
1

An Orchestration for Distributed Web Service Handlers

Beytullah Yildiz
1, 2

, Shrideep Pallickara
1
, Geoffrey Fox

1, 2, 3

1
Community Grids Lab, Indiana University

2
Computer Science Department, School of Informatics, Indiana University

3
Physics Department, Collage of Art and Sciences, Indiana University

{byildiz,spallick,gcf}@indiana.edu

Abstract
Web Service is a standardization effort to interoperate

loosely-coupled applications. A Web Service

interaction benefits and sometimes requires additive

functionalities such as security and relibility. They are

called as handlers and contribute to build rich,

modular and efficient Web Services. However, the way

of utilizing them is very crucial for the Web Service

Architecture and its overall performance. Using

distributed approach for the handler execution

facilitates significantly to reach the goal of richness,

modularity and efficiency. In this paper we describe an

orchestration structure for the distributed handler

execution.

1 Introduction
Web Service is defined by W3C as a software system

that provides a standard means of interoperating the

different software applications, running in a variety of

platforms[1]. There are two important nodes in a Web

Service interaction: provider and requester. A

middleware, which encapsulates a SOAP [2]

processing engine and transport helpers, is employed to

support the interaction between these nodes. It, called

as Web Service container, basically hides the

complexity of the SOAP processing and the details of

message transportation. It also provides suitable

environment for the utilization of additional

functionalities such as security, reliability and logging.

These additive functionalities are called as handlers. As

it is in Apache Axis [3] and Microsoft Web Service

Enhancements (WSE) [4], a Web Service container

generally uses a processing pipeline to execute them in

an order. Although the pipeline allows incrementally

adding new functionalities to an interaction, it increases

the response time because of many handlers in the

execution path. Therefore, we created architecture to

efficiently distribute handler to overcome the

limitation. We will focus on the orchestration of the

handler distribution in this paper. We briefly explain

our architecture. We will elaborate the orchestration for

the distributed handlers. Finally, we will provide

experimental results and conclude with some remarks.

2 Orchestration systems
Many efforts have been spent to obtain a system

providing a solution to manage tasks and data in the

distributed environments. Academic community joined

the effort; GriPhyn[5] provides a good computational

environment for the particle physics. SEEK[6] has a

solution to orchestrate the tasks for ecology. Taverna

[7] offers a flow mechanism for life science. Not only

did the academic community provide a solution but

there also exist propriety software for the distributed

task management such as Inconcert [8], and Websphere

MQ Workflow [9]. Moreover, Grid community has an

interest in this area because of its focus on secure and

collaborative resource sharing across geographically

distributed institutions. GridFlow[10] offers an agent-

based architecture to schedule the Grid tasks

dynamically. Additionally, several new specifications

have been presented such as Business Process

Language for Web Services (BPEL4WS) [11], and

Web Services Choreography Interface (WSCI)[12].

There also exist several systems that utilize markup

languages for the orchestration purpose. One of them is

eXchangeable Routing Language (XRL) It uses XML

base documents for the workflow management [13].

3 Distributing Web Service Handlers
A Web Service interaction mostly necessitates

additional capabilities such as security, reliability,

logging, monitoring, and so on. Many specifications

have been also introduced to standardize Web Services.

When we look at the capabilities and the product of the

standardization efforts, we realize that they are good

candidates of being handlers. Unfortunately, this

richness of handlers does not always bring happiness.

Using several handlers together in an interaction, which

is inevitable in many case, can unreasonably increase

service response time. In other words, Web Service

becomes fat. Fortunately, handler distribution comes to

rescue to remove this obstacle.

2

A Web Service gains several advantages with the

handler distribution. First of all, parallel execution can

be utilized. Nowadays, even in a simple application, we

witness many concurrent tasks. For example, a

computer game contains hundreds of concurrent

executions. Secondly, Handler distribution allows

replication of handlers. This is very beneficial when a

handler cannot answer requests. Finally, handler

distribution improves reusability; they can be easily

reached by many services and clients.

