
Efficient Software Defined Systems using Common
Core Components

Hyungro Lee and Geoffrey C. Fox
School of Informatics and Computing

Indiana University
Bloomington, IN 47408

Email: {lee212,gcf}@indiana.edu

Abstract—With advent of Docker containers, an application
deployment using container images gains popularity over scien-
tific communities and major cloud providers to ease building
reproducible environments. While a single base image can be im-
ported multiple times from different containers to reduce storage
consumption by a sharing technique, copy-on-write, duplicates
of package dependencies are often observed over containers. In
this paper, we propose new approaches to the container image
management for eliminating duplicated dependencies. We create
Common Core Components (3C) to share package dependencies
by version control system commands; submodules and merge. 3C
with submodules provides a collection of required libraries and
tools in a separate branch, while keeping their base image same.
3C with merge offers a new base image including domain specific
components thereby reducing duplicates in similar base images.
Container images built with 3C enable efficient and compact
software defined systems and disclose security information for
tracking Common Vulnerability and Exposure (CVE). As a
result, building application environments with 3C-enabled con-
tainer images consumes less storage compared to existing Docker
images. Dependency information for vulnerability is provided in
detail for further developments.

Keywords—Software Defined Systems, Common Core Compo-
nents, Containers, DevOps, Dependencies

I. INTRODUCTION

Deployment for modern applications requires frequent
changes for new features and security updates with a dif-
ferent set of libraries on various platforms. DevOps tools
and containers are used to complete application deployments
with scripts but there are problems to reuse and share scripts
when a large number of software packages are required. For
example, Ansible Galaxy - a public repository provides over
ten thousand scripts (called roles) and Docker Hub has at
least fourteen thousand container images but most of them
are individualized and common libraries and tools are barely
shared. This might be acceptable if a system runs only one
or two applications without multi tenants but most systems in
production need to consider how to run applications efficiently.
Container technology i.e. Docker permits a repeatable build
of an application environment using container image layers
but redundant images with unnecessary layers are observed
because of a stacked file system. In this paper, we introduce
two approaches about building Common Core Components
(3C) in containers therefore building application environments
is optimized and contents are visible in detail for further
developments.

Common Core Components is a collection of libraries and
tools which aims to share dependencies at one place thereby
minimizing storage usage for container images. Docker stores
container images efficiently and gains speedup in launching
a new container instance because images on union mounts
reuse same contents i.e. identical image layers over mul-
tiple containers without creating copies. The copy-on-write
technique adds a new layer to store changes and keeps the
original unchanged. In practice, however, many duplicates
of package dependencies are observed between old and new
container images with version updates as well as containers in
similar application groups. Docker images represent contents
of image layers using a directed tree, and duplicates in child
image layers can occur when a parent image layer is different
although contents in child layers are same. This is normal
in version control systems and the goal of 3C is to resolve
these issues using dependency analysis and revision control
functions. We notice that the build of Docker images is
transparent through Dockerfile, a script for building a Docker
image and Docker history metadata, therefore 3C is able to be
established based on these information. The process of building
3C is following. First, installed packages are collected and
then dependencies are analyzed. The two functions that we
have chosen from version control systems; submodules and
merge typically support unifying two separate repositories and
branches. If there are containers that change software versions
frequently but use same dependencies, the 3C with submodules
provides an individual image layer to share dependencies but
no changes in existing images. If there are containers that have
similar interests but created by different users, the 3C with
merge provides a new parent image layer to suggest common
dependencies. The effectiveness and implementation of 3C are
described in detail at the section III.

We demonstrate that 3C optimizes both consuming disk
space and detecting security vulnerability by determining
shared components of containers and analyzing dependencies.
3C also suggests a collection of the most commonly required
dependencies from High Performance Computing Enhanced
Apache Big Data Stack (HPC-ABDS) [1] and survey data,
where sampling is done from public Dockerfiles and project
repositories. Performance comparison is presented to show effi-
ciency regarding to disk space usage against existing container
images. 3C achieves improvements in storing Nginx container
images by 37.3% and detects 109 duplicate dependencies out
of 429 from survey data of the HPC-ABDS streams layer
with 50% of overlaps. We illustrate security vulnerabilities for
Ubuntu 16.04 according to system packages and libraries.



