
Task Scheduling in Big Data - Review, Research
Challenges, and Prospects

Kannan Govindarajan, Supun Kamburugamuve, Pulasthi Wickramasinghe, Vibhatha Abeykoon, Geoffrey Fox

School of Informatics and Computing
Indiana University

Bloomington, USA
Email: kannan.gridlab@gmail.com, kgovind@iu.edu

Abstract—In a Big data computing, the processing of data
requires a large amount of CPU cycles and network bandwidth
and disk I/O. Dataflow is a programming model for processing
Big data which consists of tasks organized in a graph structure.
Scheduling these tasks is one of the key active research areas
which mainly aims to place the tasks on available resources.
It is essential to effectively schedule the tasks, in a manner
that minimizes task completion time and increases utilization
of resources. In recent years, researchers have discussed and
presented different task scheduling algorithms. In this research
study, we have investigated the state-of-art of task scheduling
algorithms, scheduling considerations for batch and streaming
processing, and task scheduling algorithms in the well-known
open-source big data platforms. Furthermore, this study proposes
a new task scheduling system to alleviate the problems persists
in the existing task scheduling for big data.

Keywords—Big Data, MapReduce, Dataflow, Task Scheduling
Model, Twister2, Static and Dynamic Task Scheduling.

I. INTRODUCTION

In recent days, many applications generate Big data such
as Facebook, Google, general public websites, scientific ex-
periments, commercial applications, cloud applications, IoT
devices, e-governance applications, bio-medical applications,
and much more. Big data [1], [2] represents the characteristics
of volume, veracity, and variety of data. It also [3] represents
the data collected in a systematic manner but exceeds the stor-
age and power capacity of typical machines in an organization.
The rapid growth of data volume which requires processing
petabytes of data per day. It describes the exponential growth
and availability of structured, semi-structured and unstructured
data. Furthermore, the data consists of audio, video, images,
and more. It should be processed properly in order to make
accurate and timely decisions. Hence, it is essential to process
and extract such data to understand the meaningful insights
hidden within such data, this is known as Big data analytics.

Big data analytics is empowered by machine learning
or statistical algorithms to process big data and understand
meaningful information out of it. Consequently, it is important
to process those data within a limited time. Major big data
frameworks have been developed according the dataflow model
which represents a computation as a graph consisting of
processing nodes and communicating edges. The Big data
platforms such as Hadoop [4], Spark [5], Flink [6], Heron [7]
and others are examples of such systems. These systems
are required to execute jobs that take less than a minute

to many hours to long running as in streaming jobs. The
performance of Big data platforms depends on how effectively
both the workloads are handled and processed in an efficient
way. In general, big data applications or jobs consists of the
asynchronous tasks in the form of functions. For example map
and reduce are well-known functions in big data systems.
The map task processes each input data block and produce
the intermediary results whereas the reduce tasks process the
intermediary results and produce the final output. Additionally,
big data applications may receive input data in a batch mode or
streaming mode. Hence, it is mandatory to effectively schedule
those tasks with an appropriate input data.

The process of scheduling the tasks into the cluster re-
sources in a manner that minimizes task completion time
and resource utilization is known as Task Scheduling. The
main functional requirements of task scheduling are scalability,
dynamism, time and cost efficiency, handling different types
of processing models, data and jobs, etc. The other major
objectives of task scheduling are reducing the number of task
migrations and allocating the number of dependent and inde-
pendent tasks in a near optimal manner which decreases the
overall computation time of a job and improves the utilization
of cluster resources effectively. In addition to that, the big
data platforms construct the task graph per job which can be
generated either in a static or dynamic mode. Hence, the task
scheduling should have the ability to handle and schedule both
static and dynamic task graphs.

A dataflow framework designed to process data, consists
of well defined layers such as a communication, resource
scheduling, task system, and distributed data abstraction. The
design decisions made at each layer determines the the ap-
plications supported efficiently. We find that modern systems
are designed with a fixed set of design choices at these
layers rendering them suitable for narrow set of applications.
Twister2 [8] is a big data system designed to overcome some
of the shortcomings of monolithic designs of current big data
systems by introducing a clear component based approach to
big data. Because of this, Twister2 needs to support a broad
range of task scheduling capabilities. We take Twister2 as
an integral part of our discussion to introduce some of the
requirements of big data application. In summary, the main
contributions of this research paper are:

• Investigated various static and dynamic task schedul-
ing algorithms and task scheduling considerations for



processing of batch and streaming jobs.

• Explored the task scheduling algorithms available in
the popular open-source big data platforms such as
Hadoop, Mesos, Spark, Flink, Heron and Storm for
batch and stream job processing.

• Proposed a task scheduling model/system which
considers both static and dynamic task graphs and
provides the ability to schedule batch, streaming,
MPI, and micro-services job types.