Web Service

Logic

`

Distributed Handlers

SOAP

/HTTP

Web Service

handler

distributor

Orchestration

Module

Figure 1 : Distributing Web Service handlers

We created architecture, shown in Figure 1, to benefit

from the advantages we have just mentioned. We chose

a Message Oriented Middleware (MOM) [14] to

distribute the tasks for the handlers. Messaging is one

of the key concepts to decouple the distributed

applications. Web Services are also familiar with

messaging because they are using SOAP messaging

over various protocols. The Hypertext Transfer

Protocol (HTTP) is the one mostly utilized. It is an

application level generic stateless protocol for the

distributed collaborative hypermedia information

systems [15]. However, HTTP has a limitation because

of the request/respond paradigm. The request has to be

followed with a response. Therefore, it does not

support asynchronous messaging very well. Hence,

Utilizing a MOM serves best our purpose. Over this

environment, we have introduced an orchestration

mechanism. Now, we will elaborate this orchestration.

4 Distributed Handler Orchestration

and its XML schema
Orchestration is the key feature of building an efficient

distributed execution. There are several approaches;

one of them is the use of a Markup language. Petri Net

Markup Language (PNML) [16] is an example.

Similarly, we chose an XML based document to

describe the sequence and the resources for the

orchestration. An XML document carries semantic as

well as syntax. Its structure, content and semantics are

described by XML schema. A schema basically defines

the shared vocabularies of the instances of an XML

document. Now, we will explain the XML schema of

the handler orchestration document.

Handler orchestration schema contains several simple ,

shown in Table 1, and complex elements to define

execution sequence. Simple elements contribute to

build complex schema elements. Name, address,

oneway and mustPerform are the elements to define a

handler. numberOfLooping, numberOfHandler and

condition support to fabricate the execution constructs.

The time entity is necessary to monitor the states of

handlers. Several time-related variables are required to

construct a handler. Start, end and execution times are

needed to watch a handler execution.
Table 1: Simple elements in Orchestration Schema

<!--Element Definitions-->

<xs:element name="name" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="oneway" type="xs:boolean"/>

<xs:element name="mustPerform" type="xs:boolean"/>

<xs:element name="condition" type="xs:anyType"/>

<xs:element name="numberOfHandler" type="xs:short"/>

<xs:element name="numberOfLooping" type="xs:short"/>

Table 2: Handler Definition

<!--Defines Handler-->

<xs:complexType name="handlerType">

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="address"/>

 <xs:element ref="mustPerform"/>

 <xs:element ref="oneway"/>

 <xs:element name="time" type="timeType"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

Handler is the most important entity of the

orchestration schema. In other words, it is the keystone

of the orchestration. Table 2 defines a handler. It

consists of several elements. The name is an identifier

to increase readability. The address provides

uniqueness for the correct message delivery. We keep

tract of the time related parameters to collect statistical

data and to ensure the message delivery. Several

elements are added to improve the performance such as

oneway and mustPerform.
Table 3 : The execution constructs

<xs:element name="executionConstruct">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="sequential"/>

 <xs:element ref="parallel"/>

 <xs:element ref="looping"/>

 <xs:element ref="conditional"/>

 </xs:choice>

 <xs:attribute name="position" type="xs:short"

use="required"/>

 </xs:complexType>

</xs:element>

The materials in the universe are composed from the

elements defined in the periodic table although their

numbers are limited. A written document comprises

only letters that are defined in an alphabet. A software

language has a small set of basic types to build up a

3

complex syntax. A processor contains the small set of

instructions to execute the complex commands. The

same concept is applied to the handler orchestration.

We defined four basic constructs, shown in Table 3.

They are sequential, parallel, looping and conditional.

These basic constructs composes complex execution

structures.

The common feature of chemical elements, alphabet,

basic types of a language and instruction set of a

processor is being well-defined. Hence, the four basic

constructs of orchestration needs to be well-defined to

build more complex structures correctly. Table 4 shows

the definition of sequential execution. It must contain at

least one handler. The order of the execution depends

on the position of the handlers in the construct.
Table 4: The sequential execution construct

<xs:element name="sequential">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="handler" maxOccurs="unbounded"/>

 <xs:element ref="numberOfHandler"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The parallel execution, shown Table 5, is more

complicated than the sequential one. There exist

several types of parallel execution. Synchronous

execution forces the orchestration engine to complete

every handler execution before starting the next

construct. On the other hand, in an asynchronous

execution, the next construct may start its executions

before the completion of the some handlers in the

construct. In order to have parallel execution, there

must be at least two handlers.
Table 5 : The parallel execution construct

<xs:element name="parallel">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="handler" maxOccurs="unbounded"/>

 <xs:element ref="numberOfHandler"/>

 <xs:element ref="typeOfParallelExecution"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>
Table 6 : The looping execution construct

<xs:element name="looping">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="handler"/>

 <xs:element ref="numberOfLooping"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Instead of having multiple appearance of a handler, the

number of handler repetition is provided to have a neat

document structure. Table 6 shows the schema

representation of the looping construct. The quantity of

the handlers in a loop is basically one. However, a set

of handlers may be processed together many times too.