II. BACKGROUND

Reproducibility is ensured with container images which
are stored in a stackable union filesystem, and ”off the shelf”
software deployment is offered through scripts e.g. Dockerfile
to build an equivalent software environment across various
platforms. Each command line of scripts creates a directory
(called an image layer) to store results of commands sep-
arately. Container runs an application on a root filesystem
merged by these image layers while a writable layer is added
on top and other layers beneath it are kept as readable only,
known as copy-on-write. The problem is that system-wide
shared libraries and tools are placed on an isolated directory
and it prevents building environments efficiently over multiple
versions of software and among various applications that may
use the same libraries and tools. We use collections of HPC-
ABDS (Apache Big Data Stack) [1] and github API to present
surveyed data in different fields about automated software
deployments. In this case, we collected public Dockerfiles
and container images from Docker Hub and github.com and
analyzed tool dependencies using Debian package information.

A. Software Deployment for dynamic computing environments

Software development has evolved with rich libraries
and building a new computing environment (or execution
environment) requires a set of dependencies to be successfully
installed with minimal efforts. The environment preparation
on different infrastructures and platforms is a challenging
task because each preparation has individual instructions to
build a similar environment, not an identical environment.
The traditional method of software deployment is using shell
scripts. A system package manager such as apt, yum, dpkg,
dnf and make help to automate installing, compiling, updating
and removing tools but shell scripts can be easily difficult to
understand once it handles more systems and various configu-
rations. A large number of packages are actively updated and
added to communities and proper managing in a universal way
is necessary to deal with them sustainably. Python Package
Index (PyPI) has 107,430 packages in 2017 with 40+ new
packages on a daily basis. Public version control repository,
Github.com has 5,649,489 repositories with about 20,000
daily added repositories. Most software packages, libraries
and tools can be found on their website and using their
API. DevOps tools i.e. Configuration management software
supports automated installation with repeatable executions
and better error handling compared to bash scripts but there
is no industry standards for script formats and executions.
Puppet, Ansible, Chef, CFEngine and Salt provide community
contributed repositories to automate software installation, for
example, Ansible Galaxy has 11353 roles available, Chef
Supermarket has 3,261 cookbooks available although there
are duplicated and inoperative scripts for software installation
and configuration. Building dynamic computing environments
on virtual environments is driven by these DevOps tools
and container technologies during the last few years for its
simplicity, openness, and shareability. Note that this effort is
mainly inspired by the previous research activities [2], [3], [4],
[5], [1], [6].

B. Scripts

Building compute environments needs to ensure repro-
ducibility and constant deployment consistently [7], [8]. Most
applications these days run with dependencies and setting up
compute environments for these applications requires an exact
version of software and configure systems with same options.
Ansible is a DevOps tool and one of the main features is
software deployment using a structured format, YAML syntax.
Writing Ansible code is to describe action items in achieving
desired end state, typically through an independent single unit.
Ansible offers self-contained abstractions, named Roles, by
assembling necessary variables, files and tasks in a single
directory. For example, installing software A or configuring
system B can be described as a single role. Compute environ-
ments are supplied with several software packages and libraries
and selectively combined roles build compute environments
where new systems require software packages and libraries
installed and configured. Although the comprehensive roles
have instructions stacked with tasks to complete a software
deployment with dependencies, the execution of applications
still need to be verified. In consequence, to preserve an
identical results from the re-execution of applications, it is
necessary to determine whether environments are fit for the
original applications.

C. Containers with Dockerfile

Container technology has brought a lightweight virtualiza-
tion with a Linux kernel support to enable a portable and
reproducible environment across laptops and HPC systems.
Container runtime toolkit such as Docker [9], rkt [10] and
LXD [11] uses an image file to initiate a virtualized envi-
ronment including necessary software packages and libraries
without an hypervisor. These tools create an isolated envi-
ronment on a same host operating system using the Linux
kernel features such as namespaces, cgroups, seccomp, chroot
and apparmor. Recent research [12] shows that containers
outperform the traditional virtual machine deployments but
running containers on HPC systems is still an undeveloped
area. Shifter [13] and Singularity [14] have introduced to
support containers on HPC with a portability and MPI support
along with docker images. These efforts will be beneficial
to scientific applications to conduct CPU or GPU intensive
computations with easy access of container images. For ex-
ample, a neuroimaging pipelines, BIDS Apps [15], is applied
to HPCs using Singularity with existing 20 BIDS application
images and Apache Spark on HPC Cray systems [16] is
demonstrated by National Energy Research Scientific Comput-
ing Center (NERSC) using shifter with a performance data of
big data benchmark. Both researches indicate that workloads
for scientific applications and big data are manageable by
container technologies on HPC systems with a reproducibility
and portability.