The rest of the paper is organized as follows: Section II
introduces the task based systems. Section III investigates
the classification of various static and dynamic task schedul-
ing algorithms. Section IV discusses the various scheduling
considerations to be considered for batch and streaming task
scheduling. Section V explores the task scheduling systems in
various popular big data tools or platforms. Section VI presents
the overview of Twister2 and proposed task scheduling model.
The summary of findings and future research directions are
discussed in section VII. Section VIII concludes this research
paper followed by the future work.

II. TASK BASED SYSTEMS

The dataflow programming model [9] is mainly designed to
simplify large-scale data processing. The dataflow model hides
the underlying details of distributed processing, coordination
and data management. It simplifies the process of speci-
fying the task parallelism and dynamically determining the
dependency between the tasks. According to dataflow model
an application is defined as a graph where nodes represent
computations and edges represent communications. The graph
defined by the user is termed user graph and this is turned in
to a graph that can be executed on the available resources. The
graph running on the physical machines is called the execution
graph or physical graph. The user graph can be generated both
dynamically and statically. The allocation of the graph nodes
to the resources is handled by the task scheduler. Depending
on the information available and how the graph is generated
the task scheduler can do static schedules, dynamic schedules
including task migrations. Every major big data system is
designed according to the dataflow model and there are HPC
systems designed according to the same model with tasks.

Javier Conejero et al. [10] proposed a task-based program-
ming framework known as COMPS. It is designed to facilitate
the development of applications for distributed computing
infrastructure. It is a worthwhile alternative for task-based
programming model for big data applications. It achieves
scalability and elasticity through cloud virtual machines. Their
runtime system is capable to identify the implicit parallelism
of the applications during the execution time, which enables
the execution of an application in a distributed infrastructure.
It supports various functionalities such as data dependency
analysis, task scheduling, and fault tolerance. Task scheduling
is responsible for allocating the tasks to resources which
considers the various constraints such as data-locality con-
straints, task constraints (soft hard), and resource workload
constraints. The task scheduling receives data locality and
replica information from the data info provider. Fredy Juarez et
al. [11] proposed a task scheduler for COMPS which considers

the data locality, task constraints, and the workload of the
resource for assigning the task to the distributed resources.
Their proposed task scheduler is designed with an objective of
minimizing the consumption of energy.

Michael Bauer et al. [12] designs a data centric parallel
programming system along with deferred execution framework
for heterogeneous applications. In this system tasks are created
in a form of a tree structure and and each task can create
sub-tasks providing asynchronous task execution. This model
provides a dynamic task registration and sub-task registration
to tear up larger tasks into smaller tasks. In Legion, the tasks
are being launched by a launcher object which is launched
automatically by the runtime but these launcher objects are
executed by the task launchers. Sean Treichler et al. [13]
introduces a system called Realm which is an event based
runtime which allows distributed memory machines along with
non-blocking runtime actions also provides an idea of task
management and execution.

III. CLASSIFICATION OF TASK SCHEDULING ALGORITHMS

The task scheduling algorithms are broadly classified into
two types namely static task scheduling algorithms and dy-
namic task scheduling algorithms.

A. Static Task Scheduling and Algorithms

In static task scheduling, the jobs are allocated to the nodes
before the execution of a job and the processing nodes are
known at compile time. Once the tasks are assigned to the
appropriate resources, the execution continues to run until task
completion. The main objective of the static task scheduling
strategy is to reduce the scheduling overhead that occurs during
the runtime and minimize the number of nodes/processors.
However, the major disadvantages of the static task scheduling
algorithms are that they don’t consider the workload of the
resources and resource requirements of an application that
obviously leads to over-utilization or under-utilization of the
resources which may pave the way for job execution failure.
Capacity Scheduling, Data Locality-Aware Scheduling, Round
Robin Scheduling, Delay Scheduling, FIFO Scheduling, First
Fit Scheduling, Fair Scheduling, Matchmaking Scheduling,
and so on are some of the examples of static task scheduling
algorithms. It is impossible to discuss all the static task
scheduling related research papers within this paper. Hence,
we briefly discussed some of the closely related static task
scheduling works in this section.

Ghodsi et al. [14] proposed the fair scheduling which aims
to address the fair allocation (achieving statistical multiplex-
ing) of resources by dividing the available resources using the
max-min fair sharing. The fair scheduler allocates the available
resources based on the memory by default but, it can be
configured to schedule based on the CPU and memory values.
Capacity Scheduler [15] is a pluggable scheduler to Hadoop
which is designed to execute multiple jobs concurrently by
empowering with multiple queues/pools. Each queue/pool is
guaranteed to allocate some fraction of cluster resources. The
capacity scheduler supports the features such as hierarchical
queues, guaranteed capacity, security, elasticity, and multi-
tenant. Yintian Wang et al. [16] proposed the Round Robin
scheduling algorithm which allocates the computing resources



in a time-sliced manner, however, in the big data computing
it allocates the computing slots to the tasks in a round-robin
mode. Their proposed scheduling mechanism is implemented
with multi-level feedback approach for reducing the response
time of the big data applications. Jiang Bo et al. [17] proposed
a data locality-aware Scheduler, data locality is the measure-
ment of data localization of input data and performs the task
scheduling based on the availability of input data in the cluster
resources.