In other words, many handlers can also be in a loop.

An execution may decide its sequence according to

conditions. We benefited from any type XML element

to represent conditions. Table 7 illustrates the

construct.
Table 7 : The conditional execution construct

<xs:element name="conditional">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="handler" axOccurs="unbounded"/>

 <xs:element ref="condition"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

4.1 A handler execution scenario

utilizing basic constructs
We create an instance of the orchestration, depicted in

Figure 2, to elaborate how to construct a distributed

handler orchestration document. We intentionally put a

single occurrence from every basic construct. The first

construct consists of three handlers running

sequentially. The second construct contains four

handlers processed concurrently. Each handler starts

their executions at the same time while they may

complete them in different moments. The third one is a

looping construct that many instances of a handler are

executed sequentially. Finally, a conditional is

employed to select a handler among two handlers.

H
a

n
d

le
r 7

H
a

n
d

le
r 6

H
a

n
d

le
r 5

H
a

n
d

le
r 4Handler 9

Handler

10

Construct 2Construct 4

Construct 1

Construct 3

Handler 8

Handler 1

C

Handler 2 Handler 3

Figure 2 : A sample of a handler orchestration

In sequential construct, the sequence of the execution is

defined by the position of the handler in the

orchestration document; Handler 1 is followed by

Handler 2 and Handler 3 respectively. However, in

parallel construct, the order of the handlers is not

crucial because the executions start together. In the

looping construct, the number of loops describes how

many instance of a handler is processed sequentially.

4

For example, Handler 8 is executed as many times as

the parameter defines. Depending on the given

condition, the orchestration engine executes either

Handler 9 or Handler 10. For example, handler 9 is

executed if the SOAP message contains wsLog

element.

4.2 Interpretation of an orchestration

document
Conversion of the orchestration structure to the engine

understandable execution structure is not in the scope

of this paper. However, we want to mention the

importance of this concept. The orchestration engine

interprets the XML base handler orchestration

document, explained above, and creates its internal

execution structure to carry out the handler processing.

In other words, the constructs in an orchestration

document are mapped to the orchestration engine

understandable structure. This means the separation of

the description from the execution. This notion reduces

the complexity of the engine while it is providing a

powerful expressiveness. With this decision, the engine

that carries out the execution is kept as simple as

possible. Simplicity is a significant feature of a

software system. Without hurting efficiency, simplicity

is the feature being sought in a good design.

4.3 Flexibility and policy schema
Although an internal orchestration structure is initially

created by utilizing an instance of the orchestration

schema, it is possible to alter a sequence while the

execution continues. The modification is permissible

unless the rules defined are not ignored. An alteration

of the internal orchestration structure entails additional

controlling mechanisms. Even though the adaptability

is an excellent feature so that the system offers a

significant flexibility to build a specific execution,

necessary policies should be enforced to ensure the

correctness of the execution. Some handlers may

process any kind of messages arriving to the system

without causing any complication. Yet, the others may

not be appropriate to be executed without restrictions.

There may be a necessity for a compulsory sequence

among some handlers. For example, a decryption

handler should be processed at the beginning so that

the remaining handlers can understand the message

content. Therefore, we come up with another XML

Schema to define the policies. Policies define

conditions to carry out the execution without having

problem. We choose any type element to describe

policies. Some policies may be optional although some

others must be compulsory. The policy may comprise

of many ordering elements to force the necessary

restrictions. Moreover, it contains the orchestration

schema file name and its version to let the system know

where the policies need to be applied.

5 Measurements
We have performed extensive series of the

measurements illustrating the advantages of distributed

handler execution and its orchestration structure. We

will provide the benchmark results gathered from a

multiprocessor system, Sun Fire V880. It has Solaris 9

Operating System which is equipped with 8

UltraSPARC III processors operating at 1200 MHz

with 16 GB Memory. Deployment is made by using

Apache Axis 1.2 and Apache Tomcat 5.5.20.

5.1 Performance measurements
Distributed handler execution allows utilizing

additional resources. There can be many types of

resources such as processor, memory, storage or even

an application. Although distribution improves the

system performance because of the parallelism and

additional resources, the management of these

components may also cause overhead. Hence, we will

investigate the system performance in a multiprocessor

system in the remainder of this section.