Listing 1: Dockerfile Example

FROM ubuntu : 1 4 . 0 4

MAINTAINER Hyungro Lee <l e e212@ind i ana . edu>

RUN apt−g e t u p d a t e && apt−g e t i n s t a l l −y \\
b u i l d−e s s e n t i a l wget g i t

. . .



Dockerfile (See Listing 1) uses a custom template to describe
installation steps of building docker images in a bash-like sim-
ple format. There are certain directives to indicate particular
objectives of the commands, for example, FROM indicates a
base image to use and RUN indicates actual commands to
run. When an image is being generated, each directive of
Dockerfile creates a single directory to store execution results
of commands. Meta-data of these directories is recorded in
a final image to provide a unified logical view by merging
them. The tag for an image is a reference for stacked image
layers. For example in Listing 1, ubuntu:14.04 is a tag to
import stacked image layers of Ubuntu 14.04 distribution and
the following directives i.e. MAINTAINER and RUN, will be
added. This allows users to import other image layers and start
building own images.

D. Environment Setup

Preparing environment is installing all necessary software,
changing settings and configuring variables to make your ap-
plication executable on target machines. Container technology
simplifies these tasks using a container image which provides a
repeatable and pre-configured environment to your application
therefore you can spend more time on an application develop-
ment rather than software installation and configuration. One of
the challenges we found from container technologies in prepar-
ing environment is managing dependencies for applications.
Container users who want to run applications with particular
libraries have to find relevant container images otherwise they
have to create a new image from scratch thereby brining all
required tools and libraries. One possible solution for this
problem is to offer a common core component (3C) when
environment is being built. We noticed that there is a common
list of libraries for particular type of applications based on the
survey from Docker images and Dockerfile scripts. The idea
is to offer curated collection of libraries for domain-specific
applications and use the list of libraries surveyed from com-
munities. For example, libraries for linear algebra calculation
i.e. liblapack-dev and libopenblas-dev are commonly used for
applications in the analytics layer of HPC-ABDS according to
the survey (shown in Table I). Additional package installation
might be required if a suggested list of dependencies does not
satisfy all requirements of an application.

E. Package Dependencies

Software packages have many dependencies especially if
the packages are large and complex. Package management
software e.g. apt on Debian, yum on CentOS, dnf on Fedora
and pkg on FreeBSD automates dependency installation, up-
grading or removal through a central repository package and a
package database. The information of package dependencies
along with version numbers controls a whole process of
software installation and avoids version conflicts and breaks.
In addition, reverse dependencies show which packages will be
affected if the current package is removed or changed. nodejs
and ruby in Table I have a few dependencies but a large number
of reverse dependencies exist . Software incompatibility can
easily occur to other packages if these packages are broken
or missing. Figure 1 shows relations between dependencies
(depends), reverse dependencies (rdepends), package size
(size) and package size including dependencies (total size)

Fig. 1: Debian Package Relations between Dependencies,
Reverse Dependencies and Package Sizes (itself and including
dependencies) for Popular Docker Images

among six different sections. Interestingly the size of package
itself does not increase when the number of dependencies
are incremented but it shows positive correlation between the
number of dependencies and the total package size including
dependencies. It explains that shared libraries are common
for most packages to manage required files efficiently on a
system. This is based on the survey of Docker scripts i.e.
Dockerfile from public software repositories on github.com.
Note that there are several package managers available on
Linux distributions, see details in Table II.