Yu-Chon Kao and Ya-Shu Chen [18] proposed a data
locality-aware MapReduce scheduling framework for achiev-
ing the guaranteed quality of service to the interactive MapRe-
duce applications. Their proposed scheduling mainly aimed
to address two scheduling issues namely (i) scheduling a
job with multiple map and reduce tasks (achieving end-to-
end deadline) and (ii) partitioning tasks to data-locality aware
cluster resources (maximizing schedulable tasks). First Fit
Decreasing Packing [19] is a heuristic bin-backing scheduling
technique which is designed with an objective of accommo-
dating m number of different task objects into n number of
finite resources in such a way that minimizes the number of
resources to be used for the execution. Chen He et al. [20]
proposed a matchmaking scheduling technique which aimed
to improve the data locality by avoiding unnecessary data
transmissions. It doesnt require the delay factor D. The core
idea of their scheduling technique is giving more preference to
local map tasks than non-local map tasks. A locality marker
is included to mark the nodes which ensure that each node
gets their local tasks. It also relaxes the strict job order for
assignment of tasks and achieves better performance than delay
scheduling technique.

B. Dynamic Task Scheduling and Algorithms

The dynamic task scheduling takes the scheduling deci-
sions during the runtime of task execution. It mainly consid-
ers the resource requirement, availability of resources, inter-
process and inter-node traffic, energy efficiency, and more.
It also supports task migration which is based on the status
of the cluster resources and the workload of an application.
Some of the most popular dynamic task scheduling examples
are resource-aware scheduling, energy-aware scheduling and
deadline-aware scheduling. The dynamic task scheduling is
mainly aimed to efficiently utilize the resources, minimize
the consumption of energy and complete the jobs within their
deadline respectively.

Boyang et al. [21] proposed a resource-aware task
scheduling mechanism known as R-Storm which considers
both the soft and hard constraints such as CPU, bandwidth,
and memory respectively. Consequently, the task scheduling
problem is designed as a Quadratic Multiple 3-Dimensional
Knapsack problem to balance these three constraints. Their
proposed task scheduling algorithm considers inter-rack,
inter-node, inter-process, and intra-process communication.
Lena Mashayekhy et al. [22] proposed a framework for
improving the energy efficiency of MapReduce based big data
applications by modeling the energy-aware scheduling as an
Integer Programming model and satisfies the Service Level
Agreement (SLA). They proposed two heuristic energy-aware
MapReduce algorithms namely, EMRSA-I and EMRSA-II.
The first one calculates the energy consumption rate based

on the minimum ratio of energy consumption and processing
time of tasks when executing on a particular slot and the
latter one calculates the energy consumption rate based on the
average ratio of energy consumption and processing time of
tasks when executing on a particular slot respectively. Their
proposed algorithms consider the energy efficiency differences
of cluster resources and deadline parameter to determine the
placement of tasks into the cluster resources.

Peter Bodik et al. [23] proposed a novel deadline-aware
scheduling algorithm for the processing of Big data jobs.
The main objective of their scheduling is to provide support
for both hard and soft deadlines. Their proposed algorithm
constructs a Directed Acyclic Graph (DAG) for each job
submitted to the system which consists of multiple stages
linked by precedence constraints and allocate the resources
to the tasks based on the offline allocation model. It schedules
the jobs on to C cluster resources within the time slot of 1 to
T. Yi Yao et al. [24] proposed a pluggable scheduler known
as HaSTE for Apache Yarn [25] which mainly considers
the task dependency and resource demand for scheduling of
tasks. The main objective of their proposed task scheduling
minimizes the makespan of the submitted jobs and increase the
utilization of resources. Their proposed scheduling algorithm
dynamically schedule the tasks for execution based on the
fitness and urgency value of tasks. Here, fitness refers the
gap between the resource requirement in the task requests
and available resource capacity whereas urgency refers to the
property of importance of tasks. The developed aggregate
function combines the property of both fitness and urgency
value.

IV. TASK SCHEDULING CONSIDERATIONS FOR BATCH
AND STREAMING PROCESSING

In Big data, batch processing [26] is an efficient way of
processing a large volume of data collected and stored over
a period of time whereas streaming refers to the processing
of real-time data in an interactive manner. It is important to
decide the processing system based on the requirements of the
application, the source of input data, and processing time. The
Big data stream should continue to process the data streams
of online data. The Big data batch processing requires high
performance computing cycles whereas the Big data stream
processing requires low latency for efficient processing.

A. Task Scheduling Considerations for Batch Processing

Hadoop ecosystem describes that all data should be loaded
into Hadoop Distributed File System (HDFS) for Batch pro-
cessing [27] before starting the execution of a job if there
is any change in the data the job has to be executed again.
In general, task scheduling for batch jobs can be performed
prior to processing, based on the knowledge of input data and
task information for processing in a distributed environment.
In addition, the resources can be statically allocated prior to
the execution of a job. Florin Pop and Valentin Cristea [28]
explained processing of big data as a big batch process by
splitting a job into multiple tasks and running on a High
Performance Computing (HPC) by distributing the work to
the cluster nodes. With batch processing, a single CPU can
work on the entire dataset meaning each task will be running



on each CPU one after another. Depending on the job, number
of CPU’s utilized can be different at each stage of the batch
job.