5.1.1 Handler configurations

Distributed handler execution is evaluated by utilizing

6 different configurations of 5 Web Service handlers.

Handlers are customized for benchmarking purposes.

Two of them (A, B) are CPU bound handlers. The

remaining three handlers (C, D, and E) have been

chosen from the applications that are gradually

switching from CPU bound to I/O bound. Handler C

and D respectively utilizes DOM and SAX parsers.

Finally, Handler E logs the data and prints out the

information about the SOAP message.

Apache Axis describes the handler execution sequence

by an XML based WSDD configuration file. It

supports only sequential execution. On the other hand,

we utilized more flexible approach for the handler

deployments. The orchestration document, instead,

supports parallel execution as well as sequential one.

The combinations of the parallel handlers can create so

many different configurations. 6 configurations among

them are selected for the experimental purpose. The

first configuration which is sequential execution is to

gather the results from the Apache Axis. The

remainders are various configurations using distributed

handler execution structure. The second configuration

is the exact one with the Apache Axis sequential

execution to evaluate the pure overhead coming from

the distribution. The others are to show advantage of

using parallelism in handler execution.

5.1.2 The results

The management of the distributed handler execution

and the transportation of the tasks affect the execution

5

time. The cost is inevitable but its burden can be

reduced by reshuffling the configuration. In this

section, our interest is to find out the performance

benefits coming from the advantages of the distribution

by using our orchestration mechanism.

Figure 3 : The service execution times of the six handler

configurations containing the five handlers

The values in Figure 3 show the round trip time of a

service request for 6 configurations. Clients record the

initial time of the requests and calculate the elapsed

time when they receive the responses. Hence, the

measurements contain transportation, management of

the orchestration and execution times of the service

including handlers. Every measurement observed 100

times. Table 8 shows the numerical values of the results

and their standard deviations.
Table 8 : The elapsed time for the service execution and

the standard deviation of the performance benchmark

Configuration

number

Mean value

(msec)

Standard

Deviation
1 4023.02 83.49

2 4052.07 90.52

3 4025.95 92.56

4 2261.08 86.66

5 2250.96 97.11

6 2171.53 86.22

The difference between configuration 1 and 2 is pure

overhead originating from the distribution of 5

handlers. The first configuration utilizes Apache Axis

handler deployment. The second configuration

distributes the handlers to the individual processors.

They are both sequential. The remainder

configurations show the various parallel executions.

Overlapping parts shows the parallelisms. For example,

Handler A and D as well as Handler B and E are

parallel executions in configuration 3. It is clear that

the best results are observed when all handlers run

concurrently. However, processing all handlers

concurrently may not be always possible.

5.2 The overhead originating from the

distribution for a single handler
Even though the distribution of handlers provides many

advantages to Web Services, it is not free from the

cost. Positioning a handler away from Web Service

endpoint adds a cost. This cost can be kept in a

reasonable range so that the relocation can be justified.

In the remainder of this section, we will investigate the

overhead for a single handler distribution.

For the sake of the fairness, the results have been

gathered by utilizing the same environments with equal

parameters. The only difference is the distribution. The

parameters carefully selected equal. Measurement

starts from 1 handler. The number of the handler is

increased by 10 in every step. We continue to add the

same handler into the execution path until having 50

handlers. Figure 4 illustrates how the handlers are

deployed in Apache Axis.

SOAP/

HTTP

Web Service Container

Service

Endpoint

N number of handlers

`

Figure 4 : Apache Axis sequential handler deployment to

measure the overhead

The same deployment strategy is applied in the

distributed approach. Figure 5 illustrates the sequential

deployment for the same number of handlers.