F. Application Domains

Debian packages are categorized in 57 sections ranging
from administration utilities (abbreviation is admin) to X
window system software (abbreviation is x11) and it helps us
to better understand the purpose of a package. An application
typically requires several packages installed and a certain
choice of packages is found in common according to interests
of applications. SciPy [17] is a collection of python packages
for scientific computing, for example, and the dependencies
include a math library i.e. libquadmath0 - GCC Quad-Precision
Math Library and basic linear algebra packages i.e. libblas3 -
shared library of BLAS (Basic Linear Algebra Subroutines)
and liblapack3 - Library of linear algebra routines 3. The
classification of Big Data and HPC applications is well estab-
lished in the HPC and Apache Big Data Stack (HPC-ABDS)
layers [1]. Figure 2 shows six dependency sections for selected
HPC-ABDS layers such as Layer 6) Application and Analytics
- (Analytics with green dot), Layer 11B) NoSQL - (Nosql
with purple dot) and Layer 14B) Streams - (Stream with beige
dot). Library dependencies (2a) including development tools,
utilities and compilers are observed in most layers as well as
reverse dependencies (2b), especially in the analytics layer and
the machine learning layer. Note that, the machine learning



Name PCT1 PCT2 PCT3 PCT4 Description Section CT1 CT2 Dependencies Size Important
software-properties-
common

0.01 0.06 0.02 0.03 manage the repositories that
you install software from
(common)

admin 8 4 python3-dbus, python-apt-common,
python3-software-properties, gir1.2-
glib-2.0, ca-certificates, python3:any,
python3-gi, python3

9418 (630404) optional

build-essential 0.14 0.16 0.03 0.05 Informational list of build-
essential packages

devel 5 32 dpkg-dev, libc6-dev, gcc, g++, make 4758 (2705548) optional

g++ 0.15 0.06 0.02 0.01 GNU C++ compiler devel 4 57 cpp, gcc, g++-5, gcc-5 1506 (22034848) optional
gcc 0.03 0.05 0.02 0.01 GNU C compiler devel 2 57 cpp, gcc-5 5204 (6735366) optional
groovy - - 0.01 - Agile dynamic language for

the Java Virtual Machine
universe/devel 14 10 libbsf-java, libservlet2.5-java, antlr,

libxstream-java, libcommons-logging-
java, libjline-java, libasm3-java, libjansi-
java, libregexp-java, libmockobjects-
java, junit4, default-jre-headless, ivy,
libcommons-cli-java

9729202 (3257906) optional

libatlas-base-dev - 0.06 - - Automatically Tuned Linear
Algebra Software, generic
static

universe/devel 2 8 libatlas-dev, libatlas3-base 3337570 (2690424) optional

liblapack-dev - 0.03 - - Library of linear algebra rou-
tines 3 - static version

devel 2 22 liblapack3, libblas-dev 1874498 (2000176) optional

ruby - 0.01 0.01 0.01 Interpreter of object-oriented
scripting language Ruby (de-
fault version)

interpreters 1 987 ruby2.1 6026 (73880) optional

maven - - 0.02 0.01 Java software project manage-
ment and comprehension tool

universe/java 2 5 default-jre, libmaven3-core-java 17300 (1441844) optional

libffi-dev - 0.03 - 0.01 Foreign Function Interface li-
brary (development files)

libdevel 2 11 libffi6, dpkg 162456 (2101914) extra

libssl-dev 0.12 0.07 0.01 0.03 Secure Sockets Layer toolkit -
development files

libdevel 2 70 libssl1.0.0, zlib1g-dev 1347070 (1258956) optional

net-tools 0.01 0.02 0.03 0.05 NET-3 networking toolkit net 1 51 libc6 174894 (4788234) important
chrpath - - - 0.05 Tool to edit the rpath in ELF

binaries
utils 1 0 libc6 12932 (4788234) optional

git 0.33 0.21 0.06 0.07 fast, scalable, distributed revi-
sion control system

vcs 8 75 perl-modules, liberror-perl, libpcre3,
libcurl3-gnutls, git-man, zlib1g, libc6,
libexpat1

2951026 (8563378) optional

nodejs 0.01 0.04 - 0.02 evented I/O for V8 javascript universe/web 6 287 libssl1.0.0, libc6, libstdc++6, zlib1g,
libv8-3.14.5, libc-ares2

683742 (7551922) extra

TABLE I: Common Debian Packages from Sample Survey Data
(PCT1: Percentage by General Software, PCT2: Percentage by Analytics Layer, PCT3: Percentage by Data processing Layer,

PCT4: Nosql Layer, CT1: Count of Dependencies, CT2: Count of Reverse Dependencies)

Name Distribution Package Type file format License Language
dpkg Debian Binary .deb GPL C, C++
apt Ubuntu Binary .deb GPL C++
Nix NixOS Binary .nix LGPL C++
RPM RedHat Binary .rpm GPL C, Perl
dnf Fedora Binary .rpm GPL v2 C, Python
yum CentOS Binary .rpm GPL v2 Python
zypper OpenSUSE Binary .rpm GPL C++
pacman ArchLinux Binary .pkg.tar.xz GPL v2 C
pkg FreeBSD Binary .txz GPL C

TABLE II: Package managers of Linux Distributions

layer is not a part of HPC-ABDS but is manually added to
demonstrate other interesting collections as an example. Sub
groups of the library section will be necessary to identify a
common collection of dependencies for the particular applica-
tion domains in detail.