B. Task Scheduling Considerations for streaming processing

In general, the big data platform receives a large amount of
streaming data from input data streams such as data sensors,
social networking, IoT devices and others. It is difficult to
store such large amounts of streaming data hence, it should
be processed immediately which requires a lot of computation
cycles and memory resources. The scheduling for streaming
mainly focus on minimizing latency. To illustrate requirements
of stream task scheduling, let us take a hypothetical example
where we have 4 computations to execute on a stream of
messages with each computation taking t CPU time. Assume
we have 4 CPUs available and the data rate is 1 msg per t
CPU time. If we run all 4 tasks on a single CPU as shown
in Fig. 1, it takes t × 4 time to process one message and the
computation cannot keep up with the stream using 1 CPU. So
we need to load balance between the 4 CPUs and the order of
the processing is lost unless explicitly programmed with locks
to keep the state across 4 CPUs. But it is worth noting that the
data remains in a single thread while the processing happens,
thus preserving data locality. If we perform the schedule as in
Fig. 1 the data locality is lost but the task locality is preserved.

Chen Men-meng et al. [29] states that the existing task
scheduling algorithms for streaming processing fail to consider
the links between the streaming tasks and the dynamic nature
of the streaming process and the resources. Task scheduling
should consider the availability of resource and the resource
demand as an important parameter while scheduling streaming
tasks. Also, it should give greater preference to the network
parameters such as bandwidth and latency. Boyang Peng [30]
said that streaming task components which communicate with
each other should be scheduled close to the network proximity
to avoid the network delay. However, the task scheduling
for streaming jobs is considerably more difficult than batch
jobs due to the continuous and dynamic nature of input data
streams which requires unlimited processing time. Dawei Sun
et al. [31] built a fault tolerant framework for guaranteeing
the deadline in a big data streaming computing. They state
that fault tolerance is an important metric for achieving the
quality of service. Their proposed mechanism identifies the
throughput and quantifies the system reliability of the stream
graph. Subsequently, it allocates the tasks based on the fault
tolerance aware and critical path scheduling technique. The
proposed mechanism solves the trade-off between high fault
tolerance and low response time for big data stream processing.

V. TASK SCHEDULING IN BIG DATA PLATFORMS OR
TOOLS

Apache Hadoop [32] is one of the most popular big data
processing frameworks. It has been implemented with the
default scheduling policy of FIFO which schedules the jobs
coming first and gets higher priority than the later one that
leads to starvation of jobs. However, the Fair Scheduling in
Hadoop makes an equal share of computing resources among
the users or jobs. Delay Scheduling in Hadoop is designed to
accommodate changes in the existing MapReduce application
and consider the data locality feature to reduce the total

Fig. 1. Top: Stream task scheduled in 4 CPU in a chain. Bottom: All streaming
tasks scheduled in a single CPU.

execution time of MapReduce application. Capacity Aware
Scheduling was introduced by Yahoo with the objective of
maximizing the utilization of resources and throughput in a
cluster. Apache Spark [33] is an in-memory big data computa-
tion framework. It mainly works on the principle of Resilient
Distributed Datasets (RDDs) which has been implemented
both the static and dynamic task scheduling algorithms for
those RDDs. The fair scheduling policy in Spark group the
jobs into pools and assign weights into each pool. The dynamic
resource allocation policy allocates the resources to the jobs
based on the workload of the cluster resources in a dynamic
manner.

Apache Mesos [34] is a container based cluster resource
management framework which is implemented with a fine-
grained Dominant Resource Fairness (DRF) algorithm that
allocates the sharing of resources across the applications
running on the platform. It decides a number of resources
to be allocated to each framework and provides the resource
offers to the schedulers. It is able to achieve near-optimal
data locality and better scalablility based on their fine-grained
resource allocation mechanism. However, it may fail to con-
sider the resource requirements of applications running on
Mesos. Apache Flink [6] is implemented with an immediate
scheduling and queued scheduling algorithm which returns the
slot immediately and queues the request and returns the slot
whenever it is available respectively. Apache Storm [35] is
implemented with a default round-robin scheduling for the
placement of streaming tasks on the execution nodes. It does
not consider the availability of the resource or the applications
resource requirement while scheduling the tasks, this may lead
to under-utilization or over-utilization of the resources. Apache
Heron [7] is implemented with Round Robin and First Fit
Bin Decreasing packing plan algorithms for scheduling the
streaming applications in the big data processing. Similar to
Apache Storm task scheduling algorithms, these algorithms
dont consider the resource requirement and the resource avail-
ability which leads to under-utilization or over-utilization of
resources.

