters and adapting final candidate
fragments through ratings as a process of building desired environments.
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Title ‘ Description Function ‘ Language ‘ Repository Extensibility
OpenTOSCA TOSCA Runtime | Runtime system | Java github.com BPMN, BPEL
Environment /OpenTOSCA /container
Winery Web-based environ- | Front-end GUI Java github.com BPMN
ment for modeling /eclipse/winery
TOSCA topologies
BPMN4TOSCA | Extension for | Extensions Javascript | github.com BPMN
TOSCA  manage- /winery/BPMN4TOSCAMpdeler
ment plans
Vinothek Cloud application | Front-end GUI Java github.com CSAR
management /OpenTOSCA /vinothek
TOSCA-MART | Methods for adapt- | Extensions Java github.com CSAR
ing and reusing /jacopogiallo/ TOSCA-
TOSCA cloud MART
applications

Table 16: Components of TOSCA Ecosystem
e BPMN - Business Process Model and Notation

e BPEL - Business Process Execution Language
e CSAR - TOSCA Cloud Service ARchive
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