G. Docker Images on Union Mounting

Union mount implementations e.g. aufs and overlayfs en-
able Docker containers to have stackable image layers thereby
ensuring storage efficiency for images where a base image
layer includes common contents. Additional image layers
only carry changes made to the base image while multiple
containers share a same base image. This enables containers
to reduce storage and booting up time when a new container
starts. From a practical point of view, a base image is a set of
image layers built from scratch, for a linux distribution with
a version e.g. ubuntu:latest, xenial, or 16.04 or centos:latest
or 7 which is a starting point of most images. Common tools
or special packages can be added and declared as an another
base image for a particular purpose, for example, NVIDIA’s
CUDA and cuDNN packages are defined as a base image for

(a) Dependencies

(b) Reverse Dependencies

Fig. 2: Debian Package Dependencies for HPC-ABDS Layers

GPU-enabled computation including deep neural network on
top of a Ubuntu or CentOS image. This approach is widely
adopted because of the following reasons. First, ”off the shelf”
container images provide application environments to normal
users and a standard collection of required software packages



Fig. 3: Dockerfile Workflow

is built for communities of interest. It is also more convenient
to update a single base image rather than multiple images, if
there are changes to apply. Note that using a same base image
reduces storage in its database and avoids duplicates. We see
a flattened view of docker images from Figure 3. Base images
start from scratch as a first image layer and most applications
are diverged out from base images.

III. RESULTS

While there are advantages of using layered file systems for
containers, we noticed that redundancy in storing docker con-
tainer images exists. The duplication of image contents occurs
when an identical software installation completes with different
parents of an image layer. As shown in Figure 4, tree structure
is preserved to represent container images, for example, two
images (#1 and #2) are identified as a distinct image although
the change applied to them is indistinguishable. In this section,
we demonstrate two approaches of reducing these duplicates
using package dependencies.

A. Common Core Components

The general software deployment retrieves and installs
dependencies to complete installation and ensure proper exe-
cution of software on a target machine. As shown in Figure 5,
Nginx, a lightweight HTTP server, requires 40 more libraries
and tools installed, although Nginx itself is only about 3MB
of an installed size. We identify these package dependencies
and define them as common Core Components (3C).

Fig. 4: Union File System Tree

B. Approach I: Common Core Components by Submodules

In version control systems, submodules keep repository
commits separate but allow cloning other repositories in a
sub directory. With submodules, common core components
(3C) can be dispatched but in a separated image layer (See
Figure 6). This approach lets you include an image layer
without concerning a parent image layer and reduces dupli-
cates without creating a new base image. 3C is supposed to
contain dependencies for application and we can find out the
dependency information after reviewing current docker images
with Dockerfiles and searching package manager databases.
Dockerfile is a text file and a blueprint of building an image
and installation commands are recorded to replicate an image
anytime. Dockerfile has RUN directives to execute commands
and package manager commands i.e. apt-get and yum are
executed with RUN to install libraries and tools. Dependencies
of these libraries and tools are described in a package manager
cache file (Packages) and stored in its internal database.
3C is built by looking up dependency information from the
database with package keywords obtained from Dockerfile.
Docker history can be used to examine image construction
or composition if Dockerfile is not available. In Figure 7,
we created Nginx-3C (about 59.1MB) and re-generated Nginx
docker images including the new 3C. The current Nginx docker
has 9 individual images (in total 1191.5MB) among various
versions of Nginx ranging from 1.9 to 1.13. The base image
also varies from Debian 9 (in a slim package) to Debian
Jessie 8.4 and 8.5. Whereas the size of new images including
Nginx-3C increase about 2.9MB per each version change. The
accumulated size of new images is 747.1MB in total to provide
9 individual Nginx images from version 1.9 to 1.13. 37.3%
improvements regarding to storing docker images is observed
compared to the current Nginx docker images. We notice that
3C by submodules reduce duplicates of contents, especially
if software changes its versions but uses equivalent libraries.
Nginx 1.9.0 and 1.13.0 have similar constraints of depen-
dencies including version numbers. According to the Debian
package information, the similar constraints are following: C
library greater than or equal to 2.14 (libc6), Perl 5 Compatible
Regular Expression Library greater than or equal to 1:8.35
(libpcre3), Secure Sockets Layer toolkit greater than or equal
to 1.0.1 and zlib compression library greater than or equal
1:1.2.0 (zlib1g). Backward compatibility of libraries is ensured
for general packages therefore 3C with the latest version of
dependencies may cover most cases.