Derek G. Murray et al. [36] designed a timely dataflow
system known as Naiad for executing data parallel and cyclic



dataflow applications. It provides the high throughput for
batch processing and low latency for stream processing. Also,
it supports both iterative and incremental based computing
approaches. It is embedded with a timely dataflow computation
model which enhances dataflow computation with time-stamps
and provides the base for an efficient, lightweight coordi-
nation mechanism. It provides the support for constructing
various high-level programming models on top of Naiads low-
level primitives which enable streaming data analysis, iterative
machine learning and interactive graph mining. Leonardo
Neumeyer et al. [37] designed an S4 (Simple Scalable Stream-
ing System) model known as Yahoo S4 which is based on
the MapReduce model for solving the real-world problems.
It is implemented with data mining and machine learning
algorithms. Microsofts TimeStream [38] is a distributed system
specifically designed for continuous processing of low latency
streams. It is designed based on the MapReduce-style batch
processing model. It has been embedded with a new abstraction
called resilient substitution for handling the failure recovery
and dynamic reconfiguration in response to the load.

Dryad [39] is a distributed execution engine for achiev-
ing high performance and running coarse grain data parallel
applications. Quincy scheduler [40] is integrated with Dryad
that aims to target the task level scheduling in computing
clusters. It converts the scheduling problem into a graph-based
structure and handles the conflict between data locality and
fairness. It encodes both the network structure and waiting
tasks and solved it using the min-cost flow solver. In addition to
that, it provides the support for more sophisticated scheduling
policies but, sometimes it is not suitable for shorter workload
type of jobs. Kay Ousterhout et al. [41] designed a stateless
distributed scheduler named Sparrow which adapts the power
of two balancing techniques [42] for parallel task scheduling.
It supports both per job and per task-level constraints. It
is implemented with two allocation policies such as strict
priorities and weighted fair sharing. It supports various ap-
plications which can run on Hadoop and Spark platforms.
The main challenge in Sparrow is balancing the load between
the distributed schedulers and reducing the response time.
Sparrow allows to distribute the workload of the resource but, it
doesn’t consider the availability of the resource while making
scheduling decisions which may overload the resources.

Aurora [43] is a Mesos framework or a service scheduler
running on top of Apache Mesos. It facilitates to run long-
run jobs, cron jobs, and adhoc jobs. In general, Mesos is
concerned about individual tasks whereas a job consists of
multiple task instances. However, an Aurora job consists of
a task template and instructions for creating task instances.
In summary, Aurora is responsible for handling jobs consists
of multiple tasks whereas Mesos is responsible for handling
tasks comprises of multiple processes. It creates a sandbox for
each task when it starts that would be garbage collected when
the task finishes its execution. Marathon [44] is a container
orchestration platform for Mesos and DataCenter Operating
System (DC/OS). It is the first framework which is capable to
run directly on top of Mesos. It’s scheduler processes can be
directly initiated on Mesos framework. It is also a coercive tool
to run other frameworks like Chronos (A distributed and fault-
tolerant scheduler) [45] and it has the ability of dynamically
placing the containers.

REEF (Retainable Evaluator Execution Framework)[46]
provides a control plane to schedule and coordinate data plane
on cluster resources for data processing applications. It is
free from the specific programming model that provides an
application framework in which new analytic tools can be
developed and executed in a cluster managed resources. It
provides the various key abstractions namely, Driver, Task,
Evaluator, and Context. The Driver is responsible for imple-
menting the resource allocation and task scheduling logic.
The Task is the unit of code to be executed in an Evaluator.
The Evaluator is a runtime environment which retains the
containers state to avoid resource allocation and scheduling
costs and the Context is a state management environment.
REEF hides out many of the resource manager specific details
into an Environment adapter layer that translates the requests
into underlying resource manager actions. It also simplifies the
process of communicating the Driver and Task components in
a large-scale data processing application.

VI. OVERVIEW OF TWISTER2 AND PROPOSED TASK
SCHEDULING MODEL

A. Overview of Twister2

Supun Kamburugamuwa Geoffrey Fox proposed a Big data
programming toolkit named Twister2 [8] empowered with the
dataflow programming model. It hides the underlying details
of communication, synchronization, and Input and Output
operations. It is purely designed based on an event-driven
model for data processing which has been designed with clear
functional layers of communication, resource scheduling, task
execution, data abstractions and fault-tolerance mechanism. It
is designed to handle different kind of applications including
batch, stream, and Microservices.

B. Task Scheduling Model

We have extended the scheduling model of [47] for task
scheduling in Big data which comprises of Job Model, Re-
source Model, Performance Metrics, Scheduling Policy, and
Programming Model as explained below.

• Job model - It provides the abstraction of jobs (con-
sists of multiple tasks) and its requirements. The re-
quirements are classified into hard and soft constraints.
The job model handles different type of jobs namely
batch, streaming, MPI, and microservices.

• Resource model - It describes the characteristics and
performances of data centers, hosts, rack, and network
links. The resource model maintains the metadata that
contains resource characteristics in terms of properties
and value.