SOAP/

HTTP

Handler

Orchestra

tion
Service

Endpoint`

N number of handlers

Figure 5 : DHArch sequential handler deployment to

measure the overhead

Figure 6 : Comparison for the handler addition in Axis

1.x and DHArch

6

Every measurement is observed 100 times. At the end,

the service elapsed times are collected and the average

values are computed. After gathering the values, shown

in Figure 6, the overheads, provided in Table 9, are

calculated with the following formula:

Overhead = (Tdist – Taxis) / N

Where, Tdharch is the elapsed time of a service

utilizing DHArch. Taxis is the elapsed time of a service

utilizing Apache Axis. N is the number of the handlers

in the deployment.
Table 9 : Overheads of a handler distribution for the

increasing number of handlers in the execution path

Number of handlers Overhead (msec)
1 4.54

10 4.61

20 4.55

30 4.51

40 4.49

50 4.50

6 Future work
The distribution of the handlers puts many choices in

front of us. Because of the parallelism, the handler

orchestration can be achieved in many ways. However,

the throughput cannot be increased by a randomly

selected handler sequence. Having an agent that

intelligently looks for a better handler orchestration

sequence is a very interesting. This agent automates the

handler orchestration and adjusts the handler sequence

for the best throughput. Hence, finding out the best

handler deployment configuration is very promising

research area.

7 Conclusion
Orchestration is a significant feature to collaborate the

distributed applications. Dissemination of the handlers

to have efficient and effective SOAP message

execution requires a well-organized orchestration. We

introduced an orchestration structure separating

description from the execution. The separation has

many benefits. First of all, it contributes to a very

efficient and effective orchestration engine while it is

providing very powerful expressiveness in the

description. Without sacrificing the efficiency,

acquiring simplicity is very appealing.

Secondly, the separation helps us to build static and

dynamic handler executions. The orchestration

document statically describes handlers and their

sequences. It can also create a dynamic handler

execution. The execution sequence can be optimized

on the fly. The sequence can be altered via introducing

parallel execution among the appropriate handlers or

rearranging the order. This arrangement must be

controlled by policies, which impose the rules to obey

the dependencies.

Finally, conventional handler execution mechanism

employs a service specific handler sequence. In

contrast, we are able to build an individual handler

execution sequence for each message by using the

introduced orchestration mechanism. This grants

significant flexibility that every message may have its

specific set of handlers and sequence.

8 References
[1] Web Service Architecture,

 http://www.w3.org/TR/ws-arch.

[2] Simple Object Access Protocol (SOAP),

 http://www.w3.org /TR/soap12-part1.
[3] Apache Axis. http://ws.apache.org/axis.

[4] Microsoft Web Service Enhancements (WSE),

 http://www.microsoft.com/downloads/details.aspx?

 FamilyId=FC5F06C5-821F-41D3-A4FE-

 6C7B56423841&displaylang=en.

[5] Ewa Deelman, et al., GriPhyN and LIGO, Building a

Virtual Data Grid for Gravitational Wave Scientists hpdc, p.

225, 11th IEEE International Symposium on High

Performance Distributed Computing (HPDC-11 '02), 2002.

[6] C. Berkley, et al., Incorporating semantics in scientific

workflow authoring In Proceedings of the 17th International

Conference on Scientific and Statistical Database

Management (SSDBM'05).

[7] Oinn, T., et al., Taverna: lessons in creating a workflow

environment for the life sciences Concurr. Comput. : Pract.

Exper. 18, 10 (Aug. 2006), 1067-1100

[8] TIBCO Software Inc Inconcert, http://www.tibco.com.

[9] Aggarwal , B.A., A. Chandra , M. Snir, A model for

hierarchical vmemory, Proceedings of the nineteenth annual

ACM conference on Theory of computing, p.305-314,

January 1987, New York, New York, United States.

[10] Cao, J., et al., GridFlow: workflow management for grid

computing, Proceedings of 3th International Symposium on

Cluster Computing and the Grid, Tokyo, Japan, May 12-15,

2003. IEEE Computer Society Press, 198-205. p. 198-205.

[11] Curbera F, et al., Business Process Execution Language

for Web Services (BPEL4WS) http://www-

128.ibm.com/developerworks/library/specification/ws-bpel/.

[12] Web Service Choreography Interface (WSCI) 1.0

http://www.w3.org/TR/wsci.

[13] Aalst, W.M.P.v.d. and A. Kumar, XML Based Schema

Definition for Support of Inter-organizational Workflow.

University of Colorado and University of Eindhoven report,

2000

[14] Tran, P., Greenfield, P., and Gorton, I., Behavior

and Performance of Message-Oriented Middleware

Systems. Proceedings of the 22nd international

Conference on Distributed Computing Systems,

ICDCSW. 2002

[15] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., and Berners-Lee, T. , 1999

Hypertext Transfer Protocol -- Http/1.1. RFC. RFC

Editor

[16] J¨ungel, M., E. Kindler, and M. Weber. The Petri

Net Markup Language. Petri Net Newsletter, 59:24–

29, 2000