Fig. 5: Nginx Debian Package Dependencies

Fig. 6: Common Core Components by submodules

Fig. 7: Comparison of Container Images for Nginx Version
Changes

(Current: Built by Official Dockerfiles, New: Built by
Common Core Components)

C. Approach II: Common Core Components by Merge

The goal of this approach is preparing compute environ-
ments on the premises with domain specific common core
components merged into a base image. New base images are
offered with the common core components of applications.
Similar application images (such as Image #1 and #2) in Fig-
ure 8 branched out from a same parent image layer. The storage
might not be saved if not many images refer a same master
image. One of the benefits of this approach is updating base

Fig. 8: Common Core Components by merge

images. Newly discovered components or vulnerable packages
are updated and included through updates. Once a number of
images sharing a same base image incremented, an additional
survey can be conducted to follow trends of development
tools and applications. In addition to that, outdated packages
can be removed from the 3C. Docker offers ’bring-your-
own-environment’ (BYOE) using Dockerfile to create images
and users can have individual images by writing Dockerfile.
We observe that developers and researchers store Dockerfile
on a source code version control repository i.e. github.com
along with their applications. Luckily, GitHub API offers an
advanced keyword search for various use and Dockerfile in
particular domains is collected using API tools. Besides, we
did a survey of package dependencies for application domains
using the collection of HPC-ABDS and built 3C according
to the survey data. To construct suitable environments with
minimal use of storage, finding a optimal set of dependencies
per each domain is critical. As shown in Figure 9, we found
that relations between the size of components and the number
of components as well as the percentage of common compo-
nents among images. The first subplot for the streams layer
shows that the size of most common components (between
40% and 100%) is increased slowly compared to the least
common components. Based on the sample data, 109 out of
429 packages are appeared 50% of Docker images in the
streams layer. Other layers of HPC-ABDS are also examined.

IV. DISCUSSION

We achieved application deployments using Ansible in
our previous work [18]. In the DevOps phase, configuration
management tool i.e. Ansible automates software deployment
to provide fast delivery process between development and
operations [19] but preserving environments for applications
is not ensured unless all required repositories are preserved.



Fig. 9: Common Core Components for HPC-ABDS

Fig. 10: Example of Security Vulnerabilities for Ubuntu 16.04
based on Libraries

Linux containers resolve this problem but their scripts are not
organized like DevOps tools. Instructions of DevOps tools are
written in structured document formats i.e. YAML, JSON,
and Ruby DSL, and there are benefits of using DevOps
scripts like Ansible Roles that we wrote in our previous work.
Various terminologies i.e. recipes, manifests, and playbooks
are used to manage systems and deploy software but all
of them have similar concepts and abstract levels. We also
notice that these scripts can be converted to build container
images, and vice versa if any of DevOps scripts need to
be called in building compute environments. For example,
Table IV shows that 27 Ansible roles are created to deploy
software components among six NIST use cases in Table III.
Some of the roles such as Apache Hadoop and Spark are
shared frequently and we intend to provide more roles in
building Big Data applications. With the experience from NIST
projects [18], a few challenging tasks are identified in DevOps
tools, a) offering standard Ansible Roles to ease application
development with different tools, and b) integrating container
technologies towards application-centric deployments. Infras-
tructure provisioning need to be integrated to avoid resource
underutilization. We defer these considerations to future work.