• Scheduling policy/algorithm - The scheduling policy
or algorithm implemented in Task Scheduler which is
based on specific goals such as optimization of total
computational time or utilization of cluster resources
or both. It operates based on the characteristics of
job attributes, resource constraints, resource workload,
and input data. The scheduling algorithm is majorly
classified into two types namely static task scheduling
and dynamic task scheduling.



Fig. 2. Task Scheduling in Twister2

• Performance metrics - It is used to evaluate the per-
formance improvements gained by the proposed task
scheduling model. In our proposed work, we have
considered and evaluated the various performance
metrics as listed in Table 2.

• Programming model - The programming model is
helpful for providing the interface to the scheduler. In
this proposed approach, we have made use of dataflow
programming model for interfacing the task scheduler
with other components.

C. Task Scheduling System in Twister2

The task scheduling system is designed such that it is
able to handle various type of jobs discussed above. Also, it
facilitates to schedule both static and dynamic task graphs.
The workflow functionality of proposed task scheduler is
shown in Fig. ??. The task scheduler is integrated with
static as well as dynamic task scheduling algorithms. The
task scheduler invokes an appropriate algorithm based on the
application, input data, and the source of input data. The
Resource Scheduler sends the job id to the Task Scheduler
for generating the task schedule plan. The Task Scheduler
receives the job id and fetches the corresponding job attributes
from the job object and the task scheduling policy from the
scheduling configuration file. First, it computes the number of
task instances to be created for the execution of a job which is
based on the parallelism of the number of tasks. Subsequently,
it generates the task schedule plan which consists of the
number of containers to be created and the task instances to
be hosted in the containers. Finally, it sends the task execution
details to the Task Executor for the execution of tasks on the
worker nodes.

VII. SUMMARY OF FINDINGS AND RESEARCH
DIRECTIONS

In this research paper, we studied the state-of-art of various
task scheduling algorithms proposed by the researchers, task
scheduling systems in popular big data platforms, and task
scheduling scenarios to be considered for big data batch

processing and streaming processing. Based on the literature
review, the future research directions are classified into three
types which could be addressed by our proposed task schedul-
ing system.

A. Future Research Directions for Supporting both Static and
Dynamic Task Scheduling

The static task and dynamic task scheduling depend on the
nature of the job and the input data. However, both static and
dynamic task scheduling is suitable for batch processing and
stream processing of big data jobs. Hence, the proposed task
scheduling would be accommodated with both the static and
dynamic task scheduling mechanism as shown in Table I.

B. Future Research Directions for Handling Different Type of
Jobs

The big data platform should be able to handle different
type of jobs for the processing of big data. Hence, the
task scheduling in the big data platform should facilitate the
scheduling mechanism for effectively schedule those jobs. The
table I represents the various task scheduling algorithms and
supported job types in the various big data platforms. It infers
that the proposed task scheduling system is accommodated
with both static and dynamic task scheduling algorithms and
it is able to schedule or manage four kinds of jobs namely
MapReduce, streaming, MPI and Micro Services.

C. Future Research Directions for Considering Different Type
of Performance Factors

In order to consider the various scenarios discussed above,
the proposed task scheduling system has been designed to
accomplish the various objectives that minimize the overall
computation time of a job and increase the utilization of cluster
resources in a near optimal manner. It considers the various
essential factors namely data locality, resource workload, en-
ergy consumption, job attributes, deadline of the job, etc. From
this study, it is identified that the existing task scheduling
techniques are either focused on user-centric or resource-
centric, and they failed to address both the factors at once.
However, the proposed task scheduling system first classifies
the performance factors into user-centric and resource-centric,
and considers both the factors as shown in table II along with
their definition. It also infers that the proposed task scheduling
system is able to resolve the problems that persist in existing
task scheduling techniques by considering both the essential
user-centric and resource-centric parameters.

VIII. CONCLUSION

Task scheduling in Big data is one of the active research
areas which plays a major role in the completion of Big data
processing and effectively utilize the cluster resources. From
the literature review, it has been identified that there is no
common task scheduling model to accommodate both the static
and dynamic task graphs and handle different type of jobs as
discussed above. Hence, the proposed task scheduling model
is able to handle both static and dynamic task scheduling.
Additionally, it has the ability to schedule different types
of jobs namely batch, streaming, MPI, and micro-services
which are missing in other existing works. Furthermore, the



TABLE I. TASK SCHEDULING ALGORITHMS AND SCHEDULING JOB TYPES

Big Data
Platforms

Scheduling Types Scheduling Job Types Dataflow
Program-
ming
Model

Static Dynamic Batch Streaming MPI FaaS /
Microser-
vices

Spark No Yes Yes Yes No No Yes
Flink Yes No Yes Yes No No Yes
Heron Yes No No Yes No No Yes
Storm Yes No No Yes No No Yes
Hadoop Yes No Yes No No No No
Twister2 Yes Yes Yes Yes Yes Yes Yes