V. RELATED WORK

A. Template-Based Software Deployment

Template deployment is a means of installing software
and building infrastructure by reading instructions written in a
templating language such as YAML, JSON, Jinja2 or Python.
The goal of a template deployment is to offer easy installa-

TABLE III: NIST Big Data Projects

ID Title
N1 Fingerprint Matching
N2 Human and Face Detection
N3 Twitter Analysis
N4 Analytics for Healtcare Data / Health Informatics
N5 Spatial Big Data/Spatial Statistics/Geographic Information Systems
N6 Data Warehousing and Data Mining

TABLE IV: Technology used in a subset of NIST Use Cases.
A 3 indicates that the technology is used in the given project.
See Table III for details on a specific project. The final row
aggregates 3 across projects.

ID H
ad

oo
p

M
es

os
Sp

ar
k

St
or

m
Pi

g
H

iv
e

D
ri

ll
H

B
as

e
M

ys
ql

M
on

go
D

B
M

ah
ou

t
D

3
an

d
Ta

bl
ea

u
nl

tk
M

L
lib

L
uc

en
e/

So
lr

O
pe

nC
V

Py
th

on
Ja

va
G

an
gl

ia
N

ag
io

s
zo

ok
ee

pe
r

A
lc

he
m

yA
PI

R

N1 3 3 3 3 3 3 3 3 3 3
N2 3 3 3 3 3
N3 3 3 3 3 3 3 3 3 3 3
N4 3 3 3 3 3 3 3 3 3
N5 3 3 3 3 3 3
N6 3 3 3 3 3 3 3 3 3 3 3 3

count 4 1 5 1 1 2 1 4 1 2 3 4 1 3 2 1 2 5 1 1 5 1 1

tion, repeatable configuration, shareability of instructions for
software and infrastructure on various platforms and operating
systems. A template engine or an invoke tool is to read a
template and run actions defined in a template towards target
machines. Actions such as installing software package and
setting configurations are described in a template with its
own syntax. For example, YAML uses spaces as indentation
to describe a depth of a dataset along with a dash as a list
and a key-value pair with a colon as a dictionary and JSON
uses a curly bracket to enclose various data types such as
number, string, boolean, list, dictionary and null. In a DevOps
environment, the separation between a template writing and an
execution helps Continuous Integration (CI) because a software
developer writes deployment instructions in a template file
while a system operations professional executes the template as
a cooperative effort. Ansible, SaltStack, Chef or Puppet is one
of popular tools to install software using its own templating
language. Common features of those tools are installing and
configuring software based on definitions but with different
strategies and frameworks. One observation is that the choice
of implementation languages for those tools influences the use
of a template language. The tools written by Python such as
Ansible and SaltStack use YAML and Jinja which are friendly
with a Python language with its library support whereas the
tools written by Ruby such as Chef and Puppet use Embedded
Ruby (ERB) templating language.

B. Linux Containers on HPC

The researches [20], [21], [22] indicate the difficulty
of software deployments on High Performance Computing
(HPC). Linux containers is adopted on HPC with the benefits



of a union file system, i.e. Copy-on-write (COW) and a names-
pace isolation and is used to build an application environment
by importing an existing container image [14], [13], [23]. The
container runtime tools on HPC e.g. Singularity, Shifter and
chroot import Docker container images and wish to provide
an identical environment on HPC as one on other platforms.

VI. CONCLUSION

We presented two approaches to minimize image du-
plicates using package dependencies, named Common Core
Components (3C). The current stacked docker images create
redundancies of storing contents in several directories when
software packages are installed with different parent image
layers and we build dependency packages that mostly shared
with other images and provide where it needs. First approach
is building 3C based on the analysis of current Docker images
and scripts i.e. Dockerfile and combines with a master image
using submodules. This is useful where software is updated
frequently with new versions but equivalent dependencies
are shared. In our experiment, Nginx with 3C shows 37.3%
improvements in saving image layers compared to the current
docker images. The other approach is building 3C based on the
surveyed data for application domains and provides a certain
set of dependencies to provide a common collection for various
applications. Besides that, security concerns are raised with
container technologies and inspecting Common Vulnerabili-
ties and Exposures (CVE) is inevitable to prevent attacks.
Improving security using dependency information from 3C
is promising to detect security bugs and mitigate possible
security issues. For example, Ubuntu 16.04 packages have
several CVEs and the dependency graph (Figure 10) represents
affected packages with version numbers and vulnerability
severity ratings from NIST National Vulnerability Database
(NVD). Our future work is to indicate security information
using dependencies and suggest fixed versions of packages to
update.