TABLE II. TASK SCHEDULING PERFORMANCE FACTORS

Performance
Factors

Description User / Resource Centric

Deadline Reduce the maximum time to be taken to complete the user application/job. User-Centric
Execution Time Minimize the time taken to complete the actual execution of a task or a job. User-Centric
Completion Time Minimize the time taken to complete the execution of job which consists of both execution and communication

time.
User-Centric

Makespan Minimize the total time taken to complete a particular job which consists of multiple map and reduce tasks. User-Centric
Data Locality Minimize the distance between the input data node and the actual execution node. User-Centric
Resource utilization Minimize the utilization of cluster resources. Resource-Centric
Energy
Consumption

Minimize the consumption of energy in the cluster resources. Resource-Centric

Fault Tolerance Minimize the failure of jobs and job executors/job managers Resource-Centric

proposed task scheduling model considers both the user-centric
and resource-centric performance factors. The future work
will explore (i) to introduce fault-tolerance in task scheduling
and (ii) performs various performance testing through popular
benchmarks and publish the results.

ACKNOWLEDGMENT

This work was partially supported by the Indiana Univer-
sity Precision Health Initiative and by NSF CIF21 DIBBS
1443054. We thank Intel for their support of the Juliet system,
and extend our gratitude to the Future Systems team for their
support with the infrastructure.

REFERENCES

[1] M. D. Assuno, R. N. Calheiros, S. Bianchi, M. A. Netto, and
R. Buyya, “Big data computing and clouds: Trends and future
directions,” Journal of Parallel and Distributed Computing, vol. 79-80,
no. Supplement C, pp. 3 – 15, 2015, special Issue on Scalable
Systems for Big Data Management and Analytics. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001452

[2] R. Magoulas and L. Ben, “Big data processing: Big challenges and
opportunities,” 2011.

[3] N. Samal and N. Mishra, “Big data processing: Big challenges and op-
portunities,” Journal of Computer Sciences and Applications 3(6):177-
180, 2015.

[4] C. Lam, Hadoop in action. Manning Publications Co., 2010.
[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113

[6] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[7] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: ACM, 2015, pp. 239–250. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2742788

[8] S. Kamburugamuve and G. Fox, “Designing twister2:
Efficient programming environment toolkit for big data,”
http://dsc.soic.indiana.edu/publications/Twister2.pdf, 2017, Technical
Report.

[9] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt et al.,
“The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data pro-
cessing,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp.
1792–1803, 2015.

[10] J. Conejero, S. Corella, R. M. Badia, and J. Labarta, “task-based
programming in compss to converge from hpc to big data.”

[11] F. Juarez, J. Ejarque, and R. M. Badia, “Dynamic energy-
aware scheduling for parallel task-based application in cloud
computing,” Future Generation Computer Systems, vol. 78,
no. Part 1, pp. 257 – 271, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X1630214X

[12] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 66:1–66:11. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389086

[13] S. Treichler, M. Bauer, and A. Aiken, “Realm: An event-
based low-level runtime for distributed memory architectures,” in
Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, ser. PACT ’14. New York,
NY, USA: ACM, 2014, pp. 263–276. [Online]. Available:
http://doi.acm.org/10.1145/2628071.2628084



[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 323–336.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972490

[15] “Capacity Scheduler,” https://hadoop.apache.org/docs/r2.8.0/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html, accessed: 2017-Sep-29.

[16] Y. Wang, R. Rao, and Y. Wang, “A round robin with multiple feedback
job scheduler in hadoop,” in 2014 IEEE International Conference on
Progress in Informatics and Computing, May 2014, pp. 471–475.

[17] B. Jiang, J. Wu, X. Shi, and R. Huang, “Hadoop scheduling base on
data locality,” CoRR, vol. abs/1506.00425, 2015. [Online]. Available:
http://arxiv.org/abs/1506.00425

[18] Y.-C. Kao and Y.-S. Chen, “Data-locality-aware mapreduce real-
time scheduling framework,” Journal of Systems and Software, vol.
112, no. Supplement C, pp. 65 – 77, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121215002344

[19] “First Fit Decreasing Packing Algorithm,”
https://twitter.github.io/heron/docs/developers/packing/ffdpacking/.

[20] C. He, Y. Lu, and D. Swanson, “Matchmaking: A new
mapreduce scheduling technique,” in Proceedings of the 2011
IEEE Third International Conference on Cloud Computing Technology
and Science, ser. CLOUDCOM ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 40–47. [Online]. Available:
https://doi.org/10.1109/CloudCom.2011.16

[21] P. Boyang, H. Mohammad, and H. Zhihao, “R-storm: Resource-aware
scheduling in storm,” ser. Annual Middleware Conference. ACM,
2015. [Online]. Available: http://dx.doi.org/10.1145/2814576.2814808

[22] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and W. Shi,
“Energy-aware scheduling of mapreduce jobs for big data applications,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 10,
pp. 2720–2733, Oct 2015.

[23] P. Bodik, I. Menache, J. S. Naor, and J. Yaniv, “Brief
announcement: Deadline-aware scheduling of big-data processing
jobs,” in Proceedings of the 26th ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA ’14. New York,
NY, USA: ACM, 2014, pp. 211–213. [Online]. Available:
http://doi.acm.org/10.1145/2612669.2612702

[24] Y. Yao, J. Wang, B. Sheng, J. Lin, and N. Mi,
“Haste: Hadoop yarn scheduling based on task-
dependency and resource-demand.” in IEEE CLOUD. IEEE,
2014, pp. 184–191. [Online]. Available: http://dblp.uni-
trier.de/db/conf/IEEEcloud/IEEEcloud2014.htmlYaoWSLM14

[25] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of
the 4th Annual Symposium on Cloud Computing, ser. SOCC ’13.
New York, NY, USA: ACM, 2013, pp. 5:1–5:16. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633

[26] “Batch Processing vs Stream Processing,”
https://www.thomashenson.com/ultimate-big-data-battle-batch-
processing-vs-streaming-processing, accessed: 2017-Oct-22.

[27] “Batch Processing,” https://www.datasciencecentral.com/profiles/blogs/batch-
vs-real-time-data-processing, accessed: 2017-Oct-22.

[28] C. V. Pop F, The art of scheduling for big data science. Chapman
Hall/CRC Big Data Series, 2015.

[29] M. Chen, C. Zhang, Z. Li, and K. Xu, “A task scheduling
approach for real-time stream processing,” in International Conference
on Cloud Computing and Big Data, CCBD 2014, Wuhan, China,
November 12-14, 2014, 2014, pp. 160–167. [Online]. Available:
https://doi.org/10.1109/CCBD.2014.22

[30] “Elasticity and resource aware scheduling in distributed data stream
processing systems,” http://hdl.handle.net/2142/78453, accessed: 2017-
Oct-24.

[31] D. Sun, G. Zhang, C. Wu, K. Li, and W. Zheng, “Building a
fault tolerant framework with deadline guarantee in big data stream
computing environments,” Journal of Computer and System Sciences,
vol. 89, no. Supplement C, pp. 4 – 23, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000016301143

[32] T. White, Hadoop: The Definitive Guide, 1st ed. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2009.

[33] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proceedings of the
5th European Conference on Computer Systems, ser. EuroSys ’10.
New York, NY, USA: ACM, 2010, pp. 265–278. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755940

[34] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data center,”
in Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 295–308. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1972457.1972488

[35] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@
twitter,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM, 2014, pp. 147–156.

[36] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “naiad: A timely dataflow system.”

[37] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in 2010 IEEE International Conference
on Data Mining Workshops, Dec 2010, pp. 170–177.

[38] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang, “Timestream: Reliable stream computation in the cloud,”
in Proceedings of the 8th ACM European Conference on Computer
Systems, ser. EuroSys ’13. New York, NY, USA: ACM, 2013, pp.
1–14. [Online]. Available: http://doi.acm.org/10.1145/2465351.2465353

[39] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,”
in Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, ser. EuroSys ’07. New
York, NY, USA: ACM, 2007, pp. 59–72. [Online]. Available:
http://doi.acm.org/10.1145/1272996.1273005

[40] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg, “Quincy: Fair scheduling for distributed
computing clusters,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, ser. SOSP ’09. New
York, NY, USA: ACM, 2009, pp. 261–276. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629601

[41] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, ser. SOSP
’13. New York, NY, USA: ACM, 2013, pp. 69–84. [Online].
Available: http://doi.acm.org/10.1145/2517349.2522716

[42] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, Oct 2001.

[43] “Aurora Scheduler,” http://aurora.apache.org/documentation/latest/, ac-
cessed: 2017-Oct-30.

[44] “Marathon Container Orchestration Platform,”
https://mesosphere.github.io/marathon/, accessed: 2017-Oct-30.

[45] “Chronus Fault Tolerant Scheduler,” https://github.com/mesos/chronos/,
accessed: 2017-Oct-30.

[46] B.-G. Chun, T. Condie, Y. Chen, B. Cho, A. Chung, C. Curino,
C. Douglas, M. Interlandi, B. Jeon, J. S. Jeong, G. Lee, Y. Lee,
T. Majestro, D. Malkhi, S. Matusevych, B. Myers, M. Mykhailova,
S. Narayanamurthy, J. Noor, R. Ramakrishnan, S. Rao, R. Sears,
B. Sezgin, T. Um, J. Wang, M. Weimer, and Y. Yang, “Apache
reef: Retainable evaluator execution framework,” ACM Trans. Comput.
Syst., vol. 35, no. 2, pp. 5:1–5:31, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3132037

[47] T. S. Somasundaram and K. Govindarajan, “Cloudrb: A framework
for scheduling and managing high-performance computing (hpc)
applications in science cloud,” Future Generation Computer
Systems, vol. 34, no. Supplement C, pp. 47 – 65,
2014, special Section: Distributed Solutions for Ubiquitous
Computing and Ambient Intelligence. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X13002884