ACKNOWLEDGMENT

We gratefully acknowledge generous support from CIF-
DIBBS 143054: Middleware and High Performance Analyt-
ics Libraries for Scalable Data Science and NSF RaPyDLI
1415459. We thank Intel for their support of the Juliet system.
We appreciate the support from IU Precision Health Initiative
and the FutureSystems team. We thank Gregor von Laszewski
for many discussions.

REFERENCES

[1] G. C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow, “Hpc-
abds high performance computing enhanced apache big data stack,” in
Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on. IEEE, 2015, pp. 1057–1066.

[2] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve, “Big
data, simulations and hpc convergence,” in Workshop on Big Data
Benchmarks. Springer, 2015, pp. 3–17.

[3] G. Fox, J. Qiu, and S. Jha, “High performance high functionality big
data software stack,” 2014.

[4] J. Qiu, S. Jha, A. Luckow, and G. C. Fox, “Towards hpc-abds: an initial
high-performance big data stack,” Building Robust Big Data Ecosystem
ISO/IEC JTC 1 Study Group on Big Data, pp. 18–21, 2014.

[5] G. Fox and W. Chang, “Big data use cases and requirements,” in 1st
Big Data Interoperability Framework Workshop: Building Robust Big
Data Ecosystem ISO/IEC JTC 1 Study Group on Big Data. Citeseer,
2014, pp. 18–21.

[6] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve, “White
paper: Big data, simulations and hpc convergence,” in BDEC Frankfurt
workshop. June, vol. 16, 2016.

[7] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers, “Examining the chal-
lenges of scientific workflows,” Computer, vol. 40, no. 12, 2007.

[8] A. Goodman, A. Pepe, A. W. Blocker, C. L. Borgman, K. Cranmer,
M. Crosas, R. Di Stefano, Y. Gil, P. Groth, M. Hedstrom et al.,
“Ten simple rules for the care and feeding of scientific data,” PLoS
computational biology, vol. 10, no. 4, p. e1003542, 2014.

[9] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[10] “Coreos/rkt: a container engine for linux designed to be composable,
secure, and built on standard,” https://github.com/coreos/rkt, 2016,
[Online; accessed 09-November-2016].

[11] “Ubuntu lxd: a pure-container hypervisor,” https://github.com/lxc/lxd,
2016, [Online; accessed 09-November-2016].

[12] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On. IEEE, 2015, pp. 171–172.

[13] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker for
hpc,” Proceedings of the Cray User Group, 2015.

[14] G. M. Kurtzer, “Singularity 2.1.2 - Linux application and
environment containers for science,” Aug. 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.60736

[15] K. J. Gorgolewski, F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capota,
M. M. Chakravarty, N. W. Churchill, R. C. Craddock, G. A. Devenyi,
A. Eklund et al., “Bids apps: Improving ease of use, accessibility and
reproducibility of neuroimaging data analysis methods,” bioRxiv, p.
079145, 2016.

[16] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and
J. Srinivasan, “Scaling spark on hpc systems,” in Proceedings of the
25th ACM International Symposium on High-Performance Parallel and
Distributed Computing. ACM, 2016, pp. 97–110.

[17] E. Jones, T. Oliphant, and P. Peterson, “{SciPy}: open source scientific
tools for {Python},” 2014.

[18] B. Abdul-Wahid, H. Lee, G. von Laszewski, and G. Fox, “Scripting
deployment of nist use cases,” 2017.

[19] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE
Software, vol. 33, no. 3, pp. 94–100, 2016.

[20] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and S. Futral, “The spack package manager: Bringing order
to hpc software chaos,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
ACM, 2015, p. 40.

[21] M. Geimer, K. Hoste, and R. McLay, “Modern scientific software
management using easybuild and lmod,” in Proceedings of the First
International Workshop on HPC User Support Tools. IEEE Press,
2014, pp. 41–51.

[22] A. Devresse, F. Delalondre, and F. Schürmann, “Nix based fully
automated workflows and ecosystem to guarantee scientific result repro-
ducibility across software environments and systems,” in Proceedings
of the 3rd International Workshop on Software Engineering for High
Performance Computing in Computational Science and Engineering.
ACM, 2015, pp. 25–31.

[23] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers
for user-defined software stacks in hpc,” Los Alamos National Labora-
tory (LANL), Tech. Rep., 2016.